SGLT-2 Inhibitors’ and GLP-1 Receptor Agonists’ Influence on Neuronal and Glial Damage in Experimental Stroke
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.1.1. I Part: Stroke Modeling in Non-Diabetic Animals
- “Control”, rats receiving 0.9% NaCl once daily per os for 7 days;
- “MET”—metformin 200 mg/kg once daily per os for 7 days;
- “EMPA”—empagliflozin 2 mg/kg once daily per os 7 days;
- “CANA”—canagliflozin 25 mg/kg once daily per os 7 days;
- “DULA”—dulaglutide 0.12 mg/kg every 72 h s.c. for 7 days (3 injections in total).
2.1.2. II Part: Stroke Modeling in Diabetic Animals
- “DM”—diabetic animals receiving 0.9% NaCl solution once daily per os;
- “DM+MET”—diabetic animals receiving metformin 200 mg/kg once daily per os for 8 weeks;
- “DM+EMPA”—diabetic animals receiving empagliflozin 2 mg/kg once daily per os for 8 weeks;
- “DM+CANA”—diabetic animals receiving canagliflozin 25 mg/kg once daily per os for 8 weeks;
- “DM+DULA”—diabetic animals receiving dulaglutide 0.12 mg/kg every 72 h s.c. for 8 weeks.
2.2. Statistical Analysis
2.3. Ethics Approval
3. Results
3.1. I Part: Neuroprotective Properties of SGLT-2i and GLP-1RA in Non-Diabetic Animals
3.1.1. Glycemia Dynamics
3.1.2. SGLT-2i and GLP-1RA Influence Neurological Deficit and Brain Damage Volume
3.1.3. SGLT-2i and GLP-1RA Influence Concentration of Neuronal and Glial Damage Markers
3.2. II Part: Neuroprotective Properties of SGLT-2i and GLP-1RA in Diabetic Animals
3.2.1. Glycemia Dynamics
3.2.2. SGLT-2i and GLP-1RA Influence Neurological Deficit and Brain Damage Volume
3.2.3. SGLT-2i and GLP-1RA Influence Concentration of Neuronal and Glial Damage Markers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Pu, L.; Wang, L.; Zhang, R.; Zhao, T.; Jiang, Y.; Han, L. Projected Global Trends in Ischemic Stroke Incidence, Deaths and Disability-Adjusted Life Years From 2020 to 2030. Stroke 2023, 54, 1330–1339. [Google Scholar] [CrossRef] [PubMed]
- WSO Global Stroke Fact Sheet. Available online: https://www.world-stroke.org/assets/downloads/WSO_Global_Stroke_Fact_Sheet.pdf (accessed on 10 November 2024).
- Mosenzon, O.; Cheng, A.Y.; Rabinstein, A.A.; Sacco, S. Diabetes and Stroke: What Are the Connections? J. Stroke 2023, 25, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.J.; Aroda, V.R.; Collins, B.S.; Gabbay, R.A.; Green, J.; Maruthur, N.M.; Rosas, S.E.; Del Prato, S.; Mathieu, C.; Mingrone, G.; et al. Management of Hyperglycemia in Type 2 Diabetes, 2022. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2022, 45, 2753–2786. [Google Scholar] [CrossRef] [PubMed]
- Giugliano, D.; Scappaticcio, L.; Longo, M.; Bellastella, G.; Esposito, K. GLP-1 receptor agonists vs. SGLT-2 inhibitors: The gap seems to be leveling off. Cardiovasc. Diabetol. 2021, 20, 205. [Google Scholar] [CrossRef]
- Kristensen, S.L.; Rørth, R.; Jhund, P.S.; Docherty, K.F.; Sattar, N.; Preiss, D.; Køber, L.; Petrie, M.C.; McMurray, J.J.V. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: A systematic review and meta-analysis of cardiovascular outcome trials. Lancet Diabetes Endocrinol. 2019, 7, 776–785. [Google Scholar] [CrossRef]
- Jang, J.; Park, S.; Kim, S.; Kim, S.-H.; Oh, Y.-S.; Sa, Y.K.; Hwang, Y.; Jang, S.-W.; Ihm, S.-H.; Choi, Y. Clinical outcomes with the use of sodium-glucose cotransporter-2 inhibitors in patients with atrial fibrillation and type 2 diabetes mellitus: A multi-centre, real-world cohort study. Eur. J. Prev. Cardiol. 2023, 31, 320–329. [Google Scholar] [CrossRef]
- Filippatos, G.; Butler, J.; Farmakis, D.; Zannad, F.; Ofstad, A.P.; Ferreira, J.P.; Green, J.B.; Rosenstock, J.; Schnaidt, S.; Brueckmann, M.; et al. Empagliflozin for Heart Failure With Preserved Left Ventricular Ejection Fraction With and Without Diabetes. Circulation 2022, 146, 676–686. [Google Scholar] [CrossRef]
- Yang, M.; Butt, J.H.; Kondo, T.; Jering, K.S.; Docherty, K.F.; Jhund, P.S.; de Boer, R.A.; Claggett, B.L.; Desai, A.S.; Hernandez, A.F.; et al. Dapagliflozin in patients with heart failure with mildly reduced and preserved ejection fraction treated with a mineralocorticoid receptor antagonist or sacubitril/valsartan. Eur. J. Heart Fail. 2022, 24, 2307–2319. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.; Cao, J.; Han, J.; Li, J.; Li, Z.; Shi, N.; He, J. Liraglutide Activates the Nrf2/HO-1 Antioxidant Pathway and Protects Brain Nerve Cells against Cerebral Ischemia in Diabetic Rats. Comput. Intell. Neurosci. 2018, 2018, 3094504. [Google Scholar] [CrossRef]
- Karimipour, M.; Zarghani, S.S.; Milani, M.M.; Soraya, H. Pre-Treatment with Metformin in Comparison with Post-Treatment Reduces Cerebral Ischemia Reperfusion Induced Injuries in Rats. Bull. Emerg. Trauma 2018, 6, 115–121. [Google Scholar] [CrossRef]
- New Zealand Data Sheet. Available online: https://www.medsafe.govt.nz/profs/datasheet/t/trulicityinj.pdf (accessed on 30 November 2024).
- Koizumi, J.; Yoshida, Y.; Nakazawa, T.; Ooneda, G. Ехpеrimеntаl studiеs of isсhеmiс brаin еdеmа: I: А nеw ехpеrimеntаl modеl of сеrеbrаl еmbolism in whiсh rесirсulаtion саn introduсеd into thе isсhеmiс аrеа. Jpn. J. Stroke 1986, 8, 1–8. (In Japanese) [Google Scholar] [CrossRef]
- Simanenkova, A.; Fuks, O.; Timkina, N.; Islamova, A.; Sufieva, D.; Kirik, O.; Korzhevskii, D.; Vlasov, T.; Karonova, T. Microglia Involvement into Acute and Chronic Brain Damage in Diabetic Rats: Impact of GLP-1RA and SGLT-2i. Front. Biosci. 2024, 29, 265. [Google Scholar] [CrossRef] [PubMed]
- Simanenkova, A.V.; Fuks, O.S.; Timkina, N.V.; Karonova, T.L.; Tsyba, D.L.; Kirik, O.V.; Korzhevskii, D.E.; Vlasov, T.D. An Experimental Study of the Neuroprotective Effect of Sodium–Glucose Cotransporter Type 2 Inhibitors. J. Evol. Biochem. Physiol. 2022, 58, 1540–1553. [Google Scholar] [CrossRef]
- Garcia, J.H.; Wagner, S.; Liu, K.-F.; Hu, X.-J. Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Stroke 1995, 26, 627–635. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, J.C.; Camargo, R.L.; Barella, L.F.; Branco, R.C.S.; Gravena, C.; Grassiolli, S.; Torrezan, R.; Mathias, P.C.D.F. Anesthetic-induced transient hyperglycemia and insulin resistance do not depend on the sympathoadrenal axis. Minerva Endocrinol. 2013, 38, 379–388. [Google Scholar] [PubMed]
- Saha, J.K.; Xia, J.; Grondin, J.M.; Engle, S.K.; Jakubowski, J.A. Acute hyperglycemia induced by ketamine/xylazine anesthesia in rats: Mechanisms and implications for preclinical models. Exp. Biol. Med. 2005, 230, 777–784. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, Y.; Shi, Z.; Lu, D.; Li, T.; Ding, Y.; Ruan, Y.; Xu, A. The Neuroprotection of Liraglutide Against Ischaemia-induced Apoptosis through the Activation of the PI3K/AKT and MAPK Pathways. Sci. Rep. 2016, 6, 26859. [Google Scholar] [CrossRef]
- Briyal, S.; Shah, S.; Gulati, A. Neuroprotective and anti-apoptotic effects of liraglutide in the rat brain following focal cerebral ischemia. Neuroscience 2014, 281, 269–281. [Google Scholar] [CrossRef]
- Filchenko, I.; Simanenkova, A.; Chefu, S.; Kolpakova, M.; Vlasov, T. Neuroprotective effect of glucagon-like peptide-1 receptor ago12 nist is independent of glycaemia normalization in type two diabetic rats. Diabetes Vasc. Dis. Res. 2018, 15, 567–570. [Google Scholar] [CrossRef]
- Simanenkova, A.V.; Fuks, O.S.; Timkina, N.V.; Tikhomirova, P.A.; Vlasov, T.D.; Karonova, T.L. Neuroprotective effects of glucose-lowering drugs in rat focal brain ischemia-reperfusion model. Arter. Hypertens. 2023, 29, 579–592. [Google Scholar] [CrossRef]
- Amin, E.F.; Rifaai, R.A.; Abdel-Latif, R.G. Empagliflozin attenuates transient cerebral ischemia/reperfusion injury in hyperglycemic rats via repressing oxidative–inflammatory–apoptotic pathway. Fundam. Clin. Pharmacol. 2020, 34, 548–558. [Google Scholar] [CrossRef] [PubMed]
- Al Mudhafar, A.M.; Abed, F.N.; Abosaooda, M.; Al-Mudhafar, R.H.; Hadi, N.R. Neuroprotective Effect of Empagliflozin on Cerebral Ischemia/Reperfusion Injury in Rat Model. Ann. Rom. Soc. Cell Biol. 2021, 25, 4876–4887. [Google Scholar]
- Abdel-Latif, R.G.; Rifaai, R.A.; Amin, E.F. Empagliflozin alleviates neuronal apoptosis induced by cerebral ischemia/reperfusion injury through HIF-1α/VEGF signaling pathway. Arch. Pharmacal Res. 2020, 43, 514–525. [Google Scholar] [CrossRef] [PubMed]
- Vercalsteren, E.; Karampatsi, D.; Buizza, C.; Nyström, T.; Klein, T.; Paul, G.; Patrone, C.; Darsalia, V. The SGLT2 inhibitor Empagliflozin promotes post-stroke functional recovery in diabetic mice. Cardiovasc. Diabetol. 2024, 23, 88. [Google Scholar] [CrossRef]
- Yu, A.S.; Hirayama, B.A.; Timbol, G.; Liu, J.; Basarah, E.; Kepe, V.; Satyamurthy, N.; Huang, S.-C.; Wright, E.M.; Barrio, J.R. Functional expression of SGLTs in rat brain. Am. J. Physiol. Physiol. 2010, 299, C1277–C1284. [Google Scholar] [CrossRef]
- Tsai, W.-H.; Chuang, S.-M.; Liu, S.-C.; Lee, C.-C.; Chien, M.-N.; Leung, C.-H.; Liu, S.-J.; Shih, H.-M. Effects of SGLT2 inhibitors on stroke and its subtypes in patients with type 2 diabetes: A systematic review and meta-analysis. Sci. Rep. 2021, 11, 15364. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.K.; Okaj, I.; Kaur, H.; Belley-Cote, E.P.; Wang, J.; Oraii, A.; Benz, A.P.; Johnson, L.S.; Young, J.; Wong, J.A.; et al. Sodium-Glucose Co-Transporter Inhibitors and Atrial Fibrillation: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Am Heart Assoc. 2021, 10, e022222. [Google Scholar] [CrossRef]
- Pawlos, A.; Broncel, M.; Woźniak, E.; Gorzelak-Pabiś, P. Neuroprotective Effect of SGLT2 Inhibitors. Molecules 2021, 26, 7213. [Google Scholar] [CrossRef]
- Yuan, A.; Rao, M.V.; Veeranna; Nixon, R.A. Neurofilaments and Neurofilament Proteins in Health and Disease. Cold Spring Harb. Perspect. Biol. 2017, 9, a018309. [Google Scholar] [CrossRef]
- Gaetani, L.; Blennow, K.; Calabresi, P.; Di Filippo, M.; Parnetti, L.; Zetterberg, H. Neurofilament light chain as a biomarker in neurological disorders. J. Neurol. Neurosurg. Psychiatry 2019, 90, 870–881. [Google Scholar] [CrossRef]
- Disanto, G.; Barro, C.; Benkert, P.; Naegelin, Y.; Schädelin, S.; Giardiello, A.; Zecca, C.; Blennow, K.; Zetterberg, H.; Leppert, D.; et al. Serum Neurofilament light: A biomarker of neuronal damage in multiple sclerosis. Ann. Neurol. 2017, 81, 857–870. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.W.; Hwang, J.; Lee, M.; Kim, J.H.; Cho, H.-J.; Lee, H.-W.; Eun, M.-Y. Serum neurofilament light chain levels are correlated with the infarct volume in patients with acute ischemic stroke. Medicine 2022, 101, e30849. [Google Scholar] [CrossRef] [PubMed]
- Isgrò, M.A.; Bottoni, P.; Scatena, R. Neuron-Specific Enolase as a Biomarker: Biochemical and Clinical Aspects. Adv. Exp. Med. Biol. 2015, 867, 125–143. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Liang, C.; Zhang, Z.; Wen, H.; Feng, H.; Ma, Q.; Liu, D.; Qiang, G. Prognostic value of neuron-specific enolase for small cell lung cancer: A systematic review and meta-analysis. World J. Surg. Oncol. 2020, 18, 116. [Google Scholar] [CrossRef]
- Hatfield, R.H.; McKernan, R.M. CSF neuron-specific enolase as a quantitative marker of neuronal damage in a rat stroke model. Brain Res. 1992, 577, 249–252. [Google Scholar] [CrossRef]
- Barone, F.C.; Clark, R.K.; Price, W.J.; White, R.F.; Feuerstein, G.Z.; Storer, B.L.; Ohlstein, E.H. Neuron-specific enolase increases in cerebral and systemic circulation following focal ischemia. Brain Res. 1993, 623, 77–82. [Google Scholar] [CrossRef]
- Rothoerl, R.D.; Brawanski, A.; Woertgen, C. S-100B protein serum levels after controlled cortical impact injury in the rat. Acta Neurochir. 2000, 142, 199–203. [Google Scholar] [CrossRef]
- Donato, R. S100: A multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int. J. Biochem. Cell Biol. 2001, 33, 637–668. [Google Scholar] [CrossRef]
- Kaca-Oryńska, M.; Tomasiuk, R.; Friedman, A. Neuron-specific enolase and S 100B protein as predictors of outcome in ischaemic stroke. Neurol. Neurochir. Polska 2010, 44, 459–463. [Google Scholar] [CrossRef] [PubMed]
- Michetti, F.; Di Sante, G.; Clementi, M.E.; Valeriani, F.; Mandarano, M.; Ria, F.; Di Liddo, R.; Rende, M.; Spica, V.R. The Multifaceted S100B Protein: A Role in Obesity and Diabetes? Int. J. Mol. Sci. 2024, 25, 776. [Google Scholar] [CrossRef]
- Koepsell, H. Glucose transporters in brain in health and disease. Pflugers Arch. Eur. J. Physiol. 2020, 472, 1299–1343. [Google Scholar] [CrossRef] [PubMed]
- Mei, J.; Li, Y.; Niu, L.; Liang, R.; Tang, M.; Cai, Q.; Xu, J.; Zhang, D.; Yin, X.; Liu, X.; et al. SGLT2 inhibitors: A novel therapy for cognitive impairment via multifaceted effects on the nervous system. Transl. Neurodegener. 2024, 13, 41. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Chan, O.; Ding, Y.; Zhu, W.; Mastaitis, J.; Sherwin, R. Reduction in SGLT1 mRNA expression in the ventromedial hypothalamus improves the counterregulatory responses to hypoglycemia in recurrently hypoglycemic and diabetic rats. Diabetes 2015, 64, 3564–3572. [Google Scholar] [CrossRef] [PubMed]
- Devineni, D.; Murphy, J.; Wang, S.; Stieltjes, H.; Rothenberg, P.; Scheers, E.; Mamidi, R.N. Absolute oral bioavailability and pharmacokinetics of canagliflozin: A microdose study in healthy participants. Clin. Pharmacol. Drug Dev. 2014, 4, 295–304. [Google Scholar] [CrossRef]
- Ndefo, U.A.; Anidiobi, N.O.; Basheer, E.; Eaton, A.T. Empagliflozin (Jardiance): A Novel SGLT2 Inhibitor for the Treatment of Type-2 Diabetes. Pharm. Ther. 2015, 40, 364–368. [Google Scholar]
- Bathina, S.; Das, U.N. Brain-derived neurotrophic factor and its clinical implications. Arch. Med. Sci. 2015, 11, 1164–1178. [Google Scholar] [CrossRef]
Control | MET | EMPA | CANA | DULA | ||
---|---|---|---|---|---|---|
Before MCAO | 1st measurement | 6.8 [5.5; 6.9] | 7.3 [5.8; 7.5] | 6.6 [5.2; 6.7] | 7.1 [6.0; 7.5] | 6.7 [6.0; 7.7] |
2nd measurement | 6.9 [5.8; 7.2] | 7.0 [6.3; 7.7] | 6.3 [5.8; 6.6] | 6.6 [6.2; 7.2] | 6.4 [5.9; 6.8] | |
3rd measurement | 7.0 [6.5; 7.6] | 5.5 [5.0; 6.6] | 5.1 [4.5; 6.3] | 5.0 [4.3; 6.5] | 4.4 [4.2; 6.0] | |
During MCAO | 1st measurement | 12.4 [11.7; 14.6] | 10.1 [9.9; 14.3] * | 9.0 [8.5; 10.1] *# | 10.0 [9.5; 10.5] * | 8.9 [8.0; 9.5] *# |
2nd measurement | 15.5 [14.2; 16.3] | 10.5 [9.8; 12.5] * | 7.9 [7.0; 9.7] *# | 7.0 [6.5; 7.5] *# | 7.1 [6.7; 7.5] *# | |
3rd measurement | 15.8 [12.2; 16.7] | 11.2 [10.6; 12.0] * | 6.9 [6.5; 10.1] *# | 8.0 [7.8; 9.5] *# | 7.3 [7.0; 8.0] *# | |
After MCAO | 1st measurement | 6.7 [5.3; 6.8] | 6.4 [5.5; 6.2] | 4.2 [4.0; 5.1] *# | 4.3 [4.0; 5.2] *# | 6.5 [6,1; 7,1] |
2nd measurement | 7.4 [6,8; 8.2] | 7.0 [6.7; 7.4] | 4.3 [4.0; 5.0] *# | 4.5 [4.4; 6,0] *# | 6.4 [4.8; 7.2] |
Control | DM | DM+MET | DM+EMPA | DM+CANA | DM+DULA | ||
---|---|---|---|---|---|---|---|
During MCAO | 1st measurement | 12.4 [11.7; 14.6] | 22.0 [15.2; 23.5] | 15.1 [10.9; 17.3] *§ | 9.0 [8.5; 10.0] *§ | 10.0 [9.5; 10.5] *§ | 8.9 [8.0; 9.5] *§ |
2nd measurement | 15.5 [14.2; 16.3] | 19.6 [18.5; 22.7] | 14.5 [11.8; 15.5] *§ | 7.9 [7.0; 9.7] *§ | 7.0 [6.5; 7.5] *§ | 7.1 [6.7; 7.5] *§ | |
3rd measurement | 15.8 [12.2; 16.7] | 18.5 [18.0; 20.5] | 13.2 [10.6; 14.0] *§ | 6.9 [6.5; 10.1] *§ | 8.0 [7.8; 9.5] *§ | 7.3 [7.0; 8.0] *§ | |
After MCAO | 1st measurement | 6.7 [5.3; 6.8] | 12.7 [12.0; 17.2] | 6.4 [5.5; 7.2] § | 6.2 [6.0; 7.1] § | 5.7 [5.5; 7.2] § | 6.7 [6,1; 7,3] § |
2nd measurement | 7.4 [6,8; 8.2] | 15.8 [15.5; 17.7] | 7.0 [6.7; 7.5] § | 6.3 [6.0; 7.0] § | 6.5 [6.4; 6,8] § | 6.4 [4.8; 7.7] § |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murasheva, A.; Fuks, O.; Timkina, N.; Mikhailova, A.; Vlasov, T.; Samochernykh, K.; Karonova, T. SGLT-2 Inhibitors’ and GLP-1 Receptor Agonists’ Influence on Neuronal and Glial Damage in Experimental Stroke. Biomedicines 2024, 12, 2797. https://doi.org/10.3390/biomedicines12122797
Murasheva A, Fuks O, Timkina N, Mikhailova A, Vlasov T, Samochernykh K, Karonova T. SGLT-2 Inhibitors’ and GLP-1 Receptor Agonists’ Influence on Neuronal and Glial Damage in Experimental Stroke. Biomedicines. 2024; 12(12):2797. https://doi.org/10.3390/biomedicines12122797
Chicago/Turabian StyleMurasheva, Anna, Oksana Fuks, Natalya Timkina, Arina Mikhailova, Timur Vlasov, Konstantin Samochernykh, and Tatiana Karonova. 2024. "SGLT-2 Inhibitors’ and GLP-1 Receptor Agonists’ Influence on Neuronal and Glial Damage in Experimental Stroke" Biomedicines 12, no. 12: 2797. https://doi.org/10.3390/biomedicines12122797
APA StyleMurasheva, A., Fuks, O., Timkina, N., Mikhailova, A., Vlasov, T., Samochernykh, K., & Karonova, T. (2024). SGLT-2 Inhibitors’ and GLP-1 Receptor Agonists’ Influence on Neuronal and Glial Damage in Experimental Stroke. Biomedicines, 12(12), 2797. https://doi.org/10.3390/biomedicines12122797