Updates on Chimeric Antigen Receptor T-Cells in Large B-Cell Lymphoma
Abstract
:1. Introduction
2. CAR T-Cells Manufacturing
3. Clinical Efficacy of Approved CD19-Targeting CAR T-Cells
3.1. Axicabtagene Ciloleucel (Axi-Cel)
3.2. Tisagenlecleucel (Tisa-Cel)
3.3. Lisocabtagene Maraleucel (Liso-Cel)
4. Comparison of Approved CAR T-Cells
5. Management of CRS and ICANS
6. Long-Term Toxicities of CD19-Targeting CAR T-Cells
7. Mechanisms of Resistance to CAR T-Cells
8. CAR T-Cells or Bispecific Antibodies
9. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Coiffier, B.; Lepage, E.; Briere, J.; Herbrecht, R.; Tilly, H.; Bouabdallah, R.; Morel, P.; Van Den Neste, E.; Salles, G.; Gaulard, P.; et al. CHOP Chemotherapy plus Rituximab Compared with CHOP Alone in Elderly Patients with Diffuse Large-B-Cell Lymphoma. N. Engl. J. Med. 2002, 346, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Coiffier, B.; Thieblemont, C.; Van Den Neste, E.; Lepeu, G.; Plantier, I.; Castaigne, S.; Lefort, S.; Marit, G.; Macro, M.; Sebban, C.; et al. Long-Term Outcome of Patients in the LNH-98.5 Trial, the First Randomized Study Comparing Rituximab-CHOP to Standard CHOP Chemotherapy in DLBCL Patients: A Study by the Groupe d’Etudes des Lymphomes de l’Adulte. Blood 2010, 116, 2040–2045. [Google Scholar] [CrossRef] [PubMed]
- Récher, C.; Coiffier, B.; Haioun, C.; Molina, T.J.; Fermé, C.; Casasnovas, O.; Thiéblemont, C.; Bosly, A.; Laurent, G.; Morschhauser, F.; et al. Intensified Chemotherapy with ACVBP plus Rituximab versus Standard CHOP plus Rituximab for the Treatment of Diffuse Large B-Cell Lymphoma (LNH03-2B): An Open-Label Randomised Phase 3 Trial. Lancet 2011, 378, 1858–1867. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer Statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef]
- Chiappella, A.; Martelli, M.; Angelucci, E.; Brusamolino, E.; Evangelista, A.; Carella, A.M.; Stelitano, C.; Rossi, G.; Balzarotti, M.; Merli, F.; et al. Rituximab-Dose-Dense Chemotherapy with or without High-Dose Chemotherapy plus Autologous Stem-Cell Transplantation in High-Risk Diffuse Large B-Cell Lymphoma (DLCL04): Final Results of a Multicentre, Open-Label, Randomised, Controlled, Phase 3 Study. Lancet Oncol. 2017, 18, 1076–1088. [Google Scholar] [CrossRef]
- Saleh, K.; Khoury, R.; Khalife, N.; Chahine, C.; Ibrahim, R.; Tikriti, Z.; Le Cesne, A. The Evolving Role of Bispecific Antibodies in Diffuse Large B-Cell Lymphoma. J. Pers. Med. 2024, 14, 666. [Google Scholar] [CrossRef]
- Neelapu, S.S.; Locke, F.L.; Bartlett, N.L.; Lekakis, L.J.; Miklos, D.B.; Jacobson, C.A.; Braunschweig, I.; Oluwole, O.O.; Siddiqi, T.; Lin, Y.; et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. N. Engl. J. Med. 2017, 377, 2531–2544. [Google Scholar] [CrossRef]
- Schuster, S.J.; Bishop, M.R.; Tam, C.S.; Waller, E.K.; Borchmann, P.; McGuirk, J.P.; Jäger, U.; Jaglowski, S.; Andreadis, C.; Westin, J.R.; et al. Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2019, 380, 45–56. [Google Scholar] [CrossRef]
- Abramson, J.S.; Palomba, M.L.; Gordon, L.I.; Lunning, M.A.; Wang, M.; Arnason, J.; Mehta, A.; Purev, E.; Maloney, D.G.; Andreadis, C.; et al. Lisocabtagene Maraleucel for Patients with Relapsed or Refractory Large B-Cell Lymphomas (TRANSCEND NHL 001): A Multicentre Seamless Design Study. Lancet 2020, 396, 839–852. [Google Scholar] [CrossRef]
- Locke, F.L.; Miklos, D.B.; Jacobson, C.A.; Perales, M.-A.; Kersten, M.-J.; Oluwole, O.O.; Ghobadi, A.; Rapoport, A.P.; McGuirk, J.; Pagel, J.M.; et al. Axicabtagene Ciloleucel as Second-Line Therapy for Large B-Cell Lymphoma. N. Engl. J. Med. 2022, 386, 640–654. [Google Scholar] [CrossRef]
- Kamdar, M.; Solomon, S.R.; Arnason, J.; Johnston, P.B.; Glass, B.; Bachanova, V.; Ibrahimi, S.; Mielke, S.; Mutsaers, P.; Hernandez-Ilizaliturri, F.; et al. Lisocabtagene Maraleucel versus Standard of Care with Salvage Chemotherapy Followed by Autologous Stem Cell Transplantation as Second-Line Treatment in Patients with Relapsed or Refractory Large B-Cell Lymphoma (TRANSFORM): Results from an Interim Analysis of an Open-Label, Randomised, Phase 3 Trial. Lancet 2022, 399, 2294–2308. [Google Scholar] [CrossRef] [PubMed]
- Thieblemont, C.; Phillips, T.; Ghesquieres, H.; Cheah, C.Y.; Clausen, M.R.; Cunningham, D.; Do, Y.R.; Feldman, T.; Gasiorowski, R.; Jurczak, W.; et al. Epcoritamab, a Novel, Subcutaneous CD3xCD20 Bispecific T-Cell-Engaging Antibody, in Relapsed or Refractory Large B-Cell Lymphoma: Dose Expansion in a Phase I/II Trial. J. Clin. Oncol. 2023, 41, 2238–2247. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, M.J.; Carlo-Stella, C.; Morschhauser, F.; Bachy, E.; Corradini, P.; Iacoboni, G.; Khan, C.; Wróbel, T.; Offner, F.; Trněný, M.; et al. Glofitamab for Relapsed or Refractory Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2022, 387, 2220–2231. [Google Scholar] [CrossRef]
- Ajina, A.; Maher, J. Strategies to Address Chimeric Antigen Receptor Tonic Signaling. Mol. Cancer Ther. 2018, 17, 1795–1815. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.C.; Riddell, S.R. Designing Chimeric Antigen Receptors to Effectively and Safely Target Tumors. Curr. Opin. Immunol. 2015, 33, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Porter, D.L.; Levine, B.L.; Kalos, M.; Bagg, A.; June, C.H. Chimeric Antigen Receptor-Modified T Cells in Chronic Lymphoid Leukemia. N. Engl. J. Med. 2011, 365, 725–733. [Google Scholar] [CrossRef]
- Guedan, S.; Chen, X.; Madar, A.; Carpenito, C.; McGettigan, S.E.; Frigault, M.J.; Lee, J.; Posey, A.D.; Scholler, J.; Scholler, N.; et al. ICOS-Based Chimeric Antigen Receptors Program Bipolar TH17/TH1 Cells. Blood 2014, 124, 1070–1080. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, J.; Zhong, J.F.; Zhang, X. Engineering CAR-T Cells. Biomark. Res. 2017, 5, 22. [Google Scholar] [CrossRef]
- Maher, J.; Brentjens, R.J.; Gunset, G.; Rivière, I.; Sadelain, M. Human T-Lymphocyte Cytotoxicity and Proliferation Directed by a Single Chimeric TCRzeta/CD28 Receptor. Nat. Biotechnol. 2002, 20, 70–75. [Google Scholar] [CrossRef]
- Kerkar, S.P.; Muranski, P.; Kaiser, A.; Boni, A.; Sanchez-Perez, L.; Yu, Z.; Palmer, D.C.; Reger, R.N.; Borman, Z.A.; Zhang, L.; et al. Tumor-Specific CD8+ T Cells Expressing Interleukin-12 Eradicate Established Cancers in Lymphodepleted Hosts. Cancer Res. 2010, 70, 6725–6734. [Google Scholar] [CrossRef]
- Chmielewski, M.; Hombach, A.A.; Abken, H. Antigen-Specific T-Cell Activation Independently of the MHC: Chimeric Antigen Receptor-Redirected T Cells. Front. Immunol. 2013, 4, 371. [Google Scholar] [CrossRef]
- Enblad, G.; Karlsson, H.; Gammelgård, G.; Wenthe, J.; Lövgren, T.; Amini, R.M.; Wikstrom, K.I.; Essand, M.; Savoldo, B.; Hallböök, H.; et al. A Phase I/IIa Trial Using CD19-Targeted Third-Generation CAR T Cells for Lymphoma and Leukemia. Clin. Cancer Res. 2018, 24, 6185–6194. [Google Scholar] [CrossRef] [PubMed]
- Rubenstein, J.L.; Geng, H.; Fraser, E.J.; Formaker, P.; Chen, L.; Sharma, J.; Killea, P.; Choi, K.; Ventura, J.; Kurhanewicz, J.; et al. Phase 1 Investigation of Lenalidomide/Rituximab plus Outcomes of Lenalidomide Maintenance in Relapsed CNS Lymphoma. Blood Adv. 2018, 2, 1595–1607. [Google Scholar] [CrossRef] [PubMed]
- Gong, W.; Hoffmann, J.-M.; Stock, S.; Wang, L.; Liu, Y.; Schubert, M.-L.; Neuber, B.; Hückelhoven-Krauss, A.; Gern, U.; Schmitt, A.; et al. Comparison of IL-2 vs IL-7/IL-15 for the Generation of NY-ESO-1-Specific T Cells. Cancer Immunol. Immunother. 2019, 68, 1195–1209. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, D.; Wong, R.A.; Yang, X.; Wang, D.; Pecoraro, J.R.; Kuo, C.-F.; Aguilar, B.; Qi, Y.; Ann, D.K.; Starr, R.; et al. IL15 Enhances CAR-T Cell Antitumor Activity by Reducing mTORC1 Activity and Preserving Their Stem Cell Memory Phenotype. Cancer Immunol. Res. 2019, 7, 759–772. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, R.S.; Beitzel, B.F.; Schroder, A.R.W.; Shinn, P.; Chen, H.; Berry, C.C.; Ecker, J.R.; Bushman, F.D. Retroviral DNA Integration: ASLV, HIV, and MLV Show Distinct Target Site Preferences. PLoS Biol. 2004, 2, E234. [Google Scholar] [CrossRef]
- Benmebarek, M.-R.; Karches, C.H.; Cadilha, B.L.; Lesch, S.; Endres, S.; Kobold, S. Killing Mechanisms of Chimeric Antigen Receptor (CAR) T Cells. Int. J. Mol. Sci. 2019, 20, 1283. [Google Scholar] [CrossRef]
- Watanabe, A.; Miyake, K.; Akahane, K.; Goi, K.; Kagami, K.; Yagita, H.; Inukai, T. Epigenetic Modification of Death Receptor Genes for TRAIL and TRAIL Resistance in Childhood B-Cell Precursor Acute Lymphoblastic Leukemia. Genes 2021, 12, 864. [Google Scholar] [CrossRef]
- Nagata, S.; Tanaka, M. Programmed Cell Death and the Immune System. Nat. Rev. Immunol. 2017, 17, 333–340. [Google Scholar] [CrossRef]
- Neelapu, S.S.; Jacobson, C.A.; Ghobadi, A.; Miklos, D.B.; Lekakis, L.J.; Oluwole, O.O.; Lin, Y.; Braunschweig, I.; Hill, B.T.; Timmerman, J.M.; et al. Five-Year Follow-up of ZUMA-1 Supports the Curative Potential of Axicabtagene Ciloleucel in Refractory Large B-Cell Lymphoma. Blood 2023, 141, 2307–2315. [Google Scholar] [CrossRef]
- Jacobson, C.A.; Hunter, B.D.; Redd, R.; Rodig, S.J.; Chen, P.-H.; Wright, K.; Lipschitz, M.; Ritz, J.; Kamihara, Y.; Armand, P.; et al. Axicabtagene Ciloleucel in the Non-Trial Setting: Outcomes and Correlates of Response, Resistance, and Toxicity. J. Clin. Oncol. 2020, 38, 3095–3106. [Google Scholar] [CrossRef] [PubMed]
- Nastoupil, L.J.; Jain, M.D.; Feng, L.; Spiegel, J.Y.; Ghobadi, A.; Lin, Y.; Dahiya, S.; Lunning, M.; Lekakis, L.; Reagan, P.; et al. Standard-of-Care Axicabtagene Ciloleucel for Relapsed or Refractory Large B-Cell Lymphoma: Results From the US Lymphoma CAR T Consortium. J. Clin. Oncol. 2020, 38, 3119–3128. [Google Scholar] [CrossRef] [PubMed]
- Westin, J.R.; Oluwole, O.O.; Kersten, M.J.; Miklos, D.B.; Perales, M.-A.; Ghobadi, A.; Rapoport, A.P.; Sureda, A.; Jacobson, C.A.; Farooq, U.; et al. Survival with Axicabtagene Ciloleucel in Large B-Cell Lymphoma. N. Engl. J. Med. 2023, 389, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Kersten, M.J.; Farooq, U.; Rapoport, A.P.; Locke, F.L.; Leslie, L.A.; Ghobadi, A.; Miklos, D.B.; Jacobson, C.A.; Munoz, J.L.; Johnston, P.B.; et al. Improved Overall Survival with Axicabtagene Ciloleucel Vs Standard of Care in Second-Line Large B-Cell Lymphoma Among the Elderly: A Subgroup Analysis of ZUMA-7. Blood 2023, 142, 1761. [Google Scholar] [CrossRef]
- Brisou, G.; Cartron, G.; Bachy, E.; Thieblemont, C.; Castilla-Llorente, C.; Le Bras, F.; Gros, F.-X.; Loschi, M.; Houot, R.; Dulery, R.; et al. Real World Data of Axicabtagene Ciloleucel As Second Line Therapy for Patients with Large B Cell Lymphoma: First Results of a Lysa Study from the French Descar-T Registry. Blood 2023, 142, 5138. [Google Scholar] [CrossRef]
- Houot, R.; Bachy, E.; Cartron, G.; Gros, F.-X.; Morschhauser, F.; Oberic, L.; Gastinne, T.; Feugier, P.; Duléry, R.; Thieblemont, C.; et al. Axicabtagene Ciloleucel as Second-Line Therapy in Large B Cell Lymphoma Ineligible for Autologous Stem Cell Transplantation: A Phase 2 Trial. Nat. Med. 2023, 29, 2593–2601. [Google Scholar] [CrossRef]
- Chavez, J.C.; Dickinson, M.; Munoz, J.L.; Ulrickson, M.L.; Thieblemont, C.; Oluwole, O.O.; Herrera, A.F.; Ujjani, C.S.; Lin, Y.; Riedell, P.A.; et al. 3-Year Analysis of ZUMA-12: A Phase 2 Study of Axicabtagene Ciloleucel (Axi-Cel) As First-Line Therapy in Patients with High-Risk Large B-Cell Lymphoma (LBCL). Blood 2023, 142, 894. [Google Scholar] [CrossRef]
- Nayak, L.; Chukwueke, U.N.; Meehan, C.; Redd, R.; Hogan, S.; Lee, E.Q.; Kim, A.I.; Arrillaga-Romany, I.; McFaline Figueroa, J.R.R.; Gonzalez Castro, L.N.; et al. A Pilot Study of Axicabtagene Ciloleucel (Axi-Cel) for Relapsed/Refractory Primary and Secondary Central Nervous System Lymphoma (PCNSL and SCNSL). J. Clin. Oncol. 2024, 42, 2006. [Google Scholar] [CrossRef]
- Landsburg, D.J.; Frigault, M.; Heim, M.; Foley, S.R.; Hill, B.T.; Ho, C.M.; Jacobson, C.A.; Jaglowski, S.; Locke, F.L.; Ram, R.; et al. Real-World Outcomes for Patients with Relapsed or Refractory (R/R) Aggressive B-Cell Non-Hodgkin’s Lymphoma (aBNHL) Treated with Commercial Tisagenlecleucel: Subgroup Analyses from the Center for International Blood and Marrow Transplant Research (CIBMTR) Registry. Blood 2022, 140, 1584–1587. [Google Scholar] [CrossRef]
- Bishop, M.R.; Dickinson, M.; Purtill, D.; Barba, P.; Santoro, A.; Hamad, N.; Kato, K.; Sureda, A.; Greil, R.; Thieblemont, C.; et al. Second-Line Tisagenlecleucel or Standard Care in Aggressive B-Cell Lymphoma. N. Engl. J. Med. 2022, 386, 629–639. [Google Scholar] [CrossRef]
- Boardman, A.P.; Salles, G. CAR T-Cell Therapy in Large B Cell Lymphoma. Hematol. Oncol. 2023, 41, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Riedell, P.A.; Grady, C.; Nastoupil, L.J.; Luna, A.; Ahmed, N.; Maziarz, R.T.; Hu, M.; Brower, J.; Hwang, W.-T.; Schuster, S.J.; et al. Lisocabtagene Maraleucel in Relapsed/Refractory Large B-Cell Lymphoma: Real World Analysis from the Cell Therapy Consortium. Blood 2023, 142, 617. [Google Scholar] [CrossRef]
- Abramson, J.S.; Solomon, S.R.; Arnason, J.; Johnston, P.B.; Glass, B.; Bachanova, V.; Ibrahimi, S.; Mielke, S.; Mutsaers, P.; Hernandez-Ilizaliturri, F.; et al. Lisocabtagene Maraleucel as Second-Line Therapy for Large B-Cell Lymphoma: Primary Analysis of the Phase 3 TRANSFORM Study. Blood 2023, 141, 1675–1684. [Google Scholar] [CrossRef] [PubMed]
- Sehgal, A.R.; Hoda, D.; Riedell, P.A.; Ghosh, N.; Hamadani, M.; Hildebrandt, G.; Godwin, J.E.; Reagan, P.M.; Wagner-Johnston, N.; Essell, J.; et al. Lisocabtagene Maraleucel as Second-Line Therapy for R/R Large B-Cell Lymphoma in Patients Not Intended for Hematopoietic Stem Cell Transplant: Final Analysis of the Phase 2 PILOT Study. Blood 2023, 142, 105. [Google Scholar] [CrossRef]
- Schuster, S.J.; Tam, C.S.; Borchmann, P.; Worel, N.; McGuirk, J.P.; Holte, H.; Waller, E.K.; Jaglowski, S.; Bishop, M.R.; Damon, L.E.; et al. Long-Term Clinical Outcomes of Tisagenlecleucel in Patients with Relapsed or Refractory Aggressive B-Cell Lymphomas (JULIET): A Multicentre, Open-Label, Single-Arm, Phase 2 Study. Lancet Oncol. 2021, 22, 1403–1415. [Google Scholar] [CrossRef] [PubMed]
- Abramson, J.S.; Palomba, M.L.; Gordon, L.I.; Lunning, M.; Wang, M.; Arnason, J.; Purev, E.; Maloney, D.G.; Andreadis, C.; Sehgal, A.; et al. Two-Year Follow-up of Lisocabtagene Maraleucel in Relapsed or Refractory Large B-Cell Lymphoma in TRANSCEND NHL 001. Blood 2024, 143, 404–416. [Google Scholar] [CrossRef]
- Portuguese, A.J.; Albittar, A.; Liang, E.C.; Huang, J.J.; Hirayama, A.V.; Kimble, E.L.; Iovino, L.; Poh, C.; Gopal, A.K.; Shadman, M.; et al. Lisocabtagene Maraleucel Versus Axicabtagene Ciloleucel: Efficacy and Toxicity in a Real-World Setting. Blood 2023, 142, 2131. [Google Scholar] [CrossRef]
- Maloney, D.G.; Kuruvilla, J.; Liu, F.F.; Kostic, A.; Kim, Y.; Bonner, A.; Zhang, Y.; Fox, C.P.; Cartron, G. Matching-Adjusted Indirect Treatment Comparison of Liso-Cel versus Axi-Cel in Relapsed or Refractory Large B Cell Lymphoma. J. Hematol. Oncol. 2021, 14, 140. [Google Scholar] [CrossRef]
- Oluwole, O.O.; Chen, J.M.H.; Chan, K.; Patel, A.R.; Jansen, J.P.; Keeping, S.; Zheng, Y.; Snider, J.T.; Locke, F.L. Matching-Adjusted Indirect Comparison of Axi-Cel and Liso-Cel in Relapsed or Refractory Large B-Cell Lymphoma. Leuk. Lymphoma 2022, 63, 3052–3062. [Google Scholar] [CrossRef]
- Abramson, J.S.; Kamdar, M.; Liu, F.F.; Crotta, A.; Previtali, A.; Klijn, S.L.; Wang, P.; Situ, A.; Zhang, Y.; Bonner, A.; et al. Matching-Adjusted Indirect Comparison (MAIC) of Lisocabtagene Maraleucel (Liso-Cel) Versus Axicabtagene Ciloleucel (Axi-Cel) for Second-Line (2L) Treatment of Patients (Pt) with Refractory/Early Relapsed (R/R) Large B-Cell Lymphoma (LBCL). Blood 2022, 140, 4655–4656. [Google Scholar] [CrossRef]
- Bachy, E.; Le Gouill, S.; Di Blasi, R.; Sesques, P.; Manson, G.; Cartron, G.; Beauvais, D.; Roulin, L.; Gros, F.X.; Rubio, M.T.; et al. A Real-World Comparison of Tisagenlecleucel and Axicabtagene Ciloleucel CAR T Cells in Relapsed or Refractory Diffuse Large B Cell Lymphoma. Nat. Med. 2022, 28, 2145–2154. [Google Scholar] [CrossRef]
- Gagelmann, N.; Bishop, M.; Ayuk, F.; Bethge, W.; Glass, B.; Sureda, A.; Pasquini, M.C.; Kröger, N. Axicabtagene Ciloleucel versus Tisagenlecleucel for Relapsed or Refractory Large B Cell Lymphoma: A Systematic Review and Meta-Analysis. Transplant. Cell Ther. 2024, 30, 584.e1–584.e13. [Google Scholar] [CrossRef] [PubMed]
- Kwon, M.; Iacoboni, G.; Reguera, J.L.; Corral, L.L.; Morales, R.H.; Ortiz-Maldonado, V.; Guerreiro, M.; Caballero, A.C.; Domínguez, M.L.G.; Pina, J.M.S.; et al. Axicabtagene Ciloleucel Compared to Tisagenlecleucel for the Treatment of Aggressive B-Cell Lymphoma. Haematologica 2023, 108, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Brudno, J.N.; Kochenderfer, J.N. Current Understanding and Management of CAR T Cell-Associated Toxicities. Nat. Rev. Clin. Oncol. 2024, 21, 501–521. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.W.; Gardner, R.; Porter, D.L.; Louis, C.U.; Ahmed, N.; Jensen, M.; Grupp, S.A.; Mackall, C.L. Current Concepts in the Diagnosis and Management of Cytokine Release Syndrome. Blood 2014, 124, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Maude, S.L.; Laetsch, T.W.; Buechner, J.; Rives, S.; Boyer, M.; Bittencourt, H.; Bader, P.; Verneris, M.R.; Stefanski, H.E.; Myers, G.D.; et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N. Engl. J. Med. 2018, 378, 439–448. [Google Scholar] [CrossRef]
- Park, J.H.; Rivière, I.; Gonen, M.; Wang, X.; Sénéchal, B.; Curran, K.J.; Sauter, C.; Wang, Y.; Santomasso, B.; Mead, E.; et al. Long-Term Follow-up of CD19 CAR Therapy in Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2018, 378, 449–459. [Google Scholar] [CrossRef]
- Lee, D.W.; Santomasso, B.D.; Locke, F.L.; Ghobadi, A.; Turtle, C.J.; Brudno, J.N.; Maus, M.V.; Park, J.H.; Mead, E.; Pavletic, S.; et al. ASTCT Consensus Grading for Cytokine Release Syndrome and Neurologic Toxicity Associated with Immune Effector Cells. Biol. Blood Marrow Transplant. 2019, 25, 625–638. [Google Scholar] [CrossRef]
- Reagan, P.M.; Neelapu, S.S. How I Manage: Pathophysiology and Management of Toxicity of Chimeric Antigen Receptor T-Cell Therapies. J. Clin. Oncol. 2021, 39, 456–466. [Google Scholar] [CrossRef]
- Wang, M.; Munoz, J.; Goy, A.; Locke, F.L.; Jacobson, C.A.; Hill, B.T.; Timmerman, J.M.; Holmes, H.; Jaglowski, S.; Flinn, I.W.; et al. KTE-X19 CAR T-Cell Therapy in Relapsed or Refractory Mantle-Cell Lymphoma. N. Engl. J. Med. 2020, 382, 1331–1342. [Google Scholar] [CrossRef]
- Strati, P.; Ahmed, S.; Furqan, F.; Fayad, L.E.; Lee, H.J.; Iyer, S.P.; Nair, R.; Nastoupil, L.J.; Parmar, S.; Rodriguez, M.A.; et al. Prognostic Impact of Corticosteroids on Efficacy of Chimeric Antigen Receptor T-Cell Therapy in Large B-Cell Lymphoma. Blood 2021, 137, 3272–3276. [Google Scholar] [CrossRef] [PubMed]
- Santomasso, B.D.; Nastoupil, L.J.; Adkins, S.; Lacchetti, C.; Schneider, B.J.; Anadkat, M.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; Chau, I.; et al. Management of Immune-Related Adverse Events in Patients Treated With Chimeric Antigen Receptor T-Cell Therapy: ASCO Guideline. J. Clin. Oncol. 2021, 39, 3978–3992. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, C.; Brown, A.R.T.; Herr, M.M.; Kadri, S.S.; Hill, B.; Rajendram, P.; Duggal, A.; Turtle, C.J.; Patel, K.; Lin, Y.; et al. The Chimeric Antigen Receptor-Intensive Care Unit (CAR-ICU) Initiative: Surveying Intensive Care Unit Practices in the Management of CAR T-Cell Associated Toxicities. J. Crit. Care 2020, 58, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Nath, K.; Devlin, S.M.; Sauter, C.S.; Palomba, M.L.; Shah, G.; Dahi, P.; Lin, R.J.; Scordo, M.; Perales, M.-A.; et al. CD19 CAR T-Cell Therapy and Prophylactic Anakinra in Relapsed or Refractory Lymphoma: Phase 2 Trial Interim Results. Nat. Med. 2023, 29, 1710–1717. [Google Scholar] [CrossRef] [PubMed]
- Bellal, M.; Malherbe, J.; Damaj, G.; Du Cheyron, D. Toxicities, Intensive Care Management, and Outcome of Chimeric Antigen Receptor T Cells in Adults: An Update. Crit. Care 2024, 28, 69. [Google Scholar] [CrossRef]
- Cordeiro, A.; Bezerra, E.D.; Hirayama, A.V.; Hill, J.A.; Wu, Q.V.; Voutsinas, J.; Sorror, M.L.; Turtle, C.J.; Maloney, D.G.; Bar, M. Late Events after Treatment with CD19-Targeted Chimeric Antigen Receptor Modified T Cells. Biol. Blood Marrow Transplant. 2020, 26, 26–33. [Google Scholar] [CrossRef]
- Lemoine, J.; Bachy, E.; Cartron, G.; Beauvais, D.; Gastinne, T.; Di Blasi, R.; Rubio, M.-T.; Guidez, S.; Mohty, M.; Casasnovas, R.-O.; et al. Nonrelapse Mortality after CAR T-Cell Therapy for Large B-Cell Lymphoma: A LYSA Study from the DESCAR-T Registry. Blood Adv. 2023, 7, 6589–6598. [Google Scholar] [CrossRef]
- Cordas Dos Santos, D.M.; Tix, T.; Shouval, R.; Gafter-Gvili, A.; Alberge, J.-B.; Cliff, E.R.S.; Theurich, S.; von Bergwelt-Baildon, M.; Ghobrial, I.M.; Subklewe, M.; et al. A Systematic Review and Meta-Analysis of Nonrelapse Mortality after CAR T Cell Therapy. Nat. Med. 2024, 30, 2667–2678. [Google Scholar] [CrossRef]
- Elsallab, M.; Ellithi, M.; Lunning, M.A.; D’Angelo, C.; Ma, J.; Perales, M.-A.; Frigault, M.; Maus, M.V. Second Primary Malignancies after Commercial CAR T-Cell Therapy: Analysis of the FDA Adverse Events Reporting System. Blood 2024, 143, 2099–2105. [Google Scholar] [CrossRef]
- Verdun, N.; Marks, P. Secondary Cancers after Chimeric Antigen Receptor T-Cell Therapy. N. Engl. J. Med. 2024, 390, 584–586. [Google Scholar] [CrossRef]
- Hamilton, M.P.; Sugio, T.; Noordenbos, T.; Shi, S.; Bulterys, P.L.; Liu, C.L.; Kang, X.; Olsen, M.N.; Good, Z.; Dahiya, S.; et al. Risk of Second Tumors and T-Cell Lymphoma after CAR T-Cell Therapy. N. Engl. J. Med. 2024, 390, 2047–2060. [Google Scholar] [CrossRef] [PubMed]
- Ghilardi, G.; Fraietta, J.A.; Gerson, J.N.; Van Deerlin, V.M.; Morrissette, J.J.D.; Caponetti, G.C.; Paruzzo, L.; Harris, J.C.; Chong, E.A.; Susanibar Adaniya, S.P.; et al. T Cell Lymphoma and Secondary Primary Malignancy Risk after Commercial CAR T Cell Therapy. Nat. Med. 2024, 30, 984–989. [Google Scholar] [CrossRef] [PubMed]
- Curran, K.J.; Margossian, S.P.; Kernan, N.A.; Silverman, L.B.; Williams, D.A.; Shukla, N.; Kobos, R.; Forlenza, C.J.; Steinherz, P.; Prockop, S.; et al. Toxicity and Response after CD19-Specific CAR T-Cell Therapy in Pediatric/Young Adult Relapsed/Refractory B-ALL. Blood 2019, 134, 2361–2368. [Google Scholar] [CrossRef] [PubMed]
- Vercellino, L.; Di Blasi, R.; Kanoun, S.; Tessoulin, B.; Rossi, C.; D’Aveni-Piney, M.; Obéric, L.; Bodet-Milin, C.; Bories, P.; Olivier, P.; et al. Predictive Factors of Early Progression after CAR T-Cell Therapy in Relapsed/Refractory Diffuse Large B-Cell Lymphoma. Blood Adv. 2020, 4, 5607–5615. [Google Scholar] [CrossRef]
- Xia, A.; Zhang, Y.; Xu, J.; Yin, T.; Lu, X.-J. T Cell Dysfunction in Cancer Immunity and Immunotherapy. Front. Immunol. 2019, 10, 1719. [Google Scholar] [CrossRef]
- Chauvin, J.-M.; Pagliano, O.; Fourcade, J.; Sun, Z.; Wang, H.; Sander, C.; Kirkwood, J.M.; Chen, T.T.; Maurer, M.; Korman, A.J.; et al. TIGIT and PD-1 Impair Tumor Antigen–Specific CD8+ T Cells in Melanoma Patients. J. Clin. Investig. 2015, 125, 2046–2058. [Google Scholar] [CrossRef]
- Woo, S.-R.; Turnis, M.E.; Goldberg, M.V.; Bankoti, J.; Selby, M.; Nirschl, C.J.; Bettini, M.L.; Gravano, D.M.; Vogel, P.; Liu, C.L.; et al. Immune Inhibitory Molecules LAG-3 and PD-1 Synergistically Regulate T-Cell Function to Promote Tumoral Immune Escape. Cancer Res. 2012, 72, 917–927. [Google Scholar] [CrossRef]
- Ruella, M.; Korell, F.; Porazzi, P.; Maus, M.V. Mechanisms of Resistance to Chimeric Antigen Receptor-T Cells in Haematological Malignancies. Nat. Rev. Drug Discov. 2023, 22, 976–995. [Google Scholar] [CrossRef]
- Siddiqi, T. CARs vs Bispecifics: The Race Is On! Blood 2024, 144, 592–593. [Google Scholar] [CrossRef]
- Crochet, G.; Iacoboni, G.; Couturier, A.; Bachy, E.; Iraola-Truchuelo, J.; Gastinne, T.; Cartron, G.; Fradon, T.; Lesne, B.; Kwon, M.; et al. Efficacy of CAR T-Cell Therapy Is Not Impaired by Previous Bispecific Antibody Treatment in Large B-Cell Lymphoma. Blood 2024, 144, 334–338. [Google Scholar] [CrossRef]
- Brinkmann, B.J.; Floerchinger, A.; Schniederjohann, C.; Roider, T.; Coelho, M.; Mack, N.; Bruch, P.-M.; Liebers, N.; Dötsch, S.; Busch, D.H.; et al. CD20-Bispecific Antibodies Improve Response to CD19-CAR T-Cells in Lymphoma in-Vitro and CLL in-Vivo Models. Blood 2024, 144, 784–789. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Cho, J.; Lee, M.H.; Yoon, S.E.; Kim, W.S.; Kim, S.J. CAR T Cells vs Bispecific Antibody as Third- or Later-Line Large B-Cell Lymphoma Therapy: A Meta-Analysis. Blood 2024, 144, 629–638. [Google Scholar] [CrossRef] [PubMed]
- Nastoupil, L. Matching-Adjusted Indirect Comparison (MAIC) of Efficacy and Safety of Lisocabtagene Maraleucel (Liso-Cel) and Mosunetuzumab for the Treatment (Tx) of Third Line or Later (3L+) Relapsed or Refractory (R/R) Follicular Lymphoma (FL). Blood 2023, 142, 2338. [Google Scholar] [CrossRef]
- Falchi, L.; Clausen, M.; Offner, F.; de Vos, S.; Brody, J.; Linton, K.M.; Snauwaert, S.; Cordoba, R.; Wu, J.; Bykhovski, I.; et al. Metabolic Response Rates of Epcoritamab + R-CHOP in Patients with Previously Untreated (1L) High-Risk Diffuse Large B-Cell Lymphoma, Including Double-Hit/Triple-Hit Lymphoma: Updated EPCORE NHL-2 Data. J. Clin. Oncol. 2023, 41, 7519. [Google Scholar] [CrossRef]
- Sehn, L.H.; Chamuleau, M.; Lenz, G.; Clausen, M.; Haioun, C.; Izutsu, K.; Davies, A.J.J.; Zhu, J.; Oki, T.; Szafer-Glusman, E.; et al. Phase 3 Trial of Subcutaneous Epcoritamab + R-CHOP versus R-CHOP in Patients (Pts) with Newly Diagnosed Diffuse Large B-Cell Lymphoma (DLBCL): EPCORE DLBCL-2. J. Clin. Oncol. 2023, 41, TPS7592. [Google Scholar] [CrossRef]
- Topp, M.S.; Tani, M.; Dickinson, M.; Ghosh, N.; Santoro, A.; Pinto, A.; Bosch, F.; Fox, C.P.; Lopez-Guillermo, A.; Gastinne, T.; et al. Glofitamab Plus R-CHOP Induces High Response Rates with a Manageable Safety Profile in Patients with Previously Untreated Diffuse Large B-Cell Lymphoma (DLBCL): A 12-Month Analysis from a Phase Ib Study. Blood 2023, 142, 3085. [Google Scholar] [CrossRef]
Study | Agent | Nb of Patients | Nb of Infused Pts | ORR/CR Rate | Median PFS (Months) | Median OS (Months) | CRS All Grade/Grade ≥ 3 | ICANS All Grade/Grade ≥ 3 |
---|---|---|---|---|---|---|---|---|
ZUMA-1 [7,30] | Axi-cel | 111 | 101 (91%) | 83%/58% | 5.8 | 25.8 | 93%/13% | 64%/28% |
JULIET [8] | Tisa-cel | 165 | 111 (67%) | 52%/40% | 2.9 | 12.0 | 58%/22% | 21%/12% |
TRANSCEND-NHL-001 [9,46] | Liso-cel | 344 | 269 (78%) | 73%/53% | 6.8 | 27.3 | 42%/2% | 30%/10% |
Study | Agent | Nb of Patients | Median Follow-Up (Months) | CR Rate | Median EFS (Months) | Median OS (Months) | CRS All Grade/Grade ≥ 3 | ICANS All Grade/Grade ≥ 3 |
---|---|---|---|---|---|---|---|---|
ZUMA-7 [10,33] | Axi-cel vs. SOC | 359 | 47.2 | 65% vs. 32% | 10.8 vs. 2.3 | NR vs. 31.1 | 92%/6% | 60%/21% |
BELINDA [40] | Tisa-cel vs. SOC | 322 | 10 | 28% vs. 28% | 3.0 vs. 2.0 | 16.9 vs. 15.3 | 61%/5% | 10%/2% |
TRANSFORM [11,43] | Liso-cel vs. SOC | 184 | 17.5 | 74% vs. 43% | NR vs. 2.4 | NR vs. 29.9 | 49%/1% | 11%/4% |
Study | Drugs | Phase | No of Patients | Population | Primary Endpoint |
---|---|---|---|---|---|
NCT05794958 | Axi-cel | Ib | 20 | Reinfusion in R/R second-line high-risk LBCL after SOC axi-cel | DLTs |
NCT04257578 | Axi-cel + acalabrutinib | I/II | 50 | LBCL | AEs |
NCT05459571 (ZUMA-24) | Axi-cel + steroids | II | 30 | R/R LBCL | TE-CRS, TENE |
NCT05605899 (ZUMA-23) | Axi-cel vs. SOC | III | 300 | First-line treatment high-risk LBCL | EFS |
NCT06213311 | Axi-cel + glofitamab | II | 40 | Second-line R/R LBCL | AEs |
NCT05757219 | Itacitinib pre axi-cel | II | 27 | DLBCL | PFS |
Study | Drugs | Phase | No of Patients | Population | Primary Endpoint |
---|---|---|---|---|---|
NCT05583149 | Acalabrutinib + liso-cel | II | 27 | R/R aggressive B-cell lymphoma after 2 lines | CR rate |
NCT05873712 | Zanubrutinib + liso-cel | II | 24 | R/R richter’s syndrome | ORR |
NCT05672173 | Liso-cel + nivolumab + ibrutinib | II | 20 | R/R richter’s syndrome | CR UT |
NCT05359211 | Liso-cel + NKTR-255 | I | 24 | R/R LBCL | AEs DLT CR rate |
NCT05664217 | NKTR-255 vs. placebo after liso-cel | II/III | 400 | R/R LBCL | EFS CR rate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saleh, K.; Khalife, N.; Arbab, A.; Khoury, R.; Chahine, C.; Ibrahim, R.; Tikriti, Z.; Masri, N.; Hachem, M.; Le Cesne, A. Updates on Chimeric Antigen Receptor T-Cells in Large B-Cell Lymphoma. Biomedicines 2024, 12, 2810. https://doi.org/10.3390/biomedicines12122810
Saleh K, Khalife N, Arbab A, Khoury R, Chahine C, Ibrahim R, Tikriti Z, Masri N, Hachem M, Le Cesne A. Updates on Chimeric Antigen Receptor T-Cells in Large B-Cell Lymphoma. Biomedicines. 2024; 12(12):2810. https://doi.org/10.3390/biomedicines12122810
Chicago/Turabian StyleSaleh, Khalil, Nadine Khalife, Ahmadreza Arbab, Rita Khoury, Claude Chahine, Rebecca Ibrahim, Zamzam Tikriti, Nohad Masri, Mohamad Hachem, and Axel Le Cesne. 2024. "Updates on Chimeric Antigen Receptor T-Cells in Large B-Cell Lymphoma" Biomedicines 12, no. 12: 2810. https://doi.org/10.3390/biomedicines12122810
APA StyleSaleh, K., Khalife, N., Arbab, A., Khoury, R., Chahine, C., Ibrahim, R., Tikriti, Z., Masri, N., Hachem, M., & Le Cesne, A. (2024). Updates on Chimeric Antigen Receptor T-Cells in Large B-Cell Lymphoma. Biomedicines, 12(12), 2810. https://doi.org/10.3390/biomedicines12122810