Blood Lipid Polygenic Risk Score Development and Application for Atherosclerosis Ultrasound Parameters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Participants
2.2. Clinical Data
2.3. Ethics Statement
2.4. DNA Extraction and Sequencing
2.5. Bioinformatic Analysis
- 1
- PRS based on the classical approach with original effect sizes (referred to as the “classical method” for brevity) were evaluated using an in-house script that calculates PRS as a sum of risk allele dosages weighted by the risk allele effect estimates. The latter were obtained either from a PRS [50] or from a list of lead variants from GWAS [47,49]. All lead variants from Willer et al. [47] were included in the original target panel designs for ESSE-Ivanovo and ESSE-Vologda. It should be noted that, unlike those from Willer et al. [47], the original target panel designs used for the ESSE-Ivanovo and ESSE-Vologda samples included only a fraction of variants from PRS reported in Xu et al. [50] and significant GWAS hits from Selvaraj et al. [49] (Table 1).
- 2
- For the two studies where summary statistics were available, we used the C+T (clumping and thresholding) approach provided by PRSice-2 v. 2.3.5 [52]. To identify the best clumping r2 (squared correlation coefficient) and p-value thresholds, we ran the software for r2 equal to 0, 0.1, 0.2, 0.3, 0.4, and 0.5. The p-value thresholds for individual variants ranged from 1 × 10−100 to 1 × 10−4 with a 5 × 10−50 uniform step. Both ESSE-Ivanovo and ESSE-Vologda were randomly split 4:1 for PRS development and further validation.
- 3
- Finally, we constructed PRS using LDpred2 provided in bigsnpr v. 1.12.2 package [53] with the LDpred2-auto model with the HapMap3+ reference LD panel [54] to calculate the PRS. LDpred2 infers the posterior mean effect size of each risk allele by using information from the LD reference panel and the prior risk allele effect size distribution. This approach does not require an independent validation dataset, as the method estimates its hyperparameters directly from the GWAS summary statistics.
2.6. Statistical Analysis
3. Results
3.1. Sample Description
3.2. PRS Based on the Classical Method Evaluation
3.3. PRSice-2 PRS Development and Evaluation
3.4. LDpred2 PRS Development and Evaluation
3.5. Clinical Utility of PRS for Atherosclerosis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BMI | body mass index |
CCA | common carotid arteries |
CFA | common femoral arteries |
ESSE-RF | Epidemiology of Cardiovascular Diseases and Risk Factors in Regions of the Russian Federation |
GWAS | genome-wide association studies |
HDL-C | high-density lipoprotein cholesterol |
ICA | internal carotid arteries |
IMT | intima-media thickness |
LDL-C | low-density lipoprotein cholesterol |
NGS | next-generation sequencing |
SD | standard deviation |
SFA | superficial femoral arteries |
TC | total cholesterol |
TG | triglycerides |
References
- Choi, S.W.; Mak, T.S.H.; O’Reilly, P.F. Tutorial: A guide to performing polygenic risk score analyses. Nat. Protoc. 2020, 15, 2759–2772. [Google Scholar] [CrossRef] [PubMed]
- Fahed, A.C.; Natarajan, P. Clinical applications of polygenic risk score for coronary artery disease through the life course. Atherosclerosis 2023, 386, 117356. [Google Scholar] [CrossRef] [PubMed]
- Lewis, A.C.F.; Green, R.C.; Vassy, J.L. Polygenic risk scores in the clinic: Translating risk into action. HGG Adv. 2021, 2, 100047. [Google Scholar] [CrossRef] [PubMed]
- Khera, A.V.; Chaffin, M.; Aragam, K.G.; Haas, M.E.; Roselli, C.; Choi, S.H.; Natarajan, P.; Lander, E.S.; Lubitz, S.A.; Ellinor, P.T.; et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat. Genet. 2018, 50, 1219–1224. [Google Scholar] [CrossRef]
- Cheng, X.; Zhao, S. Transferability of polygenic risk score among diverse ancestries. Clin. Transl. Discov. 2023, 3, e226. [Google Scholar] [CrossRef]
- Wojcik, G.L.; Graff, M.; Nishimura, K.K.; Tao, R.; Haessler, J.; Gignoux, C.R.; Highland, H.M.; Patel, Y.M.; Sorokin, E.P.; Avery, C.L.; et al. Genetic analyses of diverse populations improves discovery for complex traits. Nature 2019, 570, 514–518. [Google Scholar] [CrossRef]
- Kachuri, L.; Chatterjee, N.; Hirbo, J.; Schaid, D.J.; Martin, I.; Kullo, I.J.; Kenny, E.E.; Pasaniuc, B.; Polygenic Risk Methods in Diverse Populations (PRIMED) Consortium Methods Working Group; Witte, J.S.; et al. Principles and methods for transferring polygenic risk scores across global populations. Nat. Rev. Genet. 2024, 25, 8–25. [Google Scholar] [CrossRef]
- Ge, T.; Chen, C.Y.; Neale, B.M.; Sabuncu, M.R.; Smoller, J.W. Phenome-wide heritability analysis of the UK Biobank. PLoS Genet. 2017, 13, e1006711. [Google Scholar] [CrossRef]
- Mostafavi, H.; Harpak, A.; Agarwal, I.; Conley, D.; Pritchard, J.K.; Przeworski, M. Variable prediction accuracy of polygenic scores within an ancestry group. eLife 2020, 9, e48376. [Google Scholar] [CrossRef]
- Barbitoff, Y.A.; Khmelkova, D.N.; Pomerantseva, E.A.; Slepchenkov, A.V.; Zubashenko, N.A.; Mironova, I.V.; Kaimonov, V.S.; Polev, D.E.; Tsay, V.V.; Glotov, A.S.; et al. Expanding the Russian allele frequency reference via cross-laboratory data integration: Insights from 7452 exome samples. Natl. Sci. Rev. 2024, 11, nwae326. [Google Scholar] [CrossRef]
- Ramensky, V.E.; Ershova, A.I.; Zaicenoka, M.; Kiseleva, A.V.; Zharikova, A.A.; Vyatkin, Y.V.; Sotnikova, E.A.; Efimova, I.A.; Divashuk, M.G.; Kurilova, O.V.; et al. Targeted sequencing of 242 clinically important genes in the Russian population from the Ivanovo region. Front. Genet. 2021, 12, 709419. [Google Scholar] [CrossRef] [PubMed]
- Usoltsev, D.; Kolosov, N.; Rotar, O.; Loboda, A.; Boyarinova, M.; Moguchaya, E.; Kolesova, E.; Erina, A.; Tolkunova, K.; Rezapova, V.; et al. Complex trait susceptibilities and population diversity in a sample of 4145 Russians. Nat. Commun. 2024, 15, 6212. [Google Scholar] [CrossRef] [PubMed]
- Zhernakova, D.V.; Brukhin, V.; Malov, S.; Oleksyk, T.K.; Koepfli, K.P.; Zhuk, A.; Dobrynin, P.; Kliver, S.; Cherkasov, N.; Tamazian, G.; et al. Genome-wide sequence analyses of ethnic populations across Russia. Genomics 2020, 112, 442–458. [Google Scholar] [CrossRef]
- Albert, E.A.; Kondratieva, O.A.; Baranova, E.E.; Sagaydak, O.V.; Belenikin, M.S.; Zobkova, G.Y.; Kuznetsova, E.S.; Deviatkin, A.A.; Zhurov, A.A.; Karpulevich, E.A.; et al. Transferability of the PRS estimates for height and BMI obtained from the European ethnic groups to the Western Russian populations. Front. Genet. 2023, 14, 1086709. [Google Scholar] [CrossRef]
- Hassanin, E.; Lee, K.H.; Hsieh, T.C.; Aldisi, R.; Lee, Y.L.; Bobbili, D.; Krawitz, P.; May, P.; Chen, C.Y.; Maj, C. Trans-ancestry polygenic models for the prediction of LDL blood levels: An analysis of the United Kingdom Biobank and Taiwan Biobank. Front. Genet. 2023, 14, 1286561. [Google Scholar] [CrossRef]
- Wu, H.; Forgetta, V.; Zhou, S.; Bhatnagar, S.R.; Paré, G.; Richards, J.B. Polygenic risk score for low-density lipoprotein cholesterol is associated with risk of ischemic heart disease and enriches for individuals with familial hypercholesterolemia. Circ. Genom. Precis. Med. 2021, 14, e003106. [Google Scholar] [CrossRef]
- Tam, C.H.T.; Lim, C.K.P.; Luk, A.O.Y.; Ng, A.C.W.; Lee, H.M.; Jiang, G.; Lau, E.S.H.; Fan, B.; Wan, R.; Kong, A.P.S.; et al. Development of genome-wide polygenic risk scores for lipid traits and clinical applications for dyslipidemia, subclinical atherosclerosis, and diabetes cardiovascular complications among East Asians. Genome Med. 2021, 13, 29. [Google Scholar] [CrossRef]
- Kathiresan, S.; Manning, A.K.; Demissie, S.; D’Agostino, R.B.; Surti, A.; Guiducci, C.; Gianniny, L.; Burtt, N.P.; Melander, O.; Orho-Melander, M.; et al. A genome-wide association study for blood lipid phenotypes in the Framingham Heart Study. BMC Med. Genet. 2007, 8 (Suppl. S1), S17. [Google Scholar] [CrossRef] [PubMed]
- Pilia, G.; Chen, W.M.; Scuteri, A.; Orrú, M.; Albai, G.; Dei, M.; Lai, S.; Usala, G.; Lai, M.; Loi, P.; et al. Heritability of cardiovascular and personality traits in 6,148 Sardinians. PLoS Genet. 2006, 2, e132. [Google Scholar] [CrossRef]
- Phillips, B. Recent advances in the prevention and management of infections in children undergoing treatment for cancer. F1000Research 2019, 8, 1910. [Google Scholar] [CrossRef]
- Libby, P. Inflammation in Atherosclerosis—No Longer a Theory. Clin. Chem. 2020, 67, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Casula, M.; Colpani, O.; Xie, S.; Catapano, A.L.; Baragetti, A. HDL in Atherosclerotic Cardiovascular Disease: In Search of a Role. Cells 2021, 10, 1869. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, M.; Liu, F.; Chen, S.; Huang, K.; Cao, J.; Shen, C.; Liu, X.; Yu, L.; Zhao, Y.; et al. Age and genetic risk score and rates of blood lipid changes in China. JAMA Netw. Open 2023, 6, e235565. [Google Scholar] [CrossRef] [PubMed]
- Bolli, A.; Di Domenico, P.; Pastorino, R.; Busby, G.B.; Bottà, G. Risk of coronary artery disease conferred by low-density lipoprotein cholesterol depends on polygenic background. Circulation 2021, 143, 1452–1454. [Google Scholar] [CrossRef]
- Botta, G.; Bolli, A.; Di Domenico, P. Optimal blood lipid levels counterbalance high polygenic risk of coronary artery disease in 130,000 individuals. Eur. Heart J. 2020, 41. [Google Scholar] [CrossRef]
- Manikpurage, H.D.; Ricard, J.; Houessou, U.; Bourgault, J.; Gagnon, E.; Gobeil, E.; Girard, A.; Li, Z.; Eslami, A.; Mathieu, P.; et al. Association of Genetically Predicted Levels of Circulating Blood Lipids with Coronary Artery Disease Incidence. medRxiv 2024. [Google Scholar] [CrossRef]
- Cupido, A.J.; Tromp, T.R.; Hovingh, G.K. The clinical applicability of polygenic risk scores for LDL-cholesterol: Considerations, current evidence and future perspectives. Curr. Opin. Lipidol. 2021, 32, 112–116. [Google Scholar] [CrossRef]
- Nomura, A.; Sato, T.; Tada, H.; Kannon, T.; Hosomichi, K.; Tsujiguchi, H.; Nakamura, H.; Takamura, M.; Tajima, A.; Kawashiri, M.A. Polygenic risk scores for low-density lipoprotein cholesterol and familial hypercholesterolemia. J. Hum. Genet. 2021, 66, 1079–1087. [Google Scholar] [CrossRef]
- Vanhoye, X.; Bardel, C.; Rimbert, A.; Moulin, P.; Rollat-Farnier, P.A.; Muntaner, M.; Marmontel, O.; Dumont, S.; Charrière, S.; Cornélis, F.; et al. A new 165-SNP low-density lipoprotein cholesterol polygenic risk score based on next generation sequencing outperforms previously published scores in routine diagnostics of familial hypercholesterolemia. Transl. Res. 2023, 255, 119–127. [Google Scholar] [CrossRef]
- Tapela, N.M.; Collister, J.; Liu, X.; Clifton, L.; Stiby, A.; Murgia, F.; Hopewell, J.C.; Hunter, D.J. Are polygenic risk scores for systolic blood pressure and LDL-cholesterol associated with treatment effectiveness, and clinical outcomes among those on treatment? Eur. J. Prev. Cardiol. 2022, 29, 925–937. [Google Scholar] [CrossRef]
- Romanens, M.; Sudano, I.; Adams, A.; Schober, E.A. Sonographic assessment of carotid atherosclerosis: Preferred risk indicator for future cardiovascular events? Swiss Med. Wkly 2019, 149, w20142. [Google Scholar] [CrossRef] [PubMed]
- Lusis, A.J. Genetics of atherosclerosis. Trends Genet. 2012, 28, 267–275. [Google Scholar] [CrossRef]
- Isaacs, A.; Willems, S.M.; Bos, D.; Dehghan, A.; Hofman, A.; Ikram, M.A.; Uitterlinden, A.G.; Oostra, B.A.; Franco, O.H.; Witteman, J.C.; et al. Risk scores of common genetic variants for lipid levels influence atherosclerosis and incident coronary heart disease. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 2233–2239. [Google Scholar] [CrossRef] [PubMed]
- Engelbrechtsen, L.; Appel, V.E.; Schnurr, T.M.; Lundby-Christensen, L.; Skaaby, T.; Linneberg, A.; Drivsholm, T.; Witte, D.R.; Jorgensen, M.E.; Grarup, N.; et al. Genetic determinants of blood pressure traits are associated with carotid arterial thickening and plaque formation in patients with type 2 diabetes. Diabetes Vasc. Dis. Res. 2019, 16, 13–21. [Google Scholar] [CrossRef]
- Boitsov, S.A.; Chazov, E.I.; Shlyakhto, E.V.; Shalnova, S.A.; Konradi, A.O.; Muromtseva, K.; Zhernakova, G.A.; Oshchepkova, Y.V.; Rotar, E.V. Epidemiology of Cardiovascular Diseases in Different Regions of Russia (ESSE-RF). The Rationale for and Design of the Study. Prev. Med 2013, 16, 25–34. [Google Scholar]
- Sotnikova, E.A.; Kiseleva, A.V.; Kutsenko, V.A.; Zharikova, A.A.; Ramensky, V.E.; Divashuk, M.G.; Vyatkin, Y.V.; Klimushina, M.V.; Ershova, A.I.; Revazyan, K.Z.; et al. Identification of pathogenic variant burden and selection of optimal diagnostic method is a way to improve carrier screening for autosomal recessive diseases. J. Pers. Med. 2022, 12, 1132. [Google Scholar] [CrossRef] [PubMed]
- Kiseleva, A.V.; Soplenkova, A.G.; Kutsenko, V.A.; Sotnikova, E.A.; Vyatkin, Y.V.; Zharikova, A.A.; Ershova, A.I.; Zaichenoka, M.; Ramensky, V.E.; Skirko, O.P.; et al. Validation of genetic risk scores for obesity on a sample of the population of Russian regions. Cardiovasc. Ther. Prev. 2023, 22, 3755. [Google Scholar] [CrossRef]
- Russian National Census of 2020. Available online: https://rosstat.gov.ru/vpn/2020/Tom5_Nacionalnyj_sostav_i_vladenie_yazykami (accessed on 4 December 2024).
- Meshkov, A.N.; Ershova, A.I.; Shalnova, S.A.; Alieva, A.S.; Bazhan, S.S.; Barbarash, O.L.; Bogdanov, D.Y.; Viktorova, I.A.; Grinshtein, Y.I.; Duplyakov, D.V.; et al. Cross-sectional study to estimate the prevalence of familial hypercholesterolemia in selected regions of the Russian Federation: Relevance, design of the study and initial characteristics of the participants. Ration. Pharmacother. Cardiol. 2020, 16, 24–32. [Google Scholar] [CrossRef]
- Ershova, A.I.; Balakhonova, T.V.; Meshkov, A.N.; Kutsenko, V.A.; Yarovaya, E.B.; Shalnova, S.A.; Lishchenko, N.E.; Novikova, A.S.; Aleksandrova, E.L.; Shutemova, E.A.; et al. Prevalence of carotid and femoral artery atherosclerosis among the Ivanovo Oblast population: Data from the ATEROGEN-Ivanovo study. Cardiovasc. Ther. Prev. 2021, 20, 2994. [Google Scholar] [CrossRef]
- Touboul, P.J.; Hennerici, M.G.; Meairs, S.; Adams, H.; Amarenco, P.; Bornstein, N.; Csiba, L.; Desvarieux, M.; Ebrahim, S.; Hernandez Hernandez, R.; et al. Mannheim carotid intima-media thickness and plaque consensus (2004–2006–2011). An update on behalf of the advisory board of the 3rd, 4th and 5th watching the risk symposia, at the 13th, 15th and 20th European Stroke Conferences, Mannheim, Germany, 2004, Brussels, Belgium, 2006, and Hamburg, Germany, 2011. Cerebrovasc. Dis. 2012, 34, 290–296. [Google Scholar] [CrossRef]
- Stein, J.H.; Korcarz, C.E.; Hurst, R.T.; Lonn, E.; Kendall, C.B.; Mohler, E.R.; Najjar, S.S.; Rembold, C.M.; Post, W.S.; American Society of Echocardiography Carotid Intima-Media Thickness Task Force. Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: A consensus statement from the American Society of Echocardiography Carotid Intima-Media Thickness Task Force. Endorsed by the Society for Vascular Medicine. J. Am. Soc. Echocardiogr. 2008, 21, 93–111. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, M.; Kitagawa, K.; Nagai, Y.; Yamagami, H.; Kondo, K.; Matsushita, K.; Oku, N.; Hougaku, H.; Ohtsuki, T.; Masuyama, T.; et al. Equivalence of plaque score and intima-media thickness of carotid ultrasonography for predicting severe coronary artery lesion. Ultrasound Med. Biol. 2003, 29, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 2013, arXiv:1303.3997. [Google Scholar] [CrossRef]
- Poplin, R.; Ruano-Rubio, V.; DePristo, M.A.; Fennell, T.J.; Carneiro, M.O.; Van der Auwera, G.A.; Kling, D.E.; Gauthier, L.D.; Levy-Moonshine, A.; Roazen, D.; et al. Scaling accurate genetic variant discovery to tens of thousands of samples. BioRxiv 2017, 201178. [Google Scholar] [CrossRef]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience 2015, 4, 7. [Google Scholar] [CrossRef] [PubMed]
- Willer, C.J.; Schmidt, E.M.; Sengupta, S.; Peloso, G.M.; Gustafsson, S.; Kanoni, S.; Ganna, A.; Chen, J.; Buchkovich, M.L.; Mora, S.; et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 2013, 45, 1274–1283. [Google Scholar] [CrossRef]
- Sollis, E.; Mosaku, A.; Abid, A.; Buniello, A.; Cerezo, M.; Gil, L.; Groza, T.; Güneş, O.; Hall, P.; Hayhurst, J.; et al. The NHGRI-EBI GWAS Catalog: Knowledgebase and deposition resource. Nucleic Acids Res. 2023, 51, D977–D985. [Google Scholar] [CrossRef]
- Selvaraj, M.S.; Li, X.; Li, Z.; Pampana, A.; Zhang, D.Y.; Park, J.; Aslibekyan, S.; Bis, J.C.; Brody, J.A.; Cade, B.E.; et al. Whole genome sequence analysis of blood lipid levels in >66,000 individuals. Nat. Commun. 2022, 13, 5995. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Ritchie, S.C.; Liang, Y.; Timmers, P.R.H.J.; Pietzner, M.; Lannelongue, L.; Lambert, S.A.; Tahir, U.A.; May-Wilson, S.; Foguet, C.; et al. An atlas of genetic scores to predict multi-omic traits. Nature 2023, 616, 123–131. [Google Scholar] [CrossRef]
- Hinrichs, A.S.; Karolchik, D.; Baertsch, R.; Barber, G.P.; Bejerano, G.; Clawson, H.; Diekhans, M.; Furey, T.S.; Harte, R.A.; Hsu, F.; et al. The UCSC Genome Browser Database: Update 2006. Nucleic Acids Res. 2006, 34, D590–8. [Google Scholar] [CrossRef]
- Choi, S.W.; O’Reilly, P.F. PRSice-2: Polygenic Risk Score software for biobank-scale data. Gigascience 2019, 8, giz082. [Google Scholar] [CrossRef] [PubMed]
- Privé, F.; Arbel, J.; Vilhjálmsson, B.J. LDpred2: Better, faster, stronger. Bioinformatics 2021, 36, 5424–5431. [Google Scholar] [CrossRef] [PubMed]
- Privé, F.; Albiñana, C.; Arbel, J.; Pasaniuc, B.; Vilhjálmsson, B.J. Inferring disease architecture and predictive ability with LDpred2-auto. Am. J. Hum. Genet. 2023, 110, 2042–2055. [Google Scholar] [CrossRef]
- Ripley, B.D. The R project in statistical computing. MSOR Connect. 2001, 1, 23–25. [Google Scholar] [CrossRef]
- Kolosov, N.; Rezapova, V.; Rotar, O.; Loboda, A.; Freylikhman, O.; Melnik, O.; Sergushichev, A.; Stevens, C.; Voortman, T.; Kostareva, A.; et al. Genotype imputation and polygenic score estimation in northwestern Russian population. PLoS ONE 2022, 17, e0269434. [Google Scholar] [CrossRef]
- Leal, L.G.; Hoggart, C.; Jarvelin, M.R.; Herzig, K.H.; Sternberg, M.J.E.; David, A. A polygenic biomarker to identify patients with severe hypercholesterolemia of polygenic origin. Mol. Genet. Genom. Med. 2020, 8, e1248. [Google Scholar] [CrossRef]
- Talmud, P.J.; Shah, S.; Whittall, R.; Futema, M.; Howard, P.; Cooper, J.A.; Harrison, S.C.; Li, K.; Drenos, F.; Karpe, F.; et al. Use of low-density lipoprotein cholesterol gene score to distinguish patients with polygenic and monogenic familial hypercholesterolaemia: A case-control study. Lancet 2013, 381, 1293–1301. [Google Scholar] [CrossRef] [PubMed]
- Franceschini, N.; Giambartolomei, C.; de Vries, P.S.; Finan, C.; Bis, J.C.; Huntley, R.P.; Lovering, R.C.; Tajuddin, S.M.; Winkler, T.W.; Graff, M.; et al. GWAS and colocalization analyses implicate carotid intima-media thickness and carotid plaque loci in cardiovascular outcomes. Nat. Commun. 2018, 9, 5141. [Google Scholar] [CrossRef]
- den Hoed, M.; Strawbridge, R.J.; Almgren, P.; Gustafsson, S.; Axelsson, T.; Engström, G.; de Faire, U.; Hedblad, B.; Humphries, S.E.; Lindgren, C.M.; et al. GWAS-identified loci for coronary heart disease are associated with intima-media thickness and plaque presence at the carotid artery bulb. Atherosclerosis 2015, 239, 304–310. [Google Scholar] [CrossRef]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef]
- Pedro-Botet, J.; Climent, E.; Benaiges, D. Familial hypercholesterolemia: Do HDL play a role? Biomedicines 2021, 9, 810. [Google Scholar] [CrossRef] [PubMed]
- Madsen, C.M.; Varbo, A.; Nordestgaard, B.G. Extreme high high-density lipoprotein cholesterol is paradoxically associated with high mortality in men and women: Two prospective cohort studies. Eur. Heart J. 2017, 38, 2478–2486. [Google Scholar] [CrossRef] [PubMed]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.M.; Capodanno, D.; et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef] [PubMed]
Study | Phenotype | Variant Count in the Original Study | Variants in ESSE-Ivanovo | Variants in ESSE-Vologda |
---|---|---|---|---|
Willer et al. [47] | HDL-C | 71 | 71 (100%) | 71 (100%) |
LDL-C | 57 | 57 (100%) | 57 (100%) | |
logTG | 73 | 73 (100%) | 73 (100%) | |
TC | 39 | 39 (100%) | 39 (100%) | |
Selvaraj et al. [49] | HDL-C | 357 | 63 (17.6%) | 89 (24.9%) |
LDL-C | 338 | 48 (14.2%) | 67 (19.8%) | |
logTG | 289 | 38 (13.1%) | 73 (25.3%) | |
TC | 324 | 51 (15.7%) | 75 (23.2%) | |
Xu et al. [50] | HDL-C | 223 | 40 (17.9%) | 71 (31.8%) |
LDL-C | 392 | 35 (8.9%) | 57 (14.5%) | |
logTG | 339 | 41 (12.0%) | 71 (20.8%) | |
TC | 329 | 34 (10.3%) | 81 (24.6%) |
Parameters | ESSE-Ivanovo | ESSE-Vologda | p |
---|---|---|---|
Total number of participants | 1673 | 817 | |
Age, years, Me [Q25, Q75] | 50 [40, 57] | 47 [35, 56] | <0.001 |
Males, n (%) | 624 (37.4%) | 346 (43.4%) | 0.017 |
BMI, kg/m2, Me [Q25, Q75] | 28.1 [24.8, 31.9] | 26.2 [23.1, 30.3] | <0.001 |
Statins, n (%) | 95 (5.7%) | 20 (2.4%) | <0.001 |
Smoking status, n (%) | Never smoked: 1070 (63.9%) Ex-smokers: 302 (18.1%) Smoke: 301 (18.0%) | Never smoked: 461 (56.4%) Ex-smokers: 172 (21.1%) Smoke: 184 (22.5%) | 0.001 |
HDL-C, mmol/L, Me [Q25, Q75] | 1.38 [1.18, 1.62] | 1.26 [1.06, 1.47] | <0.001 |
LDL-C, mmol/L, Me [Q25, Q75] | 3.50 [2.73, 4.30] | 3.36 [2.74, 4.04] | 0.003 |
TC, mmol/L, Me [Q25, Q75] | 5.65 [4.87, 6.45] | 5.15 [4.47, 5.98] | <0.001 |
TG, mmol/L, Me [Q25, Q75] | 1.23 [0.87, 1.85] | 1.09 [0.76, 1.55] | <0.001 |
Parameter | Carotid Arteries | Femoral Arteries | p |
---|---|---|---|
Maximum stenosis, %, Me [Q25, Q75] | 24 [0, 31] | 0 [0, 24] | <0.001 |
Total stenosis, %, Me [Q25, Q75] | 26 [0, 68] | 0 [0, 28] | <0.001 |
Plaque number, n, mean ± SD | 1.51 ± 1.56 | 0.91 ± 1.54 | <0.001 |
Plaque score, mm, mean ± SD | 2.85 ± 3.39 | 2.32 ± 4.58 | <0.001 |
IMT (right), mm, Me [Q25, Q75] | 0.72 [0.63, 0.82] | 0.62 [0.53, 0.81] | <0.001 |
IMT (left), mm, Me [Q25, Q75] | 0.73 [0.64, 0.84] | 0.61 [0.51, 0.80] | <0.001 |
Study | Phenotype | Variant Count | R2, % | R2 95% CI | p |
---|---|---|---|---|---|
ESSE-Ivanovo | |||||
Selvaraj et al. [49] | HDL-C | 63 | 4.74 | [3.12–6.71] | 1.53 × |
LDL-C | 48 | 6.23 | [4.31–8.56] | 2.37 × | |
logTG | 38 | 3.51 | [2.12–5.25] | 4.71 × | |
TC | 51 | 4.45 | [2.81–6.36] | 3.27 × | |
Willer et al. [47] | HDL-C | 71 | 6.41 | [4.48–8.72] | 1.43 × |
LDL-C | 57 | 4.54 | [2.81–6.68] | 6.85 × | |
logTG | 39 | 3.57 | [2.14–5.31] | 2.33 × | |
TC | 73 | 5.98 | [4.01–8.31] | 3.40 × | |
Xu et al. [50] | HDL-C | 40 | 3.75 | [2.35–5.49] | 7.78 × |
LDL-C | 35 | 5.09 | [3.34–7.21] | 2.68 × | |
logTG | 41 | 0.42 | [0.05–1.15] | 3.18 × | |
TC | 34 | 2.74 | [1.46–4.41] | 1.53 × | |
ESSE-Vologda | |||||
Selvaraj et al. [49] | HDL-C | 89 | 4.57 | [2.50–7.24] | 1.08 × |
LDL-C | 67 | 9.61 | [6.17–13.85] | 2.31 × | |
logTG | 73 | 5.77 | [3.36–8.84] | 1.48 × | |
TC | 75 | 6.44 | [3.65–9.99] | 4.19 × | |
Willer et al. [47] | HDL-C | 71 | 5.25 | [3.02–8.14] | 3.00 × |
LDL-C | 57 | 4.60 | [2.32–7.72] | 3.38 × | |
logTG | 39 | 4.28 | [2.28–6.79] | 8.41 × | |
TC | 73 | 4.40 | [2.22–7.25] | 1.13 × | |
Xu et al. [50] | HDL-C | 71 | 4.13 | [2.17–6.79] | 1.15 × |
LDL-C | 57 | 8.22 | [5.28–12.05] | 3.43 × | |
logTG | 81 | 1.58 | [0.44–3.66] | 3.89 × | |
TC | 71 | 4.39 | [2.19–7.51] | 1.16 × |
Study | Phenotype | Variant Count | R2 Training, % | R2 Validation, % |
---|---|---|---|---|
ESSE-Ivanovo | ||||
Willer et al. [47] | HDL-C | 129 | 7.18 | 7.27 |
LDL-C | 139 | 8.60 | 8.07 | |
logTG | 199 | 3.72 | 3.03 | |
TC | 260 | 8.94 | 6.36 | |
Xu et al. [50] | HDL-C | 89 | 7.01 | 6.18 |
LDL-C | 98 | 8.30 | 8.97 | |
logTG | 62 | 4.06 | 3.19 | |
TC | 98 | 7.74 | 6.39 | |
ESSE-Vologda | ||||
Willer et al. [47] | HDL-C | 240 | 5.69 | 7.49 |
LDL-C | 322 | 10.33 | 13.20 | |
logTG | 361 | 8.11 | 1.44 | |
TC | 333 | 6.41 | 7.02 | |
Xu et al. [50] | HDL-C | 59 | 4.56 | 7.24 |
LDL-C | 173 | 9.26 | 10.00 | |
logTG | 146 | 7.32 | 0.33 | |
TC | 191 | 5.52 | 6.22 |
Study | Phenotype | R2, % | 95% CI | p |
---|---|---|---|---|
ESSE-Ivanovo | ||||
Willer et al. [47] | HDL-C | 7.18 | [5.94–10.82] | 4.59 × |
LDL-C | 8.60 | [5.20–9.82] | 2.65 × | |
logTG | 3.72 | [2.72–6.26] | 1.29 × | |
TC | 8.94 | [5.40–10.25] | 7.52 × | |
Xu et al. [50] | HDL-C | 7.01 | [5.06–9.43] | 1.15 × |
LDL-C | 8.30 | [5.55–10.2] | 6.75 × | |
logTG | 4.06 | [3.43–7.24] | 4.85 × | |
TC | 7.74 | [4.15–8.67] | 1.04 × | |
ESSE-Vologda | ||||
Willer et al. [47] | HDL-C | 5.69 | [3.94–9.67] | 3.73 × |
LDL-C | 10.33 | [6.90–14.76] | 4.65 × | |
logTG | 8.11 | [3.22–8.08] | 1.74 × | |
TC | 6.41 | [2.91–9.21] | 2.24 × | |
Xu et al. [50] | HDL-C | 4.56 | [3.55–9.43] | 2.67 × |
LDL-C | 9.26 | [6.53–14.15] | 4.67 × | |
logTG | 7.32 | [4.06–9.45] | 3.11 × | |
TC | 5.52 | [3.14–9.52] | 7.10 × |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaicenoka, M.; Ershova, A.I.; Kiseleva, A.V.; Blokhina, A.V.; Kutsenko, V.A.; Sotnikova, E.A.; Zharikova, A.A.; Vyatkin, Y.V.; Pokrovskaya, M.S.; Shalnova, S.A.; et al. Blood Lipid Polygenic Risk Score Development and Application for Atherosclerosis Ultrasound Parameters. Biomedicines 2024, 12, 2798. https://doi.org/10.3390/biomedicines12122798
Zaicenoka M, Ershova AI, Kiseleva AV, Blokhina AV, Kutsenko VA, Sotnikova EA, Zharikova AA, Vyatkin YV, Pokrovskaya MS, Shalnova SA, et al. Blood Lipid Polygenic Risk Score Development and Application for Atherosclerosis Ultrasound Parameters. Biomedicines. 2024; 12(12):2798. https://doi.org/10.3390/biomedicines12122798
Chicago/Turabian StyleZaicenoka, Marija, Alexandra I. Ershova, Anna V. Kiseleva, Anastasia V. Blokhina, Vladimir A. Kutsenko, Evgeniia A. Sotnikova, Anastasia A. Zharikova, Yuri V. Vyatkin, Maria S. Pokrovskaya, Svetlana A. Shalnova, and et al. 2024. "Blood Lipid Polygenic Risk Score Development and Application for Atherosclerosis Ultrasound Parameters" Biomedicines 12, no. 12: 2798. https://doi.org/10.3390/biomedicines12122798
APA StyleZaicenoka, M., Ershova, A. I., Kiseleva, A. V., Blokhina, A. V., Kutsenko, V. A., Sotnikova, E. A., Zharikova, A. A., Vyatkin, Y. V., Pokrovskaya, M. S., Shalnova, S. A., Ramensky, V. E., Meshkov, A. N., & Drapkina, O. M. (2024). Blood Lipid Polygenic Risk Score Development and Application for Atherosclerosis Ultrasound Parameters. Biomedicines, 12(12), 2798. https://doi.org/10.3390/biomedicines12122798