Phospholipid Nanoparticles: A Novel Colloid for Blood Volume Replacement, Reanimation, and Organ Protection in Hemorrhagic Shock
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Development of the Phospholipids Nanoparticle (VBI-1 and VBI-S)
2.3. Experimental Protocol
2.3.1. Hemorrhagic Shock-Induced Clinical Death and Reanimation
2.3.2. Tissue Staining
Histological Data Quantification and Analyses
2.3.3. Rheology Measurements
3. Results
3.1. The Femoral Artery Catheterization and Reanimation Techniques Model Simulated Clinical Death and Subsequent Reanimation
- (i)
- Model Development
3.2. The Increased Viscosity of VBI-1 Is Associated with the Sustained Elevated MAP
3.3. Protective Effects of VBI-1 Against Ischemia–Reperfusion Injury
- (i)
- Histopathological evaluation of Ischemia–Reperfusion Injury
- (ii)
- VBI-1 mitigates oxidative stress-induced damage and DNA injury.
3.4. VBI-1 Modulation of Nitric Oxide
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Eastridge, B.J.; Holcomb, J.B.; Shackelford, S. Outcomes of traumatic hemorrhagic shock and the epidemiology of preventable death from injury. Transfusion 2019, 59, 1423–1428. [Google Scholar] [CrossRef] [PubMed]
- Kalkwarf, K.J.; Drake, S.A.; Yang, Y.; Thetford, C.; Myers, L.; Brock, M.; Wolf, D.A.; Persse, D.; Wade, C.E.; Holcomb, J.B. Bleeding to death in a big city: An analysis of all trauma deaths from hemorrhage in a metropolitan area during 1 year. J. Trauma Acute Care Surg. 2020, 89, 716–722. [Google Scholar] [CrossRef] [PubMed]
- Duchesne, J.; Taghavi, S.; Houghton, A.; Khan, M.; Perreira, B.; Cotton, B.; Tatum, D.; Damage Control Resuscitation Committee. Prehospital Mortality Due to Hemorrhagic Shock Remains High and Unchanged: A Summary of Current Civilian EMS Practices and New Military Changes. Shock 2021, 56, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Kuo, K.; Palmer, L. Pathophysiology of hemorrhagic shock. J. Vet. Emerg. Crit. Care 2022, 32, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Dufour-Gaume, F.; Frescaline, N.; Cardona, V.; Prat, N.J. Danger signals in traumatic hemorrhagic shock and new lines for clinical applications. Front. Physiol. 2023, 13, 999011. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gutierrez, G.; Reines, H.D.; Wulf-Gutierrez, M.E. Clinical review: Hemorrhagic shock. Crit. Care 2004, 8, 373–381. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chipman, A.M.; Jenne, C.; Wu, F.; Kozar, R.A. Contemporary resuscitation of hemorrhagic shock: What will the future hold? Am. J. Surg. 2020, 220, 580–588. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aksu, U.; Bezemer, R.; Yavuz, B.; Kandil, A.; Demirci, C.; Ince, C. Balanced vs. unbalanced crystalloid resuscitation in a near-fatal model of hemorrhagic shock and the effects on renal oxygenation, oxidative stress, and inflammation. Resuscitation 2012, 83, 767–773. [Google Scholar] [CrossRef] [PubMed]
- Chang, R.; Holcomb, J.B. Optimal Fluid Therapy for Traumatic Hemorrhagic Shock. Crit. Care Clin. 2017, 33, 15–36. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- White, N.J.; Ward, K.R.; Pati, S.; Strandenes, G.; Cap, A.P. Hemorrhagic blood failure: Oxygen debt, coagulopathy, and endothelial damage. J. Trauma Acute Care Surg. 2017, 82 (Suppl. S1), S41–S49. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hilbert-Carius, P.; Schwarzkopf, D.; Reinhart, K.; Hartog, C.S.; Lefering, R.; Bernhard, M.; Struck, M.F. Synthetic colloid resuscitation in severely injured patients: Analysis of a nationwide trauma registry (TraumaRegister DGU). Sci. Rep. 2018, 8, 11567. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kheirabadi, B.S.; Valdez-Delgado, K.K.; Terrazas, I.B.; Miranda, N.; Dubick, M.A. Is limited prehospital resuscitation with plasma more beneficial than using a synthetic colloid? An experimental study in rabbits with parenchymal bleeding. J. Trauma Acute Care Surg. 2015, 78, 752–759. [Google Scholar] [CrossRef] [PubMed]
- Youssef, A.M.; Hamidian Jahromi, A.; Simpkins, C.O. Arterial versus venous fluid resuscitation; restoring cardiac contractions in cardiac arrest following exsanguinations. Trauma Mon. 2016, 22, e29935.22. [Google Scholar] [CrossRef]
- Zhao, Y.; Ouyang, X.; Peng, Y.; Peng, S. Stimuli-Responsive Nitric Oxide-Based Nanomedicine for Synergistic Therapy. Pharmaceutics 2021, 13, 1917. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Andrabi, S.M.; Sharma, N.S.; Karan, A.; Shahriar, S.M.S.; Cordon, B.; Ma, B.; Xie, J. Nitric Oxide: Physiological Functions, Delivery, and Biomedical Applications. Adv. Sci. 2023, 10, e2303259. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Institute for Laboratory Animal Research (U.S.); Committee on Update of the Guide for the Care and Use of Laboratory Animals., National Research Council (U.S.); Institute for Laboratory Animal Research; National Academies Press (U.S.); National Research Council (U.S.); Institute for Laboratory Animal Research. Guide for the Care and Use of Laboratory Animals; National Academies Press: Washington, DC, USA, 1996. [Google Scholar]
- Shah, N.S.; Billiar, T.R. Role of nitric oxide in inflammation and tissue injury during endotoxemia and hemorrhagic shock. Environ. Health Perspect. 1998, 106 (Suppl. S5), 1139–1143. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Collins, J.L.; Vodovotz, Y.; Hierholzer, C.; Villavicencio, R.T.; Liu, S.; Alber, S.; Gallo, D.; Stolz, D.B.; Watkins, S.C.; Godfrey, A.; et al. Characterization of the expression of inducible nitric oxide synthase in rat and human liver during hemorrhagic shock. Shock 2003, 19, 117–122. [Google Scholar] [CrossRef]
- Kroemer, G.; Galluzzi, L.; Vandenabeele, P.; Abrams, J.; Alnemri, E.S.; Baehrecke, E.H.; Blagosklonny, M.V.; El-Deiry, W.S.; Golstein, P.; Green, D.R.; et al. Classification of cell death: Recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 2009, 16, 3–11. [Google Scholar] [CrossRef]
- Smith, J.K.; Johnson, L.M.; Brown, A.B. Principles for valid histopathologic scoring in research. J. Histopathol. Res. 2020, 24, 45–56. [Google Scholar]
- Andrijevic, D.; Vrselja, Z.; Lysyy, T.; Zhang, S.; Skarica, M.; Spajic, A.; Dellal, D.; Thorn, S.L.; Duckrow, R.B.; Ma, S.; et al. Cellular recovery after prolonged warm ischaemia of the whole body. Nature 2022, 608, 405–412. [Google Scholar] [PubMed]
- Cabrales, P.; Martini, J.; Intaglietta, M.; Tsai, A.G. Blood viscosity maintains microvascular conditions during normovolemic anemia independent of blood oxygen-carrying capacity. Am. J. Physiol. Heart Circ. Physiol. 2006, 291, H581–H590. [Google Scholar] [CrossRef] [PubMed]
- Cabrales, P.; Tsai, A.G. Plasma viscosity regulates systemic and microvascular perfusion during acute extreme anemic conditions. Am. J. Physiol. Heart Circ. Physiol. 2006, 291, H2445–H2452. [Google Scholar] [CrossRef] [PubMed]
- Johnn, H.I.; Phipps, C.G.; Gascoyne, S.C.; Hawkey, C.M.; Rampling, M.W. A comparison of the viscometric properties of the blood from a wide range of mammals. Clin. Hemorheol. Microcirc. 1992, 12, 639–647. [Google Scholar] [CrossRef]
- Cabrales, P. Low-dose nitrite enhances perfusion after fluid resuscitation from hemorrhagic shock. Resuscitation 2009, 80, 1431–1436. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nader, E.; Skinner, S.; Romana, M.; Fort, R.; Lemonne, N.; Guillot, N.; Gauthier, A.; Antoine-Jonville, S.; Renoux, C.; Hardy-Dessources, M.-D.; et al. Blood rheology: Key parameters, impact on blood flow, role in sickle cell disease and effects of exercise. Front. Physiol. 2019, 10, 1329. [Google Scholar] [CrossRef]
- Han, T.H.; Hyduke, D.R.; Vaughn, M.W.; Fukuto, J.M.; Liao, J.C. Nitric oxide reaction with red blood cells and hemoglobin under heterogeneous conditions. Proc. Natl. Acad. Sci. USA 2002, 99, 7763–7768. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yoshida, K.; Mohsenin, V. Unsaturated phosphatidylcholines inhibit superoxide production in human neutrophils. Life Sci. 1991, 49, 1359–1365. [Google Scholar] [CrossRef] [PubMed]
- Beckman, J.S.; Koppenol, W.H. Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and ugly. Am. J. Physiol. 1996, 271 Pt 1, C1424–C1437. [Google Scholar] [CrossRef] [PubMed]
- Zilberberg, M.D.; Carter, C.; Lefebvre, P.; Raut, M.; Vekeman, F.; Duh, M.S.; Shorr, A.F. Red blood cell transfusions and the risk of acute respiratory distress syndrome among the critically ill: A cohort study. Crit. Care 2007, 11, R63. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nossaman, B.D. Transfusion-Related Acute Lung Injury (TRALI): Report of 2 Cases and a Review of The Literature. Ochsner J. 2008, 8, 32–38. [Google Scholar] [PubMed] [PubMed Central]
- Voelker, M.T.; Spieth, P. Blood transfusion-associated lung injury. J. Thorac. Dis. 2019, 11, 3609–3615. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aubron, C.; Hourmant, B.; Menguy, J.; Sparrow, R.L. Transfusion-related respiratory complications in intensive care: A diagnosis challenge. Transfus. Clin. Biol. 2021, 28, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Lian, Z. Update on transfusion-related acute lung injury: An overview of its pathogenesis and management. Front. Immunol. 2023, 14, 1175387. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sadana, D.; Kaur, S.; Sankaramangalam, K.; Saini, I.; Banerjee, K.; Siuba, M.; Amaral, V.; Gadre, S.; Torbic, H.; Krishnan, S.; et al. Mortality associated with acute respiratory distress syndrome, 2009–2019: A systematic review and meta-analysis. Crit Care Resusc. 2023, 24, 341–351. [Google Scholar] [CrossRef]
Score | Description |
---|---|
0 | Normal |
1 | Minimal |
2 | Moderate |
3 | Severe |
Features | Sham | Blood | VBI-1 |
---|---|---|---|
Nuclear Damage | 1 | 2 | 1 |
Myofiber atrophy | 0 | 3 | 1 |
myocardial interstitial edema. | 1 | 3 | 2 |
Cumulative score | 2 | 8 | 4 |
Features | Sham | Blood | VBI-1 |
---|---|---|---|
Nuclear Damage | 1 | 3 | 1 |
Septal Thickening | 1 | 2 | 1 |
Cumulative Score | 2 | 5 | 2 |
Features | Sham | Blood | VBI-1 |
---|---|---|---|
Nuclear Damage | 2 | 2 | 1 |
Tissue Vacuolation | 1 | 2 | 1 |
Hepatocytes Vacuolation | 1 | 2 | 0 |
Cumulative score | 4 | 6 | 2 |
Features | Sham | Blood | VBI-1 |
---|---|---|---|
Nuclear Damage | 1 | 2 | 1 |
Tubular damage | 1 | 2 | 0 |
Tubular Vacuolation | 0 | 3 | 0 |
Glomerular degeneration | 0 | 2 | 0 |
Hemorrhage | 0 | 0 | 1 |
Cumulative score | 2 | 9 | 2 |
Features | Sham | Blood | VBI-1 |
---|---|---|---|
Islet cells derangements | 0 | 1 | 1 |
Acini shrinkage | 0 | 1 | 0 |
Cumulative score | 0 | 2 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shallie, P.; Carpenter, N.; Anamthathmakula, P.; Kinsey, D.; Moncure, M.; Honaryar, H.; Ghazali, H.S.; Niroobakhsh, Z.; Rodriguez, J.; Simpkins, C.O. Phospholipid Nanoparticles: A Novel Colloid for Blood Volume Replacement, Reanimation, and Organ Protection in Hemorrhagic Shock. Biomedicines 2024, 12, 2824. https://doi.org/10.3390/biomedicines12122824
Shallie P, Carpenter N, Anamthathmakula P, Kinsey D, Moncure M, Honaryar H, Ghazali HS, Niroobakhsh Z, Rodriguez J, Simpkins CO. Phospholipid Nanoparticles: A Novel Colloid for Blood Volume Replacement, Reanimation, and Organ Protection in Hemorrhagic Shock. Biomedicines. 2024; 12(12):2824. https://doi.org/10.3390/biomedicines12122824
Chicago/Turabian StyleShallie, Philemon, Nathan Carpenter, Prashanth Anamthathmakula, Danielle Kinsey, Michael Moncure, Houman Honaryar, Hanieh Sadat Ghazali, Zahra Niroobakhsh, Juan Rodriguez, and Cuthbert O. Simpkins. 2024. "Phospholipid Nanoparticles: A Novel Colloid for Blood Volume Replacement, Reanimation, and Organ Protection in Hemorrhagic Shock" Biomedicines 12, no. 12: 2824. https://doi.org/10.3390/biomedicines12122824
APA StyleShallie, P., Carpenter, N., Anamthathmakula, P., Kinsey, D., Moncure, M., Honaryar, H., Ghazali, H. S., Niroobakhsh, Z., Rodriguez, J., & Simpkins, C. O. (2024). Phospholipid Nanoparticles: A Novel Colloid for Blood Volume Replacement, Reanimation, and Organ Protection in Hemorrhagic Shock. Biomedicines, 12(12), 2824. https://doi.org/10.3390/biomedicines12122824