Predictive Factors of Amputation in Diabetic Foot
Abstract
:1. Introduction
2. Materials and Methods
Statistical Methods
3. Results
3.1. Patient Characteristics
3.2. Hb, WBC, NLR, PLR, CRP, and Procalcitonin
3.3. Follow Up
3.4. Confounding Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bergis, D.; Bergis, P.M.; Hermanns, N.; Zink, K.; Haak, T. Coronary artery disease as an independent predictor of survival in patients with type 2 diabetes and Charcot neuro-osteoarthropathy. Acta Diabetol. 2014, 51, 1041–1048. [Google Scholar] [CrossRef] [PubMed]
- Hochlenert, D.; Engels, G. Integrated management in patients with diabetic foot syndrome. MMW Fortschr. Med. 2007, 149, 41–43. [Google Scholar] [PubMed]
- Yammine, K.; Boulos, K.; Assi, C.; Fady, H. Amputation and mortality frequencies associated with diabetic Charcot foot arthropathy: A meta-analysis. Foot Ankle Surg. 2022, 28, 1170–1176. [Google Scholar] [CrossRef] [PubMed]
- Sánchez Correa, C.A.; Vargas-Hernández, J.S.; García, L.F.; Jaimes, J.; Caicedo, M.; Niño, M.E.; Robledo Quijano, J. Risk factors for reamputation in patients with diabetic foot: A case-control study. Foot Ankle Surg. 2023, 29, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Boulton, A.J.M. The pathway to foot ulceration in diabetes. Med. Clin. N. Am. 2013, 97, 775–790. [Google Scholar] [CrossRef]
- Lavery, L.A.; Hunt, N.A.; LaFontaine, J.; Baxter, C.L.; Ndip, A.; Boulton, A.J.M. Diabetic foot prevention: A neglected opportunity in high-risk patients. Diabetes Care 2010, 33, 1460–1462. [Google Scholar] [CrossRef]
- Comisi, C.; Greco, T.; Inverso, M.; Mascio, A.; Polichetti, C.; Barbaliscia, M.; La Vergata, V.; Mosca, M.; Caravelli, S.; Mondanelli, N.; et al. Tibiotalocalcaneal arthrodesis in a rare case of tuberculosis of the talus. Med. Glas. 2024, 21, 222–228. [Google Scholar] [CrossRef]
- Dixon, J.; Coulter, J.; Garrett, M.; Cutfield, R. A retrospective audit of the characteristics and treatment outcomes in patients with diabetes-related charcot neuropathic osteoarthropathy. N. Z. Med. J. 2017, 130, 62–67. [Google Scholar]
- Greco, T.; Mascio, A.; Comisi, C.; Polichetti, C.; Caravelli, S.; Mosca, M.; Mondanelli, N.; Troiano, E.; Maccauro, G.; Perisano, C. RANKL-RANK-OPG Pathway in Charcot Diabetic Foot: Pathophysiology and Clinical-Therapeutic Implications. Int. J. Mol. Sci. 2023, 24, 3014. [Google Scholar] [CrossRef]
- Cianni, L.; Bocchi, M.B.; Vitiello, R.; Greco, T.; De Marco, D.; Masci, G.; Maccauro, G.; Pitocco, D.; Perisano, C. Arthrodesis in the Charcot foot: A systematic review. Orthop. Rev. 2020, 12 (Suppl. S1), 8670. [Google Scholar] [CrossRef]
- Shaw, J.E.; Sicree, R.A.; Zimmet, P.Z. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract. 2010, 87, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Whiting, D.R.; Guariguata, L.; Weil, C.; Shaw, J. IDF Diabetes Atlas: Global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res. Clin. Pract. 2011, 94, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Boulton, A.J.M.; Vileikyte, L.; Ragnarson-Tennvall, G.J.A. The global burden of diabetic foot disease. Lancet 2005, 366, 1719–1724. [Google Scholar] [CrossRef] [PubMed]
- Mascio, A.; Greco, T.; Maccauro, G.; Perisano, C. Lisfranc complex injuries management and treatment: Current knowledge. Int. J. Physiol. Pathophysiol. Pharmacol. 2022, 14, 161–170. [Google Scholar]
- Bocchi, M.B.; Cianni, L.; Perna, A.; Vitiello, R.; Greco, T.; Maccauro, G.; Perisano, C. A rare case of Bacillus megaterium soft tissues infection. Acta Biomed. 2020, 91, e2020013. [Google Scholar] [CrossRef]
- Driver, V.R.; Fabbi, M.; Lavery, L.A.; Gibbons, G. The costs of diabetic foot: The economic case for the limb salvage team. J. Vasc. Surg. 2010, 52 (Suppl. S3), 17S–22S. [Google Scholar] [CrossRef]
- Rodrigues, B.T.; Vangaveti, V.N.; Malabu, U.H. Prevalence and Risk Factors for Diabetic Lower Limb Amputation: A Clinic-Based Case Control Study. J. Diabetes Res. 2016, 5941957. [Google Scholar] [CrossRef]
- Vitiello, R.; Segala, F.V.; Oliva, M.S.; Cauteruccio, M.; Novarese, C.; Perisano, C.; Maccauro, G.; Fantoni, M. Ankle fracture and necrotizing fasciitis: A common fracture and a dreadful complication. J. Biol. Regul. Homeost. Agents 2020, 34 (Suppl. S2), 71–75. [Google Scholar]
- Fejfarová, V.; Jirkovská, A.; Dragomirecká, E.; Game, F.; Bém, R.; Dubský, M.; Wosková, V.; Křížová, M.; Skibová, J.; Wu, S. Does the diabetic foot have a significant impact on selected psychological or social characteristics of patients with diabetes mellitus? J. Diabetes Res. 2014, 371938. [Google Scholar] [CrossRef]
- Careri, S.; Vitiello, R.; Oliva, M.S.; Ziranu, A.; Maccauro, G.; Perisano, C. Masquelet technique and osteomyelitis: Innovations and literature review. Eur. Rev. Med. Pharmacol. Sci. 2019, 23 (Suppl. S2), 210–216. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for reporting observational studies. Int. J. Surg. 2014, 12, 1495–1499. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Lee, S.H.; Park, K.S.; Kim, E.J.; Yeo, S.; Ha, I.H. Association between diabetes mellitus and anemia among Korean adults according to sex: A cross-sectional analysis of data from the Korea National Health and Nutrition Examination Survey (2010–2016). BMC Endocr. Disord. 2021, 21, 209. [Google Scholar] [CrossRef] [PubMed]
- Gezawa, I.D.; Ugwu, E.T.; Ezeani, I.; Adeleye, O.; Okpe, I.; Enamino, M. Anemia in patients with diabetic foot ulcer and its impact on disease outcome among Nigerians: Results from the MEDFUN study. PLoS ONE 2019, 14, e0226226. [Google Scholar] [CrossRef] [PubMed]
- Shareef, A.M.; Ahmedani, M.Y.; Waris, N. Strong association of anemia in people with diabetic foot ulcers (DFUs): Study from a specialist foot care center. Pak. J. Med. Sci. 2019, 35, 1216. [Google Scholar] [CrossRef] [PubMed]
- Olgun, M.E.; Altuntaş, S.Ç.; Sert, M.; Tetiker, T. Anemia in patients with diabetic foot ulcer: Effects on diabetic microvascular complications and related conditions. Endocr. Metab. Immune Disord.-Drug Targets 2019, 19, 985–990. [Google Scholar] [CrossRef]
- Yammine, K.; Hayek, F.; Assi, C. Is there an association between anemia and diabetic foot ulcers? A systematic review and meta-analysis. Wound Repair Regen. 2021, 29, 432–442. [Google Scholar] [CrossRef]
- Costa, R.H.R.; Cardoso, N.A.; Procópio, R.J.; Navarro, T.P.; Dardik, A.; de Loiola Cisneros, L. Diabetic foot ulcer carries high amputation and mortality rates, particularly in the presence of advanced age, peripheral artery disease and anemia. Diabetes Metab. Syndr. Clin. Res. Rev. 2017, 11, S583–S587. [Google Scholar] [CrossRef]
- Chuan, F.; Zhang, M.; Yao, Y.; Tian, W.; He, X.; Zhou, B. Anemia in patients with diabetic foot ulcer: Prevalence, clinical characteristics, and outcome. Int. J. Low. Extrem. Wounds 2016, 15, 220–226. [Google Scholar] [CrossRef]
- Ezeani, I.U.; Ugwu, E.T.; Adeleye, F.O.; Gezawa, I.D.; Okpe, I.O.; Enamino, M.I. Determinants of wound healing in patients hospitalized for diabetic foot ulcer: Results from the MEDFUN study. Endocr. Regul. 2020, 54, 207–216. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, S.H.; Kim, K.B.; Kim, H.S.; Lee, Y.K. Factors influencing wound healing in diabetic foot patients. Medicina 2024, 60, 723. [Google Scholar] [CrossRef]
- Howard, R.; Kanetsky, P.A.; Egan, K.M. Exploring the prognostic value of the neutrophil-to-lymphocyte ratio in cancer. Sci. Rep. 2019, 9, 19673. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Eliot, M.; Koestler, D.C.; Wu, W.C.; Kelsey, K.T. Association of neutrophil-to-lymphocyte ratio with mortality and cardiovascular disease in the Jackson Heart Study and modification by the Duffy antigen variant. JAMA Cardiol. 2018, 3, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Angkananard, T.; Anothaisintawee, T.; McEvoy, M.; Attia, J.; Thakkinstian, A. Neutrophil lymphocyte ratio and cardiovascular disease risk: A systematic review and meta-analysis. BioMed Res. Int. 2018, 2018, 2703518. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.G.; Sia, J.; Huang, H.H.; Lau, W.K. Neutrophil-to-lymphocyte ratio independently predicts advanced pathological staging and poorer survival outcomes in testicular cancer. Investig. Clin. Urol. 2019, 60, 179–183. [Google Scholar] [CrossRef]
- Vatankhah, C.; Jahangiri, Y.; Landry, G.J.; McLafferty, R.B.; Alkayed, N.J.; Moneta, G.L.; Azarbal, A.F. Predictive value of neutrophil-to-lymphocyte ratio in diabetic wound healing. J. Vasc. Surg. 2017, 65, 478–483. [Google Scholar] [CrossRef]
- Lou, M.; Luo, P.; Tang, R.; Peng, Y.; Yu, S.; Huang, W.; He, L. Relationship between neutrophil-lymphocyte ratio and insulin resistance in newly diagnosed type 2 diabetes mellitus patients. BMC Endocr. Disord. 2015, 15, 9. [Google Scholar] [CrossRef]
- Shiny, A.; Bibin, Y.S.; Shanthirani, C.S.; Regin, B.S.; Anjana, R.M.; Balasubramanyam, M.; Jebarani, S.; Mohan, V. Association of neutrophil-to-lymphocyte ratio with glucose intolerance: An indicator of systemic inflammation in patients with type 2 diabetes. Diabetes Technol. Ther. 2014, 16, 524–530. [Google Scholar] [CrossRef]
- Raungkaewmanee, S.; Tangjitgamol, S.; Manusirivithaya, S.; Srijaipracharoen, S.; Thavaramara, T. Platelet to lymphocyte ratio as a prognostic factor for epithelial ovarian cancer. J. Gynecol. Oncol. 2012, 23, 265–273. [Google Scholar] [CrossRef]
- Akbas, E.M.; Demirtas, L.; Ozcicek, A.; Timuroglu, A.; Bakirci, E.M.; Hamur, H.; Ozcicek, F.; Turkmen, K. Association of epicardial adipose tissue, neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio with diabetic nephropathy. Int. J. Clin. Exp. Med. 2014, 7, 1794–1801. [Google Scholar]
- Turkmen, K.; Erdur, F.M.; Ozcicek, F.; Ozcicek, A.; Akbas, E.M.; Ozbicer, A.; Demirtas, L.; Turk, S.; Tonbul, H.Z. Platelet-to-lymphocyte ratio better predicts inflammation than neutrophil-to-lymphocyte ratio in end-stage renal disease patients. Hemodial. Int. 2013, 17, 391–396. [Google Scholar] [CrossRef]
- Zhang, K.; Ding, S.; Lyu, X.; Tan, Q.; Wang, Z. Correlation between the platelet-to-lymphocyte ratio and diabetic foot ulcer in patients with type 2 diabetes mellitus. J. Clin. Lab. Anal. 2021, 35, e23719. [Google Scholar] [CrossRef] [PubMed]
- Demirdal, T.; Sen, P. The significance of neutrophil-lymphocyte ratio, platelet-lymphocyte ratio and lymphocyte-monocyte ratio in predicting peripheral arterial disease, peripheral neuropathy, osteomyelitis and amputation in diabetic foot infection. Diabetes Res. Clin. Pract. 2018, 144, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Lipsky, B.A.; Sheehan, P.; Armstrong, D.G.; Tice, A.D.; Polis, A.B.; Abramson, M.A. Clinical predictors of treatment failure for diabetic foot infections: Data from a prospective trial. Int. Wound J. 2007, 4, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Roine, I.; Faingezicht, I.; Arguedas, A.; Herrera, J.F.; Rodriguez, F. Serial serum C-reactive protein to monitor recovery from acute hematogenous osteomyelitis in children. Pediatr. Infect. Dis. J. 1995, 14, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Volaco, A.; Chantelau, E.; Richter, B.; Luther, B. Outcome of critical foot ischaemia in longstanding diabetic patients: A retrospective cohort study in a specialised tertiary care centre. Vasa 2004, 33, 36–41. [Google Scholar] [CrossRef]
- Crispin, J.C.; Alcocer-Varela, J. Rheumatologic manifestations of diabetes mellitus. Am. J. Med. 2003, 114, 753–757. [Google Scholar] [CrossRef]
- Sinha, S.; Munichoodappa, C.S.; Kozak, G.P. Neuro-arthropathy in diabetes mellitus. Medicine 1972, 51, 191–210. [Google Scholar] [CrossRef]
- Xu, S.; Wang, Y.; Hu, Z.; Ma, L.; Zhang, F.; Liu, P. Effects of neutrophil-to-lymphocyte ratio, serum calcium, and serum albumin on prognosis in patients with diabetic foot. Int. Wound J. 2023, 20, 1638–1646. [Google Scholar] [CrossRef]
- Chen, W.; Chen, K.; Xu, Z.; Hu, Y.; Liu, Y.; Liu, W.; Hu, X.; Ye, T.; Hong, J.; Zhu, H.; et al. Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio Predict Mortality in Patients with Diabetic Foot Ulcers Undergoing Amputations. Diabetes Metab. Syndr. Obes. 2021, 14, 821–829. [Google Scholar] [CrossRef]
- van Asten, S.A.; Jupiter, D.C.; Mithani, M.; La Fontaine, J.; Davis, K.E.; Lavery, L.A. Erythrocyte sedimentation rate and C-reactive protein to monitor treatment outcomes in diabetic foot osteomyelitis. Int. Wound J. 2017, 14, 142–148. [Google Scholar] [CrossRef]
- Hançerli, C.Ö.; Doğan, N. Comparison of below-knee and above-knee amputations with demographic, comorbidity, and haematological parameters in patients who died. J. Foot Ankle Res. 2023, 16, 36. [Google Scholar] [CrossRef] [PubMed]
- Hevessy, Z.; Toth, G.; Antal-Szalmas, P.; Tokes-Fuzesi, M.; Kappelmayer, J.; Karai, B.; Ajzner, E.; on behalf of the Working Group on Guidelines, and Algorithms of the Hungarian Society of Laboratory Medicine. Algorithm of differential diagnosis of anemia involving laboratory medicine specialists to advance diagnostic excellence. Clin. Chem. Lab. Med. (CCLM) 2024, 62, 410–420. [Google Scholar] [CrossRef] [PubMed]
- Todor, S.B.; Ichim, C.; Boicean, A.; Mihaila, R.G. Cardiovascular Risk in Philadelphia-Negative Myeloproliferative Neoplasms: Mechanisms and Implications—A Narrative Review. Curr. Issues Mol. Biol. 2024, 46, 8407–8423. [Google Scholar] [CrossRef] [PubMed]
- Bray, C.; Bell, L.N.; Liang, H.; Haykal, R.; Kaiksow, F.; Mazza, J.J.; Yale, S.H. Erythrocyte Sedimentation Rate and C-reactive Protein Measurements and Their Relevance in Clinical Medicine. WMJ 2016, 115, 317–321. [Google Scholar]
Evaluated at 30 Days Before Surgery (n = 100) | Evaluated Within 5 Days Before Surgery (n = 100) | Total (n = 200) | |
---|---|---|---|
Age (years) | |||
Average | 67.6 | 67.69 | 67.64 |
(SD) | 10.71 | 11.78 | 11.23 |
Median | 68 | 67 | 67.5 |
(Q1–Q3) | (59–76) | (61–75) | (60–76) |
(min–max) | (44–91) | (34–95) | (34–95) |
Sex | |||
Male | 75 (75%) | 74 (74%) | 149 (74.5%) |
Female | 25 (25%) | 26 (26%) | 51 (25.5%) |
Number of surgeries | |||
Amputation | 83 (83%) | 78 (77%) | 161 (80.5%) |
Reamputation | 17 (17%) | 22 (23%) | 39 (19.5%) |
Evaluated at 30 Days Before Surgery (n = 100) | Evaluated Within 5 Days Before Surgery (n = 100) | Total (n = 200) | p-Value | |
---|---|---|---|---|
Hb (mg/dL) | 0.001 * | |||
Average | 11.62 | 10.12 | 10.87 | |
(SD) | 1.59 | 1.54 | 1.56 | |
Median | 11.7 | 9.9 | 10.8 | |
(Q1–Q3) | (10.8–12.7) | (9–10.95) | (9.9–11.82) | |
(min–max) | (7.9–15.6) | (7.3–13.9) | (7.3–15.6) | |
WBC (×109/L) | 0.414 | |||
Average | 10.96 | 11.16 | 11.06 | |
(SD) | 5.29 | 5.95 | 5.62 | |
Median | 9.42 | 9.54 | 9.48 | |
(Q1–Q3) | (7.48–13.36) | (7.7–13.09) | (7.59–13.22) | |
(min–max) | (3.11–36.83) | (3–38.79) | (3.11–38.79) | |
NLR | 0.001 * | |||
Average | 4.14 | 5.07 | 4.6 | |
(SD) | 2.45 | 3.25 | 2.85 | |
Median | 3.68 | 3.94 | 3.81 | |
(Q1–Q3) | (2.22–5.46) | (2.56–7.06) | (2.39–6.26) | |
(min–max) | (0.14–10.33) | (0.69–13.94) | (0.14–13.94) | |
PLR | 0.001 * | |||
Average | 165.42 | 193.28 | 179.35 | |
(SD) | 86.35 | 94.65 | 90.5 | |
Median | 148.64 | 179.91 | 164.27 | |
(Q1–Q3) | (105.97–220.37) | (125.15–251.35) | (115.56–235.86) | |
(min–max) | (2.01–394) | (2.67–437.28) | (2.01–437.28) | |
CRP (mg/dL) | 0.001 * | |||
Average | 93.68 | 100.18 | 96.93 | |
(SD) | 82.34 | 81.9 | 82.12 | |
Median | 72.7 | 73.3 | 73 | |
(Q1–Q3) | (22.27–142.58) | (32.2–151.1) | (27.23–146.84) | |
(min–max) | (0.7–326.9) | (0.5–320.8) | (0.5–326.9) | |
Procalcitonin (ng/mL) | 0.450 | |||
Average | 0.16 | 0.12 | 0.14 | |
(SD) | 0.12 | 0.08 | 0.1 | |
Median | 0.12 | 0.09 | 0.1 | |
(Q1–Q3) | (0.05–0.23) | (0.05–0.18) | (0.05–0.2) | |
(min–max) | (0.05–0.49) | (0.31–0.49) | (0.05–0.49) |
3-Year Survivors (n = 44) | 3-Year Deaths (n = 33) | Total (n = 77) | p-Value | |
---|---|---|---|---|
Age (years) | 0.001 * | |||
Average | 63.84 | 74.18 | 68.14 | |
(SD) | 11.28 | 8.6 | 11.41 | |
Median | 63.5 | 74 | 68 | |
(Q1–Q3) | (57.25–71) | (66–81.25) | (60.75–76) | |
(min–max) | (34–93) | (56–91) | (34–93) | |
Sex | 0.507 | |||
Male | 36 (81.82%) | 24 (72.73%) | 60 (77.92%) | |
Female | 8 (18.18%) | 9 (27.27%) | 17 (22.08%) | |
Number of surgeries | 0.402 | |||
Amputation | 30 (68.18%) | 27 (81.82%) | 57 (74.03%) | |
Reamputation | 14 (31.82%) | 6 (18.18%) | 20 (25.97%) |
3-Year Survivors (n = 44) | 3-Year Deaths (n = 33) | Total (n = 77) | p-Value | |
---|---|---|---|---|
Hb (mg/dL) | 0.368 | |||
Average | 10.58 | 10.3 | 10.46 | |
(SD) | 1.87 | 1.57 | 1.74 | |
Median | 10.05 | 9.9 | 10 | |
(Q1–Q3) | (9.17–11.3) | (9.5–10.65) | (9.4–11.3) | |
(min–max) | (7.9–15.7) | (7.9–13.3) | (7.9–15.7) | |
WBC (×109/L) | 0.001 * | |||
Average | 9.99 | 12.40 | 11.02 | |
(SD) | 4.84 | 6.14 | 5.52 | |
Median | 9.08 | 11.5 | 10.03 | |
(Q1–Q3) | (7.62–11.38) | (8.59–15.5) | (7.98–12.82) | |
(min–max) | (0.33–24.13) | (0.62–26.14) | (0.33–26.14) | |
NLR | 0.001 * | |||
Average | 4.89 | 6.48 | 5.53 | |
(SD) | 3.18 | 3.63 | 3.43 | |
Median | 3.94 | 6.06 | 4.54 | |
(Q1–Q3) | (2.57–6.21) | (3.33–8.95) | (2.88–7.72) | |
(min–max) | (1.5–12.72) | (1.29–13.27) | (1.29–13.27) | |
PLR | 0.034 * | |||
Average | 204.34 | 209.81 | 206.58 | |
(SD) | 95.76 | 91 | 93.11 | |
Median | 180.68 | 187.25 | 185.24 | |
(Q1–Q3) | (146.15–271.46) | (140.15–264.32) | (142–267.94) | |
(min–max) | (4.21–437.28) | (76.92–406.48) | (4.21–437.28) | |
CRP (mg/dL) | 0.001 * | |||
Average | 95.33 | 146.35 | 114.46 | |
(SD) | 98.96 | 96.67 | 100.36 | |
Median | 67.9 | 123.5 | 100.35 | |
(Q1–Q3) | (20.65–129.3) | (75.5–215) | (26.12–149.82) | |
(min–max) | (1.2–407.2) | (16–317.4) | (1.2–407.2) | |
Procalcitonin (ng/mL) | 0.940 | |||
Average | 0.15 | 0.13 | 0.14 | |
(SD) | 0.12 | 0.11 | 0.11 | |
Median | 0.08 | 0.11 | 0.09 | |
(Q1–Q3) | (0.05–0.23) | (0.06–0.14) | (0.05–0.21) | |
(min–max) | (0.05–0.42) | (0.05–0.4) | (0.05–0.42) |
Coefficient for Sex (p-Value) | Coefficient for Age (p-Value) | |
---|---|---|
Hb 30 days before surgery | 0.64 (0.08) | −0.01 (0.72) |
Hb within 5 days of surgery | 0.31 (0.21) | −0.01 (0.23) |
WBC 30 days before surgery | −1.13 (0.17) | −0.05 (0.14) |
WBC within 5 days of surgery | −1.49 (0.12) | 0.05 (0.18) |
NLR 30 days before surgery | 0.15 (0.67) | 0.01 (0.65) |
NLR within 5 days of surgery | −0.27 (0.59) | 0.03 (0.11) |
PLR 30 days before surgery | 7.26 (0.57) | −0.18 (0.72) |
PLR within 5 days of surgery | 0.38 (0.98) | 0.51 (0.37) |
CRP 30 days before surgery | −18.82 (0.11) | −0.29 (0.53) |
CRP within 5 days of surgery | −12.1 (0.32) | 0.56 (0.24) |
Procalcitonin 30 days before surgery | 0.01 (0.67) | 0.01 (0.25) |
Procalcitonin within 5 days of surgery | −0.01 (0.25) | −0.01 (0.77) |
3-year mortality | 0.21 (0.08) | −0.01 (0.06) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farine, F.; Rapisarda, A.M.; Roani, C.; Giuli, C.; Comisi, C.; Mascio, A.; Greco, T.; Maccauro, G.; Perisano, C. Predictive Factors of Amputation in Diabetic Foot. Biomedicines 2024, 12, 2775. https://doi.org/10.3390/biomedicines12122775
Farine F, Rapisarda AM, Roani C, Giuli C, Comisi C, Mascio A, Greco T, Maccauro G, Perisano C. Predictive Factors of Amputation in Diabetic Foot. Biomedicines. 2024; 12(12):2775. https://doi.org/10.3390/biomedicines12122775
Chicago/Turabian StyleFarine, Francesco, Antonio Maria Rapisarda, Carolina Roani, Cristina Giuli, Chiara Comisi, Antonio Mascio, Tommaso Greco, Giulio Maccauro, and Carlo Perisano. 2024. "Predictive Factors of Amputation in Diabetic Foot" Biomedicines 12, no. 12: 2775. https://doi.org/10.3390/biomedicines12122775
APA StyleFarine, F., Rapisarda, A. M., Roani, C., Giuli, C., Comisi, C., Mascio, A., Greco, T., Maccauro, G., & Perisano, C. (2024). Predictive Factors of Amputation in Diabetic Foot. Biomedicines, 12(12), 2775. https://doi.org/10.3390/biomedicines12122775