The Potential Causal Association of Apolipoprotein A and B and Age-Related Macular Degeneration: A Mendelian Randomisation Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Selection of the Genetic Instrumental Variables
2.3. Mendelian Randomisation
3. Results
3.1. Genetic Instrumental Variables
3.2. Mendelian Randomisation for the Effects of ApoA and ApoB on AMD/AMD Subtypes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lim, L.S.; Mitchell, P.; Seddon, J.M.; Holz, F.G.; Wong, T.Y. Age-related macular degeneration. Lancet 2012, 379, 1728–1738. [Google Scholar] [CrossRef] [PubMed]
- Wong, W.L.; Su, X.; Li, X.; Cheung, C.M.; Klein, R.; Cheng, C.Y.; Wong, T.Y. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: A systematic review and meta-analysis. Lancet Glob. Health 2014, 2, e106–e116. [Google Scholar] [CrossRef] [PubMed]
- Li, J.Q.; Welchowski, T.; Schmid, M.; Mauschitz, M.M.; Holz, F.G.; Finger, R.P. Prevalence and incidence of age-related macular degeneration in Europe: A systematic review and meta-analysis. Br. J. Ophthalmol. 2019, 104, 1077–1084. [Google Scholar] [CrossRef] [PubMed]
- Paudel, N.; Brady, L.; Stratieva, P.; Galvin, O.; Lui, B.; Van den Brande, I.; Malkowski, J.P.; Rebeira, M.; MacAllister, S.; O’Riordan, T.; et al. Economic Burden of Late-Stage Age-Related Macular Degeneration in Bulgaria, Germany, and the US. JAMA Ophthalmol. 2024; online ahead of print. [Google Scholar] [CrossRef]
- Schultz, N.M.; Bhardwaj, S.; Barclay, C.; Gaspar, L.; Schwartz, J. Global Burden of Dry Age-Related Macular Degeneration: A Targeted Literature Review. Clin. Ther. 2021, 43, 1792–1818. [Google Scholar] [CrossRef]
- Guymer, R.H.; Campbell, T.G. Age-related macular degeneration. Lancet 2023, 401, 1459–1472. [Google Scholar] [CrossRef]
- Fleckenstein, M.; Schmitz-Valckenberg, S.; Chakravarthy, U. Age-Related Macular Degeneration: A Review. JAMA 2024, 331, 147–157. [Google Scholar] [CrossRef]
- Sobrin, L.; Ripke, S.; Yu, Y.; Fagerness, J.; Bhangale, T.R.; Tan, P.L.; Souied, E.H.; Buitendijk, G.H.; Merriam, J.E.; Richardson, A.J.; et al. Heritability and genome-wide association study to assess genetic differences between advanced age-related macular degeneration subtypes. Ophthalmology 2012, 119, 1874–1885. [Google Scholar] [CrossRef]
- Fritsche, L.G.; Fariss, R.N.; Stambolian, D.; Abecasis, G.R.; Curcio, C.A.; Swaroop, A. Age-related macular degeneration: Genetics and biology coming together. Annu. Rev. Genom. Hum. Genet. 2014, 15, 151–171. [Google Scholar] [CrossRef]
- Fritsche, L.G.; Igl, W.; Bailey, J.N.; Grassmann, F.; Sengupta, S.; Bragg-Gresham, J.L.; Burdon, K.P.; Hebbring, S.J.; Wen, C.; Gorski, M.; et al. A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat. Genet. 2016, 48, 134–143. [Google Scholar] [CrossRef]
- DeAngelis, M.M.; Owen, L.A.; Morrison, M.A.; Morgan, D.J.; Li, M.; Shakoor, A.; Vitale, A.; Iyengar, S.; Stambolian, D.; Kim, I.K.; et al. Genetics of age-related macular degeneration (AMD). Hum. Mol. Genet. 2017, 26, R45–R50. [Google Scholar] [CrossRef]
- Yoon, B.W.; Lee, Y.; Seo, J.H. Potential Causal Association between C-Reactive Protein Levels in Age-Related Macular Degeneration: A Two-Sample Mendelian Randomization Study. Biomedicines 2024, 12, 807. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.J.; Mirza, R.G.; Gill, M.K. Age-Related Macular Degeneration. Med. Clin. N. Am. 2021, 105, 473–491. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, M.; Zhang, X.; Zhang, Q.; Nie, J.; Zhang, M.; Liu, X.; Ma, L. The Association between the Lipids Levels in Blood and Risk of Age-Related Macular Degeneration. Nutrients 2016, 8, 663. [Google Scholar] [CrossRef] [PubMed]
- Sim, R.Z.H.; Tham, Y.C.; Betzler, B.K.; Zhou, L.; Wang, X.; Sabanayagam, C.; Cheung, G.C.M.; Wong, T.Y.; Cheng, C.Y.; Nusinovici, S. Relationships between Lipid-Related Metabolites and Age-Related Macular Degeneration Vary with Complement Genotype. Ophthalmol. Sci. 2022, 2, 100211. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, K.B.; Handa, J.T. Lipids, lipoproteins, and age-related macular degeneration. J. Lipids 2011, 2011, 802059. [Google Scholar] [CrossRef]
- Yoon, C.K.; Kim, Y.A.; Park, U.C.; Kwon, S.H.; Lee, Y.; Yoo, H.J.; Seo, J.H.; Yu, H.G. Vitreous Fatty Amides and Acyl Carnitines Are Altered in Intermediate Age-Related Macular Degeneration. Investig. Ophthalmol. Vis. Sci. 2023, 64, 28. [Google Scholar] [CrossRef]
- van Leeuwen, R.; Klaver, C.C.; Vingerling, J.R.; Hofman, A.; van Duijn, C.M.; Stricker, B.H.; de Jong, P.T. Cholesterol and age-related macular degeneration: Is there a link? Am. J. Ophthalmol. 2004, 137, 750–752. [Google Scholar] [CrossRef]
- Hyman, L.; Schachat, A.P.; He, Q.; Leske, M.C. Hypertension, cardiovascular disease, and age-related macular degeneration. Age-Related Macular Degeneration Risk Factors Study Group. Arch. Ophthalmol. 2000, 118, 351–358. [Google Scholar] [CrossRef]
- Abalain, J.H.; Carre, J.L.; Leglise, D.; Robinet, A.; Legall, F.; Meskar, A.; Floch, H.H.; Colin, J. Is age-related macular degeneration associated with serum lipoprotein and lipoparticle levels? Clin. Chim. Acta 2002, 326, 97–104. [Google Scholar] [CrossRef]
- Klein, R.; Klein, B.E.; Tomany, S.C.; Cruickshanks, K.J. The association of cardiovascular disease with the long-term incidence of age-related maculopathy: The Beaver Dam Eye Study. Ophthalmology 2003, 110, 1273–1280. [Google Scholar] [CrossRef]
- Reynolds, R.; Rosner, B.; Seddon, J.M. Serum lipid biomarkers and hepatic lipase gene associations with age-related macular degeneration. Ophthalmology 2010, 117, 1989–1995. [Google Scholar] [CrossRef] [PubMed]
- Groenendijk, M.; Cantor, R.M.; de Bruin, T.W.; Dallinga-Thie, G.M. The apoAI-CIII-AIV gene cluster. Atherosclerosis 2001, 157, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Millar, J.S.; Cuchel, M. ApoA-I-Directed Therapies for the Management of Atherosclerosis. Curr. Atheroscler. Rep. 2015, 17, 60. [Google Scholar] [CrossRef]
- Mangaraj, M.; Nanda, R.; Panda, S. Apolipoprotein A-I: A Molecule of Diverse Function. Indian J. Clin. Biochem. 2016, 31, 253–259. [Google Scholar] [CrossRef]
- Richardson, T.G.; Sanderson, E.; Palmer, T.M.; Ala-Korpela, M.; Ference, B.A.; Davey Smith, G.; Holmes, M.V. Evaluating the relationship between circulating lipoprotein lipids and apolipoproteins with risk of coronary heart disease: A multivariable Mendelian randomisation analysis. PLoS Med. 2020, 17, e1003062. [Google Scholar] [CrossRef]
- Proitsi, P. The key role of apolipoprotein B in major vascular diseases and longevity. Lancet Healthy Longev. 2021, 2, e302–e303. [Google Scholar] [CrossRef]
- Dashti, N.; McGwin, G.; Owsley, C.; Curcio, C.A. Plasma apolipoproteins and risk for age related maculopathy. Br. J. Ophthalmol. 2006, 90, 1028–1033. [Google Scholar] [CrossRef]
- Nordestgaard, L.T.; Tybjaerg-Hansen, A.; Frikke-Schmidt, R.; Nordestgaard, B.G. Elevated Apolipoprotein A1 and HDL Cholesterol Associated with Age-related Macular Degeneration: 2 Population Cohorts. J. Clin. Endocrinol. Metab. 2021, 106, e2749–e2758. [Google Scholar] [CrossRef]
- Burgess, S.; Thompson, S.G. Multivariable Mendelian randomization: The use of pleiotropic genetic variants to estimate causal effects. Am. J. Epidemiol. 2015, 181, 251–260. [Google Scholar] [CrossRef]
- Burgess, S.; Thompson, S.G. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur. J. Epidemiol. 2017, 32, 377–389. [Google Scholar] [CrossRef]
- Fleckenstein, M.; Keenan, T.D.L.; Guymer, R.H.; Chakravarthy, U.; Schmitz-Valckenberg, S.; Klaver, C.C.; Wong, W.T.; Chew, E.Y. Age-related macular degeneration. Nat. Rev. Dis. Primers 2021, 7, 31. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, H.; Cheng, J.; Wang, M.; Zhong, Y.; Shi, G.; Yu, A.Y. Causal Associations of Thyroid Function and Age-Related Macular Degeneration: A Two-Sample Mendelian Randomization Study. Am. J. Ophthalmol. 2022, 239, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Li, J.C.; Tang, B.S.; Guo, J.F.; Shen, L. Lack of bidirectional association between age-related macular degeneration and Alzheimer’s disease: A Mendelian randomization study. Alzheimer’s Dement. 2022, 18, 2725–2729. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.H.; Lee, Y. Causal Associations of Glaucoma and Age-Related Macular Degeneration with Cataract: A Bidirectional Two-Sample Mendelian Randomisation Study. Genes 2024, 15, 413. [Google Scholar] [CrossRef]
- Han, X.; Ong, J.S.; Hewitt, A.W.; Gharahkhani, P.; MacGregor, S. The effects of eight serum lipid biomarkers on age-related macular degeneration risk: A Mendelian randomization study. Int. J. Epidemiol. 2021, 50, 325–336. [Google Scholar] [CrossRef]
- Li, F.F.; Wang, Y.; Chen, L.; Chen, C.; Chen, Q.; Xiang, L.; Rao, F.Q.; Shen, L.J.; Zheng, Q.X.; Yi, Q.; et al. Causal effects of serum lipid biomarkers on early age-related macular degeneration using Mendelian randomization. Genes Nutr. 2023, 18, 11. [Google Scholar] [CrossRef]
- Julian, T.H.; Cooper-Knock, J.; MacGregor, S.; Guo, H.; Aslam, T.; Sanderson, E.; Black, G.C.M.; Sergouniotis, P.I. Phenome-wide Mendelian randomisation analysis identifies causal factors for age-related macular degeneration. Elife 2023, 12, e82546. [Google Scholar] [CrossRef]
- Jiang, L.; Zheng, Z.; Fang, H.; Yang, J. A generalized linear mixed model association tool for biobank-scale data. Nat. Genet. 2021, 53, 1616–1621. [Google Scholar] [CrossRef]
- Kurki, M.I.; Karjalainen, J.; Palta, P.; Sipila, T.P.; Kristiansson, K.; Donner, K.M.; Reeve, M.P.; Laivuori, H.; Aavikko, M.; Kaunisto, M.A.; et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 2023, 613, 508–518. [Google Scholar] [CrossRef]
- Burgess, S.; Butterworth, A.; Thompson, S.G. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet. Epidemiol. 2013, 37, 658–665. [Google Scholar] [CrossRef]
- Bowden, J.; Del Greco, M.F.; Minelli, C.; Davey Smith, G.; Sheehan, N.; Thompson, J. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat. Med. 2017, 36, 1783–1802. [Google Scholar] [CrossRef] [PubMed]
- Burgess, S.; Davey Smith, G.; Davies, N.M.; Dudbridge, F.; Gill, D.; Glymour, M.M.; Hartwig, F.P.; Kutalik, Z.; Holmes, M.V.; Minelli, C.; et al. Guidelines for performing Mendelian randomization investigations: Update for summer 2023. Wellcome Open Res. 2019, 4, 186. [Google Scholar] [CrossRef] [PubMed]
- Bowden, J.; Davey Smith, G.; Haycock, P.C.; Burgess, S. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet. Epidemiol. 2016, 40, 304–314. [Google Scholar] [CrossRef] [PubMed]
- Bowden, J.; Davey Smith, G.; Burgess, S. Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 2015, 44, 512–525. [Google Scholar] [CrossRef] [PubMed]
- Bowden, J.; Del Greco, M.F.; Minelli, C.; Davey Smith, G.; Sheehan, N.A.; Thompson, J.R. Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: The role of the I2 statistic. Int. J. Epidemiol. 2016, 45, 1961–1974. [Google Scholar] [CrossRef]
- Verbanck, M.; Chen, C.Y.; Neale, B.; Do, R. Publisher Correction: Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 2018, 50, 1196. [Google Scholar] [CrossRef]
- Greco, M.F.; Minelli, C.; Sheehan, N.A.; Thompson, J.R. Detecting pleiotropy in Mendelian randomisation studies with summary data and a continuous outcome. Stat. Med. 2015, 34, 2926–2940. [Google Scholar] [CrossRef]
- Bowden, J.; Holmes, M.V. Meta-analysis and Mendelian randomization: A review. Res. Synth Methods 2019, 10, 486–496. [Google Scholar] [CrossRef]
- Shen, G.; Chen, Y.; Chen, J.; Wang, L.; Cheng, H.; Hu, B.; Gong, J. The causal effects of lifestyle, circulating, pigment, and metabolic factors on early age-related macular degeneration: A comprehensive Mendelian randomization study. J. Transl. Med. 2024, 22, 988. [Google Scholar] [CrossRef]
- Ng Yin Ling, C.; Lim, S.C.; Jonas, J.B.; Sabanayagam, C. Obesity and risk of age-related eye diseases: A systematic review of prospective population-based studies. Int. J. Obes. 2021, 45, 1863–1885. [Google Scholar] [CrossRef]
- Adams, M.K.; Simpson, J.A.; Aung, K.Z.; Makeyeva, G.A.; Giles, G.G.; English, D.R.; Hopper, J.; Guymer, R.H.; Baird, P.N.; Robman, L.D. Abdominal obesity and age-related macular degeneration. Am. J. Epidemiol. 2011, 173, 1246–1255. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.C.; Palestine, A.G.; Lynch, A.M.; Patnaik, J.L.; Wagner, B.D.; Mathias, M.T.; Mandava, N. Increased Systemic C-Reactive Protein Is Associated With Choroidal Thinning in Intermediate Age-Related Macular Degeneration. Transl. Vis. Sci. Technol. 2021, 10, 7. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Ong, J.S.; An, J.; Hewitt, A.W.; Gharahkhani, P.; MacGregor, S. Using Mendelian randomization to evaluate the causal relationship between serum C-reactive protein levels and age-related macular degeneration. Eur. J. Epidemiol. 2020, 35, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Kuan, V.; Warwick, A.; Hingorani, A.; Tufail, A.; Cipriani, V.; Burgess, S.; Sofat, R.; International, A.M.D.G.C. Association of Smoking, Alcohol Consumption, Blood Pressure, Body Mass Index, and Glycemic Risk Factors With Age-Related Macular Degeneration: A Mendelian Randomization Study. JAMA Ophthalmol. 2021, 139, 1299–1306. [Google Scholar] [CrossRef] [PubMed]
- Kai, J.Y.; Zhou, M.; Li, D.L.; Zhu, K.Y.; Wu, Q.; Zhang, X.F.; Pan, C.W. Smoking, dietary factors and major age-related eye disorders: An umbrella review of systematic reviews and meta-analyses. Br. J. Ophthalmol. 2023, 108, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Jabbarpoor Bonyadi, M.H.; Yaseri, M.; Bonyadi, M.; Soheilian, M.; Nikkhah, H. Association of combined cigarette smoking and ARMS2/LOC387715 A69S polymorphisms with age-related macular degeneration: A meta-analysis. Ophthalmic Genet. 2017, 38, 308–313. [Google Scholar] [CrossRef]
- Velilla, S.; Garcia-Medina, J.J.; Garcia-Layana, A.; Dolz-Marco, R.; Pons-Vazquez, S.; Pinazo-Duran, M.D.; Gomez-Ulla, F.; Arevalo, J.F.; Diaz-Llopis, M.; Gallego-Pinazo, R. Smoking and age-related macular degeneration: Review and update. J. Ophthalmol. 2013, 2013, 895147. [Google Scholar] [CrossRef]
- Rees, J.M.B.; Wood, A.M.; Burgess, S. Extending the MR-Egger method for multivariable Mendelian randomization to correct for both measured and unmeasured pleiotropy. Stat. Med. 2017, 36, 4705–4718. [Google Scholar] [CrossRef]
- Brion, M.J.; Shakhbazov, K.; Visscher, P.M. Calculating statistical power in Mendelian randomization studies. Int. J. Epidemiol. 2013, 42, 1497–1501. [Google Scholar] [CrossRef]
- Jin, H.; Lee, S.; Won, S. Causal Evaluation of Laboratory Markers in Type 2 Diabetes on Cancer and Vascular Diseases Using Various Mendelian Randomization Tools. Front. Genet. 2020, 11, 597420. [Google Scholar] [CrossRef]
- Risk factors for neovascular age-related macular degeneration. The Eye Disease Case-Control Study Group. Arch. Ophthalmol. 1992, 110, 1701–1708. [Google Scholar] [CrossRef]
- Singh, K.; Prabhakaran, D. Apolipoprotein B–An ideal biomarker for atherosclerosis? Indian Heart J. 2024, 76 (Suppl. 1), S121–S129. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Yoon, J.W.; Kim, Y.A.; Choi, H.J.; Yoon, B.W.; Seo, J.H. A Genome-Wide Association Study of Genetic Variants of Apolipoprotein A1 Levels and Their Association with Vitamin D in Korean Cohorts. Genes 2022, 13, 1553. [Google Scholar] [CrossRef] [PubMed]
- Teslovich, T.M.; Musunuru, K.; Smith, A.V.; Edmondson, A.C.; Stylianou, I.M.; Koseki, M.; Pirruccello, J.P.; Ripatti, S.; Chasman, D.I.; Willer, C.J.; et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 2010, 466, 707–713. [Google Scholar] [CrossRef]
- Kanai, M.; Akiyama, M.; Takahashi, A.; Matoba, N.; Momozawa, Y.; Ikeda, M.; Iwata, N.; Ikegawa, S.; Hirata, M.; Matsuda, K.; et al. Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases. Nat. Genet. 2018, 50, 390–400. [Google Scholar] [CrossRef]
- Deng, Y.; Qiao, L.; Du, M.; Qu, C.; Wan, L.; Li, J.; Huang, L. Age-related macular degeneration: Epidemiology, genetics, pathophysiology, diagnosis, and targeted therapy. Genes Dis. 2022, 9, 62–79. [Google Scholar] [CrossRef]
- Curcio, C.A.; Johnson, M.; Huang, J.D.; Rudolf, M. Apolipoprotein B-containing lipoproteins in retinal aging and age-related macular degeneration. J. Lipid Res. 2010, 51, 451–467. [Google Scholar] [CrossRef]
- Curcio, C.A.; Johnson, M.; Huang, J.D.; Rudolf, M. Aging, age-related macular degeneration, and the response-to-retention of apolipoprotein B-containing lipoproteins. Prog. Retin. Eye Res. 2009, 28, 393–422. [Google Scholar] [CrossRef]
- Malek, G.; Li, C.M.; Guidry, C.; Medeiros, N.E.; Curcio, C.A. Apolipoprotein B in cholesterol-containing drusen and basal deposits of human eyes with age-related maculopathy. Am. J. Pathol. 2003, 162, 413–425. [Google Scholar] [CrossRef]
- Hu, M.L.; Quinn, J.; Xue, K. Interactions between Apolipoprotein E Metabolism and Retinal Inflammation in Age-Related Macular Degeneration. Life 2021, 11, 635. [Google Scholar] [CrossRef]
- Park, S.J.; Park, D.H. Revisiting Lipids in Retinal Diseases: A Focused Review on Age-related Macular Degeneration and Diabetic Retinopathy. J. Lipid Atheroscler. 2020, 9, 406–418. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, K.L.; Tybjaerg-Hansen, A.; Nordestgaard, B.G.; Frikke-Schmidt, R. Associations of Alzheimer Disease-Protective APOE Variants With Age-Related Macular Degeneration. JAMA Ophthalmol. 2023, 141, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Wickremasinghe, S.S.; Xie, J.; Lim, J.; Chauhan, D.S.; Robman, L.; Richardson, A.J.; Hageman, G.; Baird, P.N.; Guymer, R. Variants in the APOE gene are associated with improved outcome after anti-VEGF treatment for neovascular AMD. Investig. Ophthalmol. Vis. Sci. 2011, 52, 4072–4079. [Google Scholar] [CrossRef] [PubMed]
- Mahley, R.W. Central Nervous System Lipoproteins: ApoE and Regulation of Cholesterol Metabolism. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 1305–1315. [Google Scholar] [CrossRef]
- Liuska, P.J.; Ramo, J.T.; Lemmela, S.; Kaarniranta, K.; Uusitalo, H.; Lahtela, E.; Daly, M.J.; Harju, M.; Palotie, A.; Turunen, J.A.; et al. Association of APOE Haplotypes With Common Age-Related Ocular Diseases in 412,171 Individuals. Investig. Ophthalmol. Vis. Sci. 2023, 64, 33. [Google Scholar] [CrossRef]
- Shin, H.T.; Yoon, B.W.; Seo, J.H. Comparison of risk allele frequencies of single nucleotide polymorphisms associated with age-related macular degeneration in different ethnic groups. BMC Ophthalmol. 2021, 21, 97. [Google Scholar] [CrossRef]
Traits | Data Source | No. of Participants | Population | No. of Variants | Reference |
---|---|---|---|---|---|
ApoA | UKB | 364,987 | European | 22,798,735 | |
ApoB | UKB | 399,003 | European | 23,001,507 | [39] |
BMI | UKB | 419,163 | European | 23,111,080 | |
CRP | UKB | 400,094 | European | 23,008,369 | |
Smoking | UKB | 418,817 (43,192 cases + 375,625 controls) | European | 22,122,417 | |
AMD | FinnGen | 357,849 (8913 cases + 348,936 controls) | European | 20,169,869 | |
Dry AMD | FinnGen | 257,107 (6065 cases + 251,042 controls) | European | 20,165,949 | [40] |
Wet AMD | FinnGen | 257,125 (4848 cases + 252,277 controls) | European | 20,165,938 |
Exposure | Outcome | Heterogeneity | Horizontal Pleiotropy | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
MR-Egger Intercept | MR-Egger (SIMEX) Intercept | ||||||||||
N | F | I2 (%) | p * | p # | p † | β (SE) | p | β (SE) | p | ||
ApoA | AMD | 308 | 130.62 | 97.54 | <0.001 | <0.001 | <0.001 | −0.002 (0.003) | 0.372 | −0.003 (0.003) | 0.358 |
ApoB | 198 | 155.68 | 98.34 | <0.001 | <0.001 | <0.001 | 0.002 (0.003) | 0.627 | 0.002 (0.003) | 0.624 | |
ApoA | Dry AMD | 308 | 130.62 | 97.54 | <0.001 | <0.001 | <0.001 | −0.000 (0.003) | 0.952 | −0.000 (0.003) | 0.935 |
ApoB | 198 | 155.68 | 98.34 | <0.001 | <0.001 | <0.001 | 0.003 (0.003) | 0.373 | 0.003 (0.003) | 0.368 | |
ApoA | Wet AMD | 308 | 130.62 | 97.54 | <0.001 | <0.001 | <0.001 | −0.004 (0.003) | 0.267 | −0.004 (0.003) | 0.256 |
ApoB | 198 | 155.68 | 98.34 | <0.001 | <0.001 | <0.001 | 0.001 (0.004) | 0.869 | 0.001 (0.004) | 0.870 |
AMD | Dry AMD | Wet AMD | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
IVW | MR-Egger | IVW | MR-Egger | IVW | MR-Egger | |||||||
OR 95% CI | p | OR 95% CI | p | OR 95% CI | p | OR 95% CI | p | OR 95% CI | p | OR 95% CI | p | |
ApoA | 1.01 0.92–1.11 | 0.852 | 1.01 0.92–1.11 | 0.843 | 1.01 0.90–1.13 | 0.837 | 1.01 0.90–1.13 | 0.839 | 0.98 0.86–1.11 | 0.736 | 0.98 0.86–1.11 | 0.732 |
ApoB | 0.92 0.83–1.01 | 0.070 | 0.92 0.83–1.01 | 0.068 | 0.89 0.80–0.99 | 0.039 | 0.89 0.80–0.99 | 0.039 | 0.90 0.80–1.02 | 0.091 | 0.90 0.80–1.02 | 0.094 |
BMI | 0.99 0.86–1.14 | 0.898 | 0.98 0.84–1.15 | 0.812 | 0.98 0.83–1.15 | 0.794 | 0.98 0.82–1.18 | 0.836 | 0.99 0.83–1.18 | 0.898 | 0.99 0.81–1.22 | 0.960 |
CRP | 1.05 0.94–1.17 | 0.396 | 1.04 0.91–1.19 | 0.577 | 1.07 0.94–1.22 | 0.326 | 1.07 0.91–1.25 | 0.399 | 1.08 0.93–1.24 | 0.321 | 1.08 0.91–1.29 | 0.369 |
Smoking | 1.24 1.05–1.46 | 0.009 | 1.24 1.05–1.46 | 0.010 | 1.28 1.06–1.55 | 0.012 | 1.28 1.06–1.55 | 0.012 | 1.16 0.94–1.44 | 0.164 | 1.16 0.94–1.44 | 0.162 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.; Seo, J.H. The Potential Causal Association of Apolipoprotein A and B and Age-Related Macular Degeneration: A Mendelian Randomisation Study. Biomedicines 2024, 12, 2828. https://doi.org/10.3390/biomedicines12122828
Lee Y, Seo JH. The Potential Causal Association of Apolipoprotein A and B and Age-Related Macular Degeneration: A Mendelian Randomisation Study. Biomedicines. 2024; 12(12):2828. https://doi.org/10.3390/biomedicines12122828
Chicago/Turabian StyleLee, Young, and Je Hyun Seo. 2024. "The Potential Causal Association of Apolipoprotein A and B and Age-Related Macular Degeneration: A Mendelian Randomisation Study" Biomedicines 12, no. 12: 2828. https://doi.org/10.3390/biomedicines12122828
APA StyleLee, Y., & Seo, J. H. (2024). The Potential Causal Association of Apolipoprotein A and B and Age-Related Macular Degeneration: A Mendelian Randomisation Study. Biomedicines, 12(12), 2828. https://doi.org/10.3390/biomedicines12122828