Cerebrospinal Fluid Classical Biomarker Levels in Mixed vs. Pure A+T+ (A+T1+) Alzheimer’s Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Patients
2.3. Lumbar Puncture and CSF Biomarker Profiling
2.4. Patient Subgrouping
3. Results
3.1. Demographic and Clinical Data
3.2. CSF Biomarkers
3.3. Correlations Between CSF Biomarkers
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scheltens, P.; De Strooper, B.; Kivipelto, M.; Holstege, H.; Chételat, G.; Teunissen, C.E.; Cummings, J.; van der Flier, W.M. Alzheimer’s disease. Lancet 2021, 397, 1577–1590. [Google Scholar] [CrossRef]
- Hyman, B.T.; Phelps, C.H.; Beach, T.G.; Bigio, E.H.; Cairns, N.J.; Carrillo, M.C.; Dickson, D.W.; Duyckaerts, C.; Frosch, M.P.; Masliah, E.; et al. National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimer’s Dement. 2012, 8, 1–13. [Google Scholar] [CrossRef] [PubMed]
- McKhann, G.M.; Knopman, D.S.; Chertkow, H.; Hyman, B.T.; Jack, C.R., Jr.; Kawas, C.H.; Klunk, W.E.; Koroshetz, W.J.; Manly, J.J.; Mayeux, R.; et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011, 7, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Dubois, B.; Feldman, H.H.; Jacova, C.; Hampel, H.; Molinuevo, J.L.; Blennow, K.; DeKosky, S.T.; Gauthier, S.; Selkoe, D.; Bateman, R.; et al. Advancing research diagnostic criteria for Alzheimer’s disease: The IWG-2 criteria. Lancet Neurol. 2014, 13, 614–629. [Google Scholar] [CrossRef] [PubMed]
- Grossman, M. Primary progressive aphasia: Clinicopathological correlations. Nat. Rev. Neurol. 2010, 6, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Villain, N.; Dubois, B. Alzheimer’s disease including focal presentations. Semin. Neurol. 2019, 39, 213–226. [Google Scholar] [CrossRef] [PubMed]
- Wallin, A.; Nordlund, A.; Jonsson, M.; Blennow, K.; Zetterberg, H.; Öhrfelt, A.; Stålhammar, J.; Eckerström, M.; Carlsson, M.; Olsson, E.; et al. Alzheimer’s disease–subcortical vascular disease spectrum in a hospital-based setting: Overview of results from the Gothenburg MCI and dementia studies. J. Cereb. Blood Flow Metab. 2016, 36, 95–113. [Google Scholar] [CrossRef]
- Peavy, G.M.; Edland, S.D.; Toole, B.M.; Hansen, L.A.; Galasko, D.R.; Mayo, A.M. Phenotypic differences based on staging of Alzheimer’s neuropathology in autopsy-confirmed dementia with Lewy bodies. Park. Relat. Disord. 2016, 31, 72–78. [Google Scholar] [CrossRef]
- Müller-Schmitz, K.; Krasavina-Loka, N.; Yardimci, T.; Lipka, T.; Kolman, A.G.J.; Robbers, S.; Menge, T.; Kujovic, M.; Seitz, R.J. Normal Pressure Hydrocephalus Associated with Alzheimer’s Disease. Ann. Neurol. 2020, 88, 703–711. [Google Scholar] [CrossRef]
- Galasko, D.; Hansen, L.A.; Katzman, R.; Wiederholt, W.; Masliah, E.; Terry, R.; Hill, L.R.; Lessin, P.; Thal, L.J. Clinical-neuropathological correlations in Alzheimer’s disease and related dementias. Arch. Neurol. 1994, 51, 888–895. [Google Scholar] [CrossRef]
- Nelson, P.T.; Head, E.; Schmitt, F.A.; Davis, P.R.; Neltner, J.H.; Jicha, G.A.; Abner, E.L.; Smith, C.D.; Van Eldik, L.J.; Kryscio, R.J.; et al. Alzheimer’s disease is not “brain aging”: Neuropathological, genetic, and epidemiological human studies. Acta Neuropathol. 2011, 121, 571–587. [Google Scholar] [CrossRef]
- Paraskevas, G.P.; Kapaki, E. Cerebrospinal Fluid Biomarkers for Alzheimer’s Disease in the Era of Disease-Modifying Treatments. Brain Sci. 2021, 11, 1258. [Google Scholar] [CrossRef] [PubMed]
- Jansen, I.E.; van der Lee, S.J.; Gomez-Fonseca, D.; de Rojas, I.; Dalmasso, M.C.; Grenier-Boley, B.; Zettergren, A.; Mishra, A.; Ali, M.; Andrade, V.; et al. Genome-wide meta-analysis for Alzheimer’s disease cerebrospinal fluid biomarkers. Acta Neuropathol. 2022, 144, 821–842. [Google Scholar] [CrossRef] [PubMed]
- McGrowder, D.A.; Miller, F.; Vaz, K.; Nwokocha, C.; Wilson-Clarke, C.; Anderson-Cross, M.; Brown, J.; Anderson-Jackson, L.; Williams, L.; Latore, L.; et al. Cerebrospinal Fluid Biomarkers of Alzheimer’s Disease: Current Evidence and Future Perspectives. Brain Sci. 2021, 11, 215. [Google Scholar] [CrossRef] [PubMed]
- Frisoni, G.B.; Festari, C.; Massa, F.; Cotta Ramusino, M.; Orini, S.; Aarsland, D.; Agosta, F.; Babiloni, C.; Borroni, B.; Cappa, S.F.; et al. European intersocietal recommendations for the biomarker-based diagnosis of neurocognitive disorders. Lancet Neurol. 2024, 23, 302–312. [Google Scholar] [CrossRef]
- Agnello, L.; Gambino, C.M.; Ciaccio, A.M.; Masucci, A.; Vassallo, R.; Tamburello, M.; Scazzone, C.; Lo Sasso, B.; Ciaccio, M. Molecular Biomarkers of Neurodegenerative Disorders: A Practical Guide to Their Appropriate Use and Interpretation in Clinical Practice. Int. J. Mol. Sci. 2024, 25, 4323. [Google Scholar] [CrossRef] [PubMed]
- Jack, C.R., Jr.; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement. 2018, 14, 535–562. [Google Scholar] [CrossRef]
- Jack, C.R., Jr.; Andrews, J.S.; Beach, T.G.; Buracchio, T.; Dunn, B.; Graf, A.; Hansson, O.; Ho, C.; Jagust, W.; McDade, E.; et al. Revised criteria for diagnosis and staging of Alzheimer’s disease: Alzheimer’s Association Workgroup. Alzheimer’s Dement. 2024, 20, 5143–5169. [Google Scholar] [CrossRef]
- Paraskevas, G.P.; Constantinides, V.C.; Boufidou, F.; Tsantzali, I.; Pyrgelis, E.-S.; Liakakis, G.; Kapaki, E. Recognizing atypical presentations of Alzheimer’s disease: The importance of CSF biomarkers in clinical practice. Diagnostics 2022, 12, 3011. [Google Scholar] [CrossRef] [PubMed]
- Tsantzali, I.; Boufidou, F.; Sideri, E.; Mavromatos, A.; Papaioannou, M.G.; Foska, A.; Tollos, I.; Paraskevas, S.G.; Bonakis, A.; Voumvourakis, K.I.; et al. From Cerebrospinal Fluid Neurochemistry to Clinical Diagnosis of Alzheimer’s Disease in the Era of Anti-Amyloid Treatments. Report of Four Patients. Biomedicines 2021, 9, 1376. [Google Scholar] [CrossRef]
- Wallin, A.; Román, G.C.; Esiri, M.; Kettunen, P.; Svensson, J.; Paraskevas, G.P.; Kapaki, E. Update on Vascular Cognitive Impairment Associated with Subcortical Small-Vessel Disease. J. Alzheimer’s Dis. 2018, 62, 1417–1441. [Google Scholar] [CrossRef]
- Paraskevas, G.P.; Bougea, A.; Constantinides, V.C.; Bourbouli, M.; Petropoulou, O.; Kapaki, E. In vivo Prevalence of Alzheimer Biomarkers in Dementia with Lewy Bodies. Dement. Geriatr. Cogn. Disord. 2019, 47, 289–296. [Google Scholar] [CrossRef]
- Foska, A.; Tsantzali, I.; Sideri, E.; Stefanou, M.I.; Bakola, E.; Kitsos, D.K.; Zompola, C.; Bonakis, A.; Giannopoulos, S.; Voumvourakis, K.I.; et al. Classical Cerebrospinal Fluid Biomarkers in Dementia with Lewy Bodies. Medicina 2022, 58, 612. [Google Scholar] [CrossRef] [PubMed]
- Pyrgelis, E.S.; Paraskevas, G.P.; Constantinides, V.C.; Boufidou, F.; Papaioannou, M.; Stefanis, L.; Kapaki, E. Alzheimer’s Disease CSF Biomarkers as Possible Indicators of Tap-Test Response in Idiopathic Normal Pressure Hydrocephalus. Brain Sci. 2023, 13, 1593. [Google Scholar] [CrossRef] [PubMed]
- Bousiges, O.; Cretin, B.; Lavaux, T.; Philippi, N.; Jung, B.; Hezard, S.; Heitz, C.; Demuynck, C.; Gabel, A.; Martin-Hunyadi, C.; et al. Diagnostic Value of Cerebrospinal Fluid Biomarkers (Phospho-Tau181, total-Tau, Aβ42, and Aβ40) in Prodromal Stage of Alzheimer’s Disease and Dementia with Lewy Bodies. J. Alzheimer’s Dis. 2016, 51, 1069–1083. [Google Scholar] [CrossRef]
- Paraskevas, G.P.; Kapaki, E.; Papageorgiou, S.G.; Kalfakis, N.; Andreadou, E.; Zalonis, I.; Vassilopoulos, D. CSF biomarker profile and diagnostic value in vascular dementia. Eur. J. Neurol. 2009, 16, 205–211. [Google Scholar] [CrossRef]
- Patel, S.; Lee, E.B.; Xie, S.X.; Law, A.; Jackson, E.M.; Arnold, S.E.; Clark, C.M.; Shaw, L.M.; Grady, M.S.; Trojanowski, J.Q.; et al. Phosphorylated tau/amyloid beta 1–42 ratio in ventricular cerebrospinal fluid reflects outcome in idiopathic normal pressure hydrocephalus. Fluids Barriers CNS 2012, 9, 7. [Google Scholar] [CrossRef] [PubMed]
- Kapaki, E.N.; Paraskevas, G.P.; Tzerakis, N.G.; Sfagos, C.; Seretis, A.; Kararizou, E.; Vassilopoulos, D. Cerebrospinal fluid tau, phospho-tau181 and beta-amyloid1-42 in idiopathic normal pressure hydrocephalus: A discrimination from Alzheimer’s disease. Eur. J. Neurol. 2007, 14, 168–173. [Google Scholar] [CrossRef]
- Pyrgelis, E.S.; Boufidou, F.; Constantinides, V.C.; Papaioannou, M.; Papageorgiou, S.G.; Stefanis, L.; Paraskevas, G.P.; Kapaki, E. Cerebrospinal Fluid Biomarkers in iNPH: A Narrative Review. Diagnostics 2022, 12, 2976. [Google Scholar] [CrossRef]
- Bousiges, O.; Blanc, F. Biomarkers of Dementia with Lewy Bodies: Differential Diagnostic with Alzheimer’s Disease. Int. J. Mol. Sci. 2022, 23, 6371. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Fountoulakis, K.N.; Tsolaki, M.; Chantzi, H.; Kazis, A. Mini Mental State Examination (MMSE): A validation study in Greece. Am. J. Alzheimer’s Dis. Other Dement. 2000, 15, 342–345. [Google Scholar] [CrossRef]
- Mioshi, E.; Dawson, K.; Mitchell, J.; Arnold, R.; Hodges, J.R. The Addenbrooke’s Cognitive Examination Revised (ACE-R): A brief cognitive test battery for dementia screening. Int. J. Geriatr. Psychiatry 2006, 21, 1078–1085. [Google Scholar] [CrossRef] [PubMed]
- Konstantinopoulou, E.; Kosmidis, M.H.; Ioannidis, P.; Kiosseoglou, G.; Karacostas, D.; Taskos, N. Adaptation of Addenbrooke’s Cognitive Examination-Revised for the Greek population. Eur. J. Neurol. 2011, 18, 442–447. [Google Scholar] [CrossRef]
- del Campo, M.; Mollenhauer, B.; Bertolotto, A.; Engelborghs, S.; Hampel, H.; Simonsen, A.H.; Kapaki, E.; Kruse, N.; Le Bastard, N.; Lehmann, S.; et al. Recommendations to standardize preanalytical confounding factors in Alzheimer’s and Parkinson’s disease cerebrospinal fluid biomarkers: An update. Biomark. Med. 2012, 6, 419–430. [Google Scholar] [CrossRef] [PubMed]
- Constantinides, V.C.; Paraskevas, G.P.; Boufidou, F.; Bourbouli, M.; Pyrgelis, E.S.; Stefanis, L.; Kapaki, E. CSF Aβ42 and Aβ42/Aβ40 Ratio in Alzheimer’s Disease and Frontotemporal Dementias. Diagnostics 2023, 13, 783. [Google Scholar] [CrossRef] [PubMed]
- University of Gothenburg, Institute of Neuroscience and Neurophysiology, The Alzheimer’s Association’s QC Program for CSF and Blood Biomarkers. Available online: https://www.gu.se/en/neuroscience-physiology/the-alzheimers-association-qc-program-for-csf-and-blood-biomarkers (accessed on 17 November 2024).
- Amft, M.; Ortner, M.; Eichenlaub, U.; Goldhardt, O.; Diehl-Schmid, J.; Hedderich, D.M.; Yakushev, I.; Grimmer, T. The cerebrospinal fluid biomarker ratio Abeta42/40 identifies amyloid positron emission tomography positivity better than Abeta42 alone in a heterogeneous memory clinic cohort. Alzheimer’s Res. Ther. 2022, 14, 60. [Google Scholar] [CrossRef]
- Gorno-Tempini, M.L.; Hillis, A.E.; Weintraub, S.; Kertesz, A.; Mendez, M.; Cappa, S.F.; Ogar, J.M.; Rohrer, J.D.; Black, S.; Boeve, B.F.; et al. Classification of primary progressive aphasia and its variants. Neurology 2011, 76, 1006–1014. [Google Scholar] [CrossRef]
- Crutch, S.J.; Schott, J.M.; Rabinovici, G.D.; Murray, M.; Snowden, J.S.; van der Flier, W.M.; Dickerson, B.C.; Vandenberghe, R.; Ahmed, S.; Bak, T.H.; et al. Consensus classification of posterior cortical atrophy. Alzheimer’s Dement. 2017, 13, 870–884. [Google Scholar] [CrossRef] [PubMed]
- Sachdev, P.; Kalaria, R.; O’Brien, J.; Skoog, I.; Alladi, S.; Black, S.E.; Blacker, D.; Blazer, D.G.; Chen, C.; Chui, H.; et al. Diagnostic criteria for vascular cognitive disorders: A VASCOG statement. Alzheimer Dis. Assoc. Disord. 2014, 28, 206–218. [Google Scholar] [CrossRef] [PubMed]
- McKeith, I.G.; Boeve, B.F.; Dickson, D.W.; Halliday, G.; Taylor, J.P.; Weintraub, D.; Aarsland, D.; Galvin, J.; Attems, J.; Ballard, C.G.; et al. Diagnosis and management of dementia with Lewy bodies. Fourth consensus report of the DLB Consortium. Neurology 2017, 89, 88–100. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, M.; Yamada, S.; Miyajima, M.; Ishii, K.; Kuriyama, N.; Kazui, H.; Kanemoto, H.; Suehiro, T.; Yoshiyama, K.; Kameda, M.; et al. Guidelines for Management of Idiopathic Normal Pressure Hydrocephalus (Third Edition): Endorsed by the Japanese Society of Normal Pressure Hydrocephalus. Neurol. Med. Chir. 2021, 61, 63–97. [Google Scholar] [CrossRef]
- Prosser, L.; Sudre, C.H.; Oxtoby, N.P.; Young, A.L.; Malone, I.B.; Manning, E.N.; Pemberton, H.; Walsh, P.; Barkhof, F.; Biessels, G.J.; et al. Biomarker pathway heterogeneity of amyloid-positive individuals. Alzheimers Dement. 2024. [Google Scholar] [CrossRef] [PubMed]
- Jansen, W.J.; Ossenkoppele, R.; Knol, D.L.; Tijms, B.M.; Scheltens, P.; Verhey, F.R.; Visser, P.J.; Amyloid Biomarker Study Group. Prevalence of cerebral amyloid pathology in persons without dementia: A meta-analysis. JAMA 2015, 313, 1924–1938. [Google Scholar] [CrossRef] [PubMed]
- Paraskevas, G.P.; Constantinides, V.C.; Pyrgelis, E.S.; Kapaki, E. Mixed Small Vessel Disease in a Patient with Dementia with Lewy Bodies. Brain Sci. 2019, 9, 159. [Google Scholar] [CrossRef] [PubMed]
- Formichi, P.; Parnetti, L.; Radi, E.; Cevenini, G.; Dotti, M.T.; Federico, A. CSF Biomarkers Profile in CADASIL-A Model of Pure Vascular Dementia: Usefulness in Differential Diagnosis in the Dementia Disorder. Int. J. Alzheimer’s Dis. 2010, 2010, 959257. [Google Scholar] [CrossRef]
- Nelson, P.T.; Dickson, D.W.; Trojanowski, J.Q.; Jack, C.R.; Boyle, P.A.; Arfanakis, K.; Rademakers, R.; Alafuzoff, I.; Attems, J.; Brayne, C.; et al. Limbic-predominant age-related TDP-43 encephalopathy (LATE): Consensus working group report. Brain 2019, 142, 1503–1527. [Google Scholar] [CrossRef]
- Armstrong, M.J.; Litvan, I.; Lang, A.E.; Bak, T.H.; Bhatia, K.P.; Borroni, B.; Boxer, A.L.; Dickson, D.W.; Grossman, M.; Hallett, M.; et al. Criteria for the diagnosis of corticobasal degeneration. Neurology 2013, 80, 496–503. [Google Scholar] [CrossRef]
- Kurihara, M.; Matsubara, T.; Morimoto, S.; Arakawa, A.; Ohse, K.; Kanemaru, K.; Iwata, A.; Murayama, S.; Saito, Y. Neuropathological changes associated with aberrant cerebrospinal fluid p-tau181 and Aβ42 in Alzheimer’s disease and other neurodegenerative diseases. Acta Neuropathol. Commun. 2024, 12, 48. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-J.; Guo, J.; Yang, J. Cerebrospinal fluid biomarkers in idiopathic normal pressure hydrocephalus. Neuroimmunol. Neuroinflamm. 2020, 7, 109–119. [Google Scholar] [CrossRef]
- Kapaki, E.; Kilidireas, K.; Paraskevas, G.P.; Michalopoulou, M.; Patsouris, E. Highly increased CSF tau protein and decreased β-amyloid (1–42) in sporadic CJD: A discrimination from Alzheimer’s disease? J. Neurol. Neurosurg. Psychiatry 2001, 71, 401–403. [Google Scholar] [CrossRef]
- Josephs, K.A.; Weigand, S.D.; Whitwell, J.L. Characterizing Amyloid-Positive Individuals with Normal Tau PET Levels After 5 Years: An ADNI Study. Neurology 2022, 98, e2282–e2292. [Google Scholar] [CrossRef] [PubMed]
- Constantinides, V.C.; Boufidou, F.; Bourbouli, M.; Pyrgelis, E.S.; Ghika, A.; Koros, C.; Liakakis, G.; Papageorgiou, S.; Stefanis, L.; Paraskevas, G.P.; et al. Application of the AT(N) and Other CSF Classification Systems in Behavioral Variant Frontotemporal Dementia. Diagnostics 2023, 13, 332. [Google Scholar] [CrossRef] [PubMed]
- Paraskevas, G.P.; Kasselimis, D.; Kourtidou, E.; Constantinides, V.; Bougea, A.; Potagas, C.; Evdokimidis, I.; Kapaki, E. Cerebrospinal Fluid Biomarkers as a Diagnostic Tool of the Underlying Pathology of Primary Progressive Aphasia. J. Alzheimer’s Dis. 2017, 55, 1453–1461. [Google Scholar] [CrossRef]
- Simonsen, A.H.; Herukka, S.K.; Andreasen, N.; Baldeiras, I.; Bjerke, M.; Blennow, K.; Engelborghs, S.; Frisoni, G.B.; Gabryelewicz, T.; Galluzzi, S.; et al. Recommendations for CSF AD biomarkers in the diagnostic evaluation of dementia. Alzheimer’s Dement. 2017, 13, 274–284. [Google Scholar] [CrossRef] [PubMed]
- Skillbäck, T.; Farahmand, B.Y.; Rosén, C.; Mattsson, N.; Nägga, K.; Kilander, L.; Religa, D.; Wimo, A.; Winblad, B.; Schott, J.M.; et al. Cerebrospinal fluid tau and amyloid-β1-42 in patients with dementia. Brain 2015, 138, 2716–2731. [Google Scholar] [CrossRef]
- Hermann, P.; Romero, C.; Schmidt, C.; Reis, C.; Zerr, I. CSF biomarkers and neuropsychological profiles in patients with cerebral small-vessel disease. PLoS ONE 2014, 9, e105000. [Google Scholar] [CrossRef]
- Theodorou, A.; Tsantzali, I.; Stefanou, M.I.; Sacco, S.; Katsanos, A.H.; Shoamanesh, A.; Karapanayiotides, T.; Koutroulou, I.; Stamati, P.; Werring, D.J.; et al. CSF and plasma biomarkers in cerebral amyloid angiopathy: A single-center study and a systematic review/meta-analysis. Eur. Stroke J. 2024. [Google Scholar] [CrossRef] [PubMed]
- Charidimou, A.; Boulouis, G.; Frosch, M.P.; Baron, J.C.; Pasi, M.; Albucher, J.F.; Banerjee, G.; Barbato, C.; Bonneville, F.; Brandner, S.; et al. The Boston criteria version 2.0 for cerebral amyloid angiopathy: A multicentre, retrospective, MRI-neuropathology diagnostic accuracy study. Lancet Neurol. 2022, 21, 714–725. [Google Scholar] [CrossRef] [PubMed]
- Mani, R.; Basem, J.; Yang, L.; Fiore, S.; Djuric, P.; Egnor, M. Review of theories into the pathogenesis of normal pressure hydrocephalus. BMJ Neurol. Open 2024, 6, e000804. [Google Scholar] [CrossRef]
- Cousineau, J.P.; Dawe, A.M.; Alpaugh, M. Investigating the Interplay between Cardiovascular and Neurodegenerative Disease. Biology 2024, 13, 764. [Google Scholar] [CrossRef] [PubMed]
- Athanasaki, A.; Melanis, K.; Tsantzali, I.; Stefanou, M.I.; Ntymenou, S.; Paraskevas, S.G.; Kalamatianos, T.; Boutati, E.; Lambadiari, V.; Voumvourakis, K.I.; et al. Type 2 Diabetes Mellitus as a Risk Factor for Alzheimer’s Disease: Review and Meta-Analysis. Biomedicines 2022, 10, 778. [Google Scholar] [CrossRef] [PubMed]
- Kimura, S.; Iwata, M.; Takase, H.; Lo, E.H.; Arai, K. Oxidative stress and chronic cerebral hypoperfusion: An overview from preclinical rodent models. J. Cereb. Blood. Flow Metab. 2024. [Google Scholar] [CrossRef]
- Liu, W.; Li, W.; Liu, Z.; Li, Y.; Wang, X.; Guo, M.; Wang, S.; Wang, S.; Li, Y.; Jia, J. Cerebrospinal fluid alpha-synuclein adds the risk of cognitive decline and is associated with tau pathology among non-demented older adults. Alzheimer’s Res. Ther. 2024, 16, 103. [Google Scholar] [CrossRef] [PubMed]
- Wilson, H.; Pagano, G.; Politis, M. Dementia spectrum disorders: Lessons learnt from decades with PET research. J. Neural Transm. 2019, 126, 233–251. [Google Scholar] [CrossRef]
- Anagnostou, D.; Sfakianaki, G.; Melachroinou, K.; Soutos, M.; Constantinides, V.; Vaikath, N.; Tsantzali, I.; Paraskevas, G.P.; Agnaf, O.E.; Vekrellis, K.; et al. Assessment of Aggregated and Exosome-Associated α-Synuclein in Brain Tissue and Cerebrospinal Fluid Using Specific Immunoassays. Diagnostics 2023, 13, 2192. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.; Wang, Q.; Orrù, C.D.; Fernandez, M.; Compta, Y.; Ghetti, B.; Zanusso, G.; Zou, W.Q.; Caughey, B.; Beauchemin, C.A.A. Enhanced quantitation of pathological alpha-synuclein in patient biospecimens by RT-QuIC seed amplification assays. PLoS Pathog. 2024, 20, e1012554. [Google Scholar] [CrossRef]
- Duong, M.T.; Wolk, D.A. Limbic-Predominant Age-Related TDP-43 Encephalopathy: LATE-Breaking Updates in Clinicopathologic Features and Biomarkers. Curr. Neurol. Neurosci. Rep. 2022, 22, 689–698. [Google Scholar] [CrossRef]
- Kapaki, E.; Boufidou, F.; Bourbouli, M.; Pyrgelis, E.S.; Constantinides, V.C.; Anastassopoulou, C.; Paraskevas, G.P. Cerebrospinal Fluid Biomarker Profile in TDP-43-Related Genetic Frontotemporal Dementia. J. Pers. Med. 2022, 12, 1747. [Google Scholar] [CrossRef]
- Tang, G.; Lu, J.Y.; Li, X.Y.; Yao, R.X.; Yang, Y.J.; Jiao, F.Y.; Chen, M.J.; Liang, X.N.; Ju, Z.Z.; Ge, J.J.; et al. (18)F-Florzolotau PET Imaging Unveils Tau Pathology in Dementia with Lewy Bodies. Mov. Disord. 2024. [Google Scholar] [CrossRef]
- Therriault, J.; Janelidze, S.; Benedet, A.L.; Ashton, N.J.; Arranz Martínez, J.; Gonzalez-Escalante, A.; Bellaver, B.; Alcolea, D.; Vrillon, A.; Karim, H.; et al. Diagnosis of Alzheimer’s disease using plasma biomarkers adjusted to clinical probability. Nat. Aging 2024, 4, 1529–1537. [Google Scholar] [CrossRef]
Pure AD | Mixed AD | p Value | |
---|---|---|---|
n (m/f) | 40 (12/28) | 21 (11/10) | NS a |
Age (y) | 68.6 ± 8.8 | 75.3 ± 6.9 | 0.0035 b |
Age at disease onset (y) | 64.7 ± 9.7 | 71.5 ± 6.8 | 0.006 b |
Disease duration (y) | 3.8 ± 3.5 | 3.8 ± 2.4 | NS b |
Education (y) | 10.6 ± 4.0 | 10.4 ± 4.0 | NS b |
MMSE | 21.1 ± 6.1 | 18.7 ± 4.5 | NS b |
ACE-R | 59.4 ± 18.2 | 52.8 ± 15.6 | NS b |
Aβ42 (pg/mL) | 502.4 (403.5–677.8) 541.5 ± 185.0 | 482.6 (385.2–648.0) 533.2 ± 211.5 | NS c |
Aβ40 (pg/mL) | 7633.0 (5834.0–9665.0) 7997.6 ± 3045.8 | 6373.0 (4939.0–9453.0) 6854.5 ± 2697.9 | 0.03 c |
Aβ42/Aβ40 | 0.0729 ± 0.0193 | 0.0826 ± 0.0129 | NS d |
τP-181 (pg/mL) | 130.5 (92.2–177.7) 133.9 ± 45.9 | 100.1 (66.1–117.0) 97.1 ± 29.8 | 0.006 c |
τT (pgml) | 636.4 (478.9–1005.0) 770.7 ± 407.0 | 516.0 (432.6–622.6) 562.4 ± 203.5 | 0.019 c |
τP-181/Aβ42 | 0.2711 ± 0.1159 | 0.2040 ± 0.0851 | NS d |
τT/Aβ42 | 1.3240 (0.9478–1.8060) 1.5290 ± 0.8437 | 1.1200 (0.7882–1.4160) 1.1450 ± 0.4107 | NS c |
τP-181/Aβ40 | 0.0182 ± 0.0067 | 0.0164 ± 0.0064 | NS d |
τT/Aβ40 | 0.0917 (0.0628–0.1268) 0.1033 ± 0.0501 | 0.1037 (0.0609–0.1144) 0.0937 ± 0.0331 | NS c |
τP-181/(Aβ42/Aβ40) (pg/mL) | 1624 (1169–2817) 2074 ± 1129 | 1188 (826–1551) 1250 ± 465 | 0.008 c |
τT/(Aβ42/Aβ40) (pg/mL) | 9809 (5691–17345) 12282 ± 8664 | 6870 (5366–8002) 7135 ± 2507 | 0.015 c |
Aβ42 | Aβ40 | Aβ42/Aβ40 | τP-181 | τT | |
---|---|---|---|---|---|
Aβ42 | − | r = 0.692 p < 0.001 | − | NS | NS |
Aβ40 | r = 0.692 p < 0.001 | − | − | NS | ρ = 0.423 p = 0.01 |
Aβ42/Aβ40 | − | − | − | ρ = −0.469 p = 0.0024 | ρ = −0.375 p = 0.038 |
τP-181 | NS | NS | ρ = −0.469 p = 0.0024 | − | ρ = 0.697 p < 0.001 |
τT | NS | ρ = 0.423 p = 0.01 | ρ = −0.375 p = 0.038 | ρ = 0.697 p < 0.001 | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsantzali, I.; Athanasaki, A.; Boufidou, F.; Constantinides, V.C.; Stefanou, M.-I.; Moschovos, C.; Zompola, C.; Paraskevas, S.G.; Bonakis, A.; Giannopoulos, S.; et al. Cerebrospinal Fluid Classical Biomarker Levels in Mixed vs. Pure A+T+ (A+T1+) Alzheimer’s Disease. Biomedicines 2024, 12, 2904. https://doi.org/10.3390/biomedicines12122904
Tsantzali I, Athanasaki A, Boufidou F, Constantinides VC, Stefanou M-I, Moschovos C, Zompola C, Paraskevas SG, Bonakis A, Giannopoulos S, et al. Cerebrospinal Fluid Classical Biomarker Levels in Mixed vs. Pure A+T+ (A+T1+) Alzheimer’s Disease. Biomedicines. 2024; 12(12):2904. https://doi.org/10.3390/biomedicines12122904
Chicago/Turabian StyleTsantzali, Ioanna, Athanasia Athanasaki, Fotini Boufidou, Vasilios C. Constantinides, Maria-Ioanna Stefanou, Christos Moschovos, Christina Zompola, Sotirios G. Paraskevas, Anastasios Bonakis, Sotirios Giannopoulos, and et al. 2024. "Cerebrospinal Fluid Classical Biomarker Levels in Mixed vs. Pure A+T+ (A+T1+) Alzheimer’s Disease" Biomedicines 12, no. 12: 2904. https://doi.org/10.3390/biomedicines12122904
APA StyleTsantzali, I., Athanasaki, A., Boufidou, F., Constantinides, V. C., Stefanou, M.-I., Moschovos, C., Zompola, C., Paraskevas, S. G., Bonakis, A., Giannopoulos, S., Tsivgoulis, G., Kapaki, E., & Paraskevas, G. P. (2024). Cerebrospinal Fluid Classical Biomarker Levels in Mixed vs. Pure A+T+ (A+T1+) Alzheimer’s Disease. Biomedicines, 12(12), 2904. https://doi.org/10.3390/biomedicines12122904