Revolutionizing Personalized Medicine: Synergy with Multi-Omics Data Generation, Main Hurdles, and Future Perspectives
Abstract
:1. Introduction
2. Historical Roots for the Development of Personalized Medicine
3. Personalized Medicine Transforms Healthcare
4. Future Synergies Between Multi-Omics Data and Precision Medicine
4.1. The Role of Genomics in Personalized Medicine
4.2. The Role of Pharmacogenomics in Personalized Medicine
4.3. The Role of Transcriptomics in Personalized Medicine
4.4. The Role of Proteomics in Personalized Medicine
4.5. The Role of Metabolomics in Personalized Medicine
4.6. The Role of Epigenomics in Personalized Medicine
4.7. The Role of Phenomics in Personalized Medicine
5. Applications of Personalized Medicine
5.1. Oncology
5.2. Diagnosis and Intervention
5.3. Pharmacogenomics
5.4. Cardiovascular Diseases
5.5. Rare Genetic Disorders
5.6. Neurological Disorders
5.7. Infectious Diseases
5.8. Diabetes Management
5.9. Drug Development
6. Main Challenges of Personalized Medicine
6.1. Data Privacy and Security
6.2. Ethical and Social Issues
6.3. Regulatory Hurdles
6.4. Economic Barriers
6.5. Integration into Clinical Practice
6.6. Interdisciplinary Collaboration
6.7. Scientific Challenges
7. Future Perspectives for the Personalized Medicine
7.1. Advancements in Genomic Medicine
7.2. Artificial Intelligence and Machine Learning
7.3. Biomarker Discovery
7.4. Collaborative Research and Data Sharing
7.5. Tailored Therapeutics
8. Conclusions and Recommendation
- Focus on building comprehensive genomic databases that include diverse populations from different ethnic backgrounds.
- Explore effective algorithms and platforms for real-time integration of genomic data into clinical workflows, investigating how clinicians can use this data for personalized diagnosis, treatment planning, and preventive care.
- Encourage pharmaceutical companies to prioritize pharmacogenomics in drug development to create treatments that are tailored to specific genetic profiles, minimizing side effects and improving efficacy.
- Explore AI-driven models that integrate genomic, environmental, and lifestyle data to develop more accurate disease prediction models.
- Conduct studies to assess the ethical challenges surrounding genomic data usage, focusing on data ownership, consent, and privacy.
Funding
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
CML | Chronic myelogenous leukemia |
CNVs | Copy number variation |
DNA | Deoxyribonucleic acid |
EHRs | Electronic health records |
MRI | Magnetic resonance imaging |
NGS | Next-generation sequencing |
PET | Positron emission tomography |
RNA | Ribonucleic acid |
SNPs | Single nucleotide polymorphism |
Glossary | |
Epigenomics | The study of chemical changes and modifications to DNA and associated proteins that affect gene expression without altering the underlying DNA sequence. |
Genomics | The study of an organism’s entire genetic material (genome), including the structure, function, evolution, and mapping of genes. |
Metabolomics | The study of the complete set of small molecules, or metabolites, within a biological sample. |
Omics | A collective term for fields of study in biology that focus on large-scale data analysis of molecules, such as genes (genomics), proteins (proteomics), or metabolites (metabolomics), to understand biological systems and processes comprehensively. |
Personalized medicine | A medical approach that tailors treatment and healthcare decisions to an individual’s unique genetic makeup, lifestyle, and environment, with the goal of providing more effective and targeted therapies. |
Pharmacogenomics | The study of how an individual’s genetic makeup affects their response to drugs. |
Precision medicine | A medical model that customizes healthcare by considering individual variability in genes, environment, and lifestyle to develop more accurate and effective treatments and preventive strategies for patients. |
Proteomics | The large-scale study of the entire set of proteins produced by an organism or cell. |
Transcriptomics | The study of the complete set of RNA transcripts produced by the genome under specific conditions or in a particular cell type. |
References
- Dolgopolov, I.; Rykov, M.Y. The evolution of personalized medicine: Literature review. Res. Pract. Med. J. 2022, 9, 117–128. [Google Scholar] [CrossRef]
- Vellekoop, H.; Huygens, S.; Versteegh, M.; Szilberhorn, L.; Zelei, T.; Nagy, B.; Koleva-Kolarova, R.; Tsiachristas, A.; Wordsworth, S.; Rutten-van Mölken, M.; et al. Guidance for the harmonisation and improvement of economic evaluations of personalised medicine. Pharmacoeconomics 2021, 39, 771–788. [Google Scholar] [CrossRef]
- Sadee, W.; Wang, D.; Hartmann, K.; Toland, A.E. Pharmacogenomics: Driving personalized medicine. Pharmacol. Rev. 2023, 75, 789–814. [Google Scholar] [CrossRef] [PubMed]
- Elemento, O. The future of precision medicine: Towards a more predictive personalized medicine. Emerg. Top. Life Sci. 2020, 4, 175–177. [Google Scholar] [PubMed]
- Jacob, M.; Lopata, A.L.; Dasouki, M.; Rahman, A.M.A. Metabolomics toward personalized medicine. Mass Spectrom. Rev. 2019, 38, 221–238. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.Q.; Staley, C.A.; Kooby, D.A.; Styblo, T.; Wood, W.C.; Yang, L. Multiplexed fluorescence imaging of tumor biomarkers in gene expression and protein levels for personalized and predictive medicine. Curr. Mol. Med. 2009, 9, 1017–1023. [Google Scholar] [CrossRef]
- Liu, L. Therapeutic and Diagnosis Target Discovery Based on Metabolomics. Front. Pharmacol. 2022, 13, 893905. [Google Scholar]
- Jørgensen, J.T. New era of personalized medicine: A 10-year anniversary. Oncologist 2009, 14, 557–558. [Google Scholar] [CrossRef] [PubMed]
- Nicole, S. Personalised Medicine: The Right Treatment for the Right Person at the Right Time; Briefing; European Parliamentary Research Service: Brussels, Belgium, 2015. [Google Scholar]
- Di Sanzo, M.; Cipolloni, L.; Borro, M.; La Russa, R.; Santurro, A.; Scopetti, M.; Frati, P. Clinical applications of personalized medicine: A new paradigm and challenge. Curr. Pharm. Biotechnol. 2017, 18, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Diamandis, M.; White, N.M.; Yousef, G.M. Personalized medicine: Marking a new epoch in cancer patient management. Mol. Cancer Res. 2010, 8, 1175–1187. [Google Scholar] [CrossRef] [PubMed]
- Morganti, S.; Tarantino, P.; Ferraro, E.; D’amico, P.; Viale, G.; Trapani, D.; Duso, B.A.; Curigliano, G. Complexity of genome sequencing and reporting: Next generation sequencing (NGS) technologies and implementation of precision medicine in real life. Crit. Rev. Oncol. Hematol. 2019, 133, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Beckmann, J.S.; Lew, D. Reconciling evidence-based medicine and precision medicine in the era of big data: Challenges and opportunities. Genome Med. 2016, 8, 134. [Google Scholar] [CrossRef]
- Chen, Y.; Mei, Y.; Jiang, X. Universal and high-fidelity DNA single nucleotide polymorphism detection based on a CRISPR/Cas12a biochip. Chem. Sci. 2021, 12, 4455–4462. [Google Scholar] [CrossRef]
- Soni, N.K.; Thukral, N.; Hasija, Y. Personalized medicine in the era of genomics. In Handbook of Research on Computational Intelligence Applications in Bioinformatics; IGI Global: Hershey, PA, USA, 2016; pp. 296–327. [Google Scholar]
- Schaefer, G.O.; Tai, E.S. Precision Medicine and Big Data: The Application of an Ethics Framework for Big Data in Health and Research. Asian Bioeth. Rev. 2019, 11, 275–288. [Google Scholar] [CrossRef] [PubMed]
- Verma, M.; Barh, D. (Eds.) Progress and Challenges in Precision Medicine; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Hulsen, T.; Jamuar, S.S.; Moody, A.R.; Karnes, J.H.; Varga, O.; Hedensted, S.; Spreafico, R.; Hafler, D.A.; McKinney, E.F. From Big Data to Precision Medicine. Front. Med. 2019, 6, 34. [Google Scholar] [CrossRef] [PubMed]
- Gligorijević, V.; Malod-Dognin, N.; Pržulj, N. Integrative methods for analyzing big data in precision medicine. Proteomics 2016, 16, 741–758. [Google Scholar] [CrossRef] [PubMed]
- Sigman, M. Introduction: Personalized medicine: What is it and what are the challenges? Fertil. Steril. 2018, 109, 944–945. [Google Scholar] [CrossRef] [PubMed]
- Goetz, L.H.; Schork, N.J. Personalized medicine: Motivation, challenges, and progress. Fertil. Steril. 2018, 109, 952–963. [Google Scholar] [CrossRef] [PubMed]
- Antoñanzas, F.; Juárez-Castelló, C.; Rodríguez-Ibeas, R. Some economics on personalized and predictive medicine. Eur. J. Health Econ. 2015, 16, 985–994. [Google Scholar] [CrossRef]
- Mathur, S.; Sutton, J. Personalized medicine could transform healthcare. Biomed. Rep. 2017, 7, 3–5. [Google Scholar] [CrossRef]
- Molyneux, D.H.; Nantulya, V. Public–private partnerships in blindness prevention: Reaching beyond the eye. Eye 2005, 19, 1050–1056. [Google Scholar] [CrossRef] [PubMed]
- Dugger, S.A.; Platt, A.; Goldstein, D.B. Drug development in the era of precision medicine. Nat. Rev. Drug Discov. 2018, 17, 183–196. [Google Scholar] [CrossRef] [PubMed]
- Visvikis-Siest, S.; Theodoridou, D.; Kontoe, M.-S.; Kumar, S.; Marschler, M. Milestones in personalized medicine: From the ancient time to nowadays—The provocation of COVID-19. Front. Genet. 2020, 11, 569175. [Google Scholar] [CrossRef] [PubMed]
- U.S. National Library of Medicine. Genetics Home Reference; U.S. National Library of Medicine: Bethesda, MD, USA, 2017. [Google Scholar]
- Gardner, T.S.; Di Bernardo, D.; Lorenz, D.; Collins, J.J. Inferring genetic networks and identifying compound mode of action via expression profiling. Science 2003, 301, 102–105. [Google Scholar] [CrossRef]
- Consortium, G.P. An integrated map of genetic variation from 1092 human genomes. Nature 2012, 491, 56. [Google Scholar] [CrossRef]
- Vogenberg, F.R.; Barash, C.I.; Pursel, M. Personalized medicine: Part 1: Evolution and development into theranostics. Pharm. Ther. 2010, 35, 560–576. [Google Scholar]
- Primorac, D.; Hoppner, W.; Bach-Rojecky, L. Pharmacogenomics of Drug Safety. In Pharmacogenomics in Clinical Practice; Springer: Berlin/Heidelberg, Germany, 2024; pp. 413–437. [Google Scholar]
- Mancinelli, L.; Cronin, M.; Sadée, W. Pharmacogenomics: The promise of personalized medicine. AAPS PharmSci 2000, 2, 29–41. [Google Scholar] [CrossRef] [PubMed]
- White, C.; Scott, R.; Paul, C.L.; Ackland, S.P. Pharmacogenomics in the era of personalised medicine. Med. J. Aust. 2022, 217, 510. [Google Scholar] [CrossRef]
- Lauschke, V.M.; Zhou, Y.; Ingelman-Sundberg, M. Novel genetic and epigenetic factors of importance for inter-individual differences in drug disposition, response and toxicity. Pharmacol. Ther. 2019, 197, 122–152. [Google Scholar] [CrossRef] [PubMed]
- Buzdin, A.; Sorokin, M.; Garazha, A.; Glusker, A.; Aleshin, A.; Poddubskaya, E.; Sekacheva, M.; Kim, E.; Gaifullin, N.; Giese, A.; et al. RNA sequencing for research and diagnostics in clinical oncology. In Seminars in Cancer Biology; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Garrett, J.T.; Olivares, M.G.; Rinehart, C.; Granja-Ingram, N.D.; Sánchez, V.; Chakrabarty, A.; Dave, B.; Cook, R.S.; Pao, W.; McKinely, E.; et al. Transcriptional and posttranslational up-regulation of HER3 (ErbB3) compensates for inhibition of the HER2 tyrosine kinase. Proc. Natl. Acad. Sci. USA 2011, 108, 5021–5026. [Google Scholar] [CrossRef] [PubMed]
- Mardis, E.R. Next-generation DNA sequencing methods. Annu. Rev. Genomics Hum. Genet. 2008, 9, 387–402. [Google Scholar] [CrossRef] [PubMed]
- Ashley, E.A. Towards precision medicine. Nat. Rev. Genet. 2016, 17, 507–522. [Google Scholar] [CrossRef] [PubMed]
- Jackson, S.E.; Chester, J.D. Personalised cancer medicine. Int. J. Cancer 2015, 137, 262–266. [Google Scholar] [CrossRef]
- Jabbour, E.; Kantarjian, H.M.; Aldoss, I.; Montesinos, P.; Leonard, J.T.; Gómez-Almaguer, D.; Ribera, J.M. Ponatinib vs imatinib in frontline Philadelphia chromosome–positive acute lymphoblastic leukemia: A randomized clinical trial. JAMA 2024, 331, 1814–1823. [Google Scholar] [CrossRef] [PubMed]
- Abul-Husn, N.S.; Kenny, E.E. Personalized medicine and the power of electronic health records. Cell 2019, 177, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Dunn, A.R.; O’Connell, K.M.; Kaczorowski, C.C. Gene-by-environment interactions in Alzheimer’s disease and Parkinson’s disease. Neurosci. Biobehav. Rev. 2019, 103, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Chun, H.; Lee, C.J. Reactive astrocytes in Alzheimer’s disease: A double-edged sword. Neurosci. Res. 2018, 126, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Di Martino, M.T.; Meschini, S.; Scotlandi, K.; Riganti, C.; De Smaele, E.; Zazzeroni, F.; Caraglia, M. From Single Gene Analysis to Single Cell Profiling: A New Era for Precision Medicine; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Thamlikitkul, L.; Parinyanitikul, N.; Sriuranpong, V. Genomic medicine and cancer clinical trial in Thailand. Cancer Biol. Med. 2024, 21, 10. [Google Scholar] [CrossRef]
- Snyderman, R. Personalized health care: From theory to practice. Biotechnol. J. 2012, 7, 973–979. [Google Scholar] [CrossRef] [PubMed]
- Mitropoulou, C.; Litinski, V.; Kabakchiev, B.; Rogers, S.; Patrinos, G.P. PARC report: Health outcomes and value of personalized medicine interventions: Impact on patient care. Pharmacogenomics 2020, 21, 797–807. [Google Scholar] [CrossRef] [PubMed]
- Altmann, A.; Beerenwinkel, N.; Sing, T.; Savenkov, I.; Däumer, M.; Kaiser, R.; Rhee, S.-Y.; Fessel, W.J.; Shafer, R.W.; Lengauer, T. Improved prediction of response to antiretroviral combination therapy using the genetic barrier to drug resistance. Antivir. Ther. 2007, 12, 169–178. [Google Scholar] [CrossRef]
- Maes, M. Precision nomothetic medicine in depression research: A new depression model, and new endophenotype classes and pathway phenotypes, and a digital self. J. Pers. Med. 2022, 12, 403. [Google Scholar] [CrossRef] [PubMed]
- Salih, S.; Elliyanti, A.; Alkatheeri, A.; AlYafei, F.; Almarri, B.; Khan, H. The role of molecular imaging in personalized medicine. J. Pers. Med. 2023, 13, 369. [Google Scholar] [CrossRef] [PubMed]
- Bates, S. Progress towards personalized medicine. Drug Discov. Today 2010, 15, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Dunlop, K.; Kirk, J.; Tucker, K. In the wake of Angelina-managing a family history of breast cancer. Aust. Fam. Physician 2014, 43, 76–78. [Google Scholar]
- Coignard, J.; Lush, M.; Beesley, J.; O'Mara, T.A.; Dennis, J.; Tyrer, J.P.; Peshkin, B. A case-only study to identify genetic modifiers of breast cancer risk for BRCA1/BRCA2 mutation carriers. Nat. Commun. 2021, 12, 1078. [Google Scholar] [CrossRef] [PubMed]
- Relling, M.V.; Evans, W.E. Pharmacogenomics in the clinic. Nature 2015, 526, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Hulot, J.S.; Collet, J.P.; Silvain, J.; Pena, A.; Bellemain-Appaix, A.; Barthélémy, O.; Montalescot, G. Cardiovascular risk in clopidogrel-treated patients according to cytochrome P450 2C19*2 loss-of-function allele or proton pump inhibitor coadministration: A systematic meta-analysis. J. Am. Coll. Cardiol. 2010, 56, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Pastorino, R.; Loreti, C.; Giovannini, S.; Ricciardi, W.; Padua, L.; Boccia, S. Challenges of prevention for a sustainable personalized medicine. J. Pers. Med. 2021, 11, 311. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C.J.; de la Haye, K.; Coveney, J.; Hughes, D.L.; Hutchinson, A.; Miller, C.; Prichard, I.; Ward, P.; Koehly, L.M. Protocol for a randomized controlled trial testing the impact of feedback on familial risk of chronic diseases on family-level intentions to participate in preventive lifestyle behaviors. BMC Public Health 2016, 16, 965. [Google Scholar] [CrossRef]
- Gülbakan, B.; Özgül, R.K.; Yüzbaşıoğlu, A.; Kohl, M.; Deigner, H.-P.; Özgüç, M. Discovery of biomarkers in rare diseases: Innovative approaches by predictive and personalized medicine. EPMA J. 2016, 7, 1–6. [Google Scholar] [CrossRef]
- La Thangue, N.B.; Kerr, D.J. Predictive biomarkers: A paradigm shift towards personalized cancer medicine. Nat. Rev. Clin. Oncol. 2011, 8, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Reddy, D.S.; Abeygunaratne, H.N. Experimental and clinical biomarkers for progressive evaluation of neuropathology and therapeutic interventions for acute and chronic neurological disorders. Int. J. Mol. Sci. 2022, 23, 11734. [Google Scholar] [CrossRef] [PubMed]
- Bauer, U.E.; A Briss, P.; A Goodman, R.; A Bowman, B. Prevention of chronic disease in the 21st century: Elimination of the leading preventable causes of premature death and disability in the USA. Lancet 2014, 384, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, R.; Javle, V.; Tanwar, N.; Gowda, P.; Varghese, L.; K, A.; Madhusudhan, N.; Jaiswal, N.; S., B.K.; Chatterjee, M.; et al. An absolute approach to using whole exome DNA and RNA workflow for cancer biomarker testing. Front. Oncol. 2023, 13, 1002792. [Google Scholar] [CrossRef] [PubMed]
- De Olazarra, A.; Wang, S. Advances in point-of-care genetic testing for personalized medicine applications. Biomicrofluidics 2023, 17, 031501. [Google Scholar] [CrossRef]
- Olivier, M.; Asmis, R.; Hawkins, G.A.; Howard, T.D.; Cox, L.A. The need for multi-omics biomarker signatures in precision medicine. Int. J. Mol. Sci. 2019, 20, 4781. [Google Scholar] [CrossRef]
- Kerr, K.; McAneney, H.; Smyth, L.J.; Bailie, C.; McKee, S.; McKnight, A.J. A scoping review and proposed workflow for multi-omic rare disease research. Orphanet J. Rare Dis. 2020, 15, 107. [Google Scholar] [CrossRef]
- Battle, A.; Mostafavi, S.; Zhu, X.; Potash, J.B.; Weissman, M.M.; McCormick, C.; Haudenschild, C.D.; Beckman, K.B.; Shi, J.; Mei, R.; et al. Characterizing the genetic basis of transcriptome diversity through RNA-sequencing of 922 individuals. Genome Res. 2014, 24, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Cenik, C.; Cenik, E.S.; Byeon, G.W.; Grubert, F.; Candille, S.I.; Spacek, D.; Alsallakh, B.; Tilgner, H.; Araya, C.L.; Tang, H.; et al. Integrative analysis of RNA, translation, and protein levels reveals distinct regulatory variation across humans. Genome Res. 2015, 25, 1610–1621. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Candille, S.I.; Choi, Y.; Xie, D.; Jiang, L.; Li-Pook-Than, J.; Tang, H.; Snyder, M. Variation and genetic control of protein abundance in humans. Nature 2013, 499, 79–82. [Google Scholar] [CrossRef] [PubMed]
- Haque, A.; Engel, J.; Teichmann, S.A.; Lönnberg, T. A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Med. 2017, 9, 75. [Google Scholar] [CrossRef]
- Raphael, B.J.; Hruban, R.H.; Aguirre, A.J.; Moffitt, R.A.; Yeh, J.J.; Stewart, C.; Robertson, A.G.; Cherniack, A.D.; Gupta, M.; Getz, G.; et al. Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell 2017, 32, 185–203.e13. [Google Scholar] [CrossRef] [PubMed]
- Bai, B.; Vanderwall, D.; Li, Y.; Wang, X.; Poudel, S.; Wang, H.; Dey, K.K.; Chen, P.-C.; Yang, K.; Peng, J. Proteomic landscape of Alzheimer’s Disease: Novel insights into pathogenesis and biomarker discovery. Mol. Neurodegener. 2021, 16, 55. [Google Scholar] [CrossRef]
- Satam, H.; Joshi, K.; Mangrolia, U.; Waghoo, S.; Zaidi, G.; Rawool, S.; Thakare, R.P.; Banday, S.; Mishra, A.K.; Das, G.; et al. Next-generation sequencing technology: Current trends and advancements. Biology 2023, 12, 997. [Google Scholar] [CrossRef] [PubMed]
- Rehm, H.L. Evolving health care through personal genomics. Nat. Rev. Genet. 2017, 18, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Gaikwad, P.S.; Banerjee, R. Advances in point-of-care diagnostic devices in cancers. Analyst 2018, 143, 1326–1348. [Google Scholar] [CrossRef]
- Berger, M.F.; Mardis, E.R. The emerging clinical relevance of genomics in cancer medicine. Nat. Rev. Clin. Oncol. 2018, 15, 353–365. [Google Scholar] [CrossRef] [PubMed]
- Wang, K. CaMKIIδ editing through CRISPR-cas9 to treat heart disease. In Proceedings of the Third International Conference on Biological Engineering and Medical Science (ICBioMed2023), Virtual, 2–9 September 2023. [Google Scholar]
- He, K.Y.; Ge, D.; He, M.M. Big data analytics for genomic medicine. Int. J. Mol. Sci. 2017, 18, 412. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.B.; Wei, W.; Weeraratne, D.; Frisse, M.E.; Misulis, K.; Rhee, K.; Zhao, J.; Snowdon, J.L. Precision medicine, AI, and the future of personalized health care. Clin. Transl. Sci. 2021, 14, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Meaddough, E.L.; Sarasua, S.M.; Fasolino, T.K.; Farrell, C.L. The impact of pharmacogenetic testing in patients exposed to polypharmacy: A scoping review. Pharmacogenomics J. 2021, 21, 409–422. [Google Scholar] [CrossRef] [PubMed]
- Pulley, J.M.; Denny, J.C.; Peterson, J.F.; Bernard, G.R.; Vnencak-Jones, C.L.; Ramirez, A.H.; Roden, D.M. Operational implementation of prospective genotyping for personalized medicine: The design of the Vanderbilt PREDICT project. Clin. Pharmacol. Ther. 2012, 92, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Schildcrout, J.S.; Shi, Y.; Danciu, I.; Bowton, E.; Field, J.R.; Pulley, J.M.; Basford, M.A.; Gregg, W.; Cowan, J.D.; Harrell, F.E.; et al. A prognostic model based on readily available clinical data enriched a pre-emptive pharmacogenetic testing program. J. Clin. Epidemiol. 2016, 72, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Patel, H.N.; Ursan, I.D.; Zueger, P.M.; Cavallari, L.H.; Pickard, A.S. Stakeholder views on pharmacogenomic testing. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2014, 34, 151–165. [Google Scholar] [CrossRef]
- Clark, M.M.; Hildreth, A.; Batalov, S.; Ding, Y.; Chowdhury, S.; Watkins, K.; Ellsworth, K.; Camp, B.; Kint, C.I.; Yacoubian, C.; et al. Diagnosis of genetic diseases in seriously ill children by rapid whole-genome sequencing and automated phenotyping and interpretation. Sci. Transl. Med. 2019, 11, eaat6177. [Google Scholar] [CrossRef] [PubMed]
- Chenoweth, M.J.; Giacomini, K.M.; Pirmohamed, M.; Hill, S.L.; van Schaik, R.H.; Schwab, M.; Shuldiner, A.R.; Relling, M.V.; Tyndale, R.F. Global Pharmacogenomics Within Precision Medicine: Challenges and Opportunities. Clin. Pharmacol. Ther. 2020, 107, 57–61. [Google Scholar] [CrossRef]
- Malsagova, K.A.; Butkova, T.V.; Kopylov, A.T.; Izotov, A.A.; Potoldykova, N.V.; Enikeev, D.V.; Grigoryan, V.; Tarasov, A.; Stepanov, A.A.; Kaysheva, A.L. Pharmacogenetic testing: A tool for personalized drug therapy optimization. Pharmaceutics 2020, 12, 1240. [Google Scholar] [CrossRef] [PubMed]
- Conti, R.; Veenstra, D.L.; Armstrong, K.; Lesko, L.J.; Grosse, S.D. Personalized medicine and genomics: Challenges and opportunities in assessing effectiveness, cost-effectiveness, and future research priorities. Med. Decis. Mak. 2010, 30, 328–340. [Google Scholar] [CrossRef]
- Guo, W.; A Tzioutziou, N.; Stephen, G.; Milne, I.; Calixto, C.P.; Waugh, R.; Brown, J.W.S.; Zhang, R. 3D RNA-seq: A powerful and flexible tool for rapid and accurate differential expression and alternative splicing analysis of RNA-seq data for biologists. RNA Biol. 2021, 18, 1574–1587. [Google Scholar] [CrossRef] [PubMed]
- Mubarak, G.; Zahir, F.R. Recent major transcriptomics and epitranscriptomics contributions toward personalized and precision medicine. J. Pers. Med. 2022, 12, 199. [Google Scholar] [CrossRef]
- Tsimberidou, A.M.; Fountzilas, E.; Bleris, L.; Kurzrock, R. Transcriptomics and solid tumors: The next frontier in precision cancer medicine. In Seminars in Cancer Biology; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Sun, S.; Xu, L.; Zhang, X.; Pang, L.; Long, Z.; Deng, C.; Xiao, Y. Systematic assessment of transcriptomic biomarkers for immune checkpoint blockade response in cancer immunotherapy. Cancers 2021, 13, 1639. [Google Scholar] [CrossRef]
- Boutelle, A.M.; Attardi, L.D. p53 and tumor suppression: It takes a network. Trends Cell Biol. 2021, 31, 298–310. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Wang, C.; Wu, Z.; Zhang, X.; Liu, Y.; Wang, X.; Liu, F.; Chen, Y.; Zhang, Y.; Zhao, H.; et al. Discovery of the potential biomarkers for early diagnosis of endometrial cancer via integrating metabolomics and transcriptomics. Comput. Biol. Med. 2024, 173, 108327. [Google Scholar] [CrossRef] [PubMed]
- Lazear, M.R.; Remsberg, J.R.; Jaeger, M.G.; Rothamel, K.; Her, H.-L.; DeMeester, K.E.; Njomen, E.; Hogg, S.J.; Rahman, J.; Whitby, L.R.; et al. Proteomic discovery of chemical probes that perturb protein complexes in human cells. Mol. Cell 2023, 83, 1725–1742.e12. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Whiteaker, J.R.; Hoofnagle, A.N.; Baird, G.S.; Rodland, K.D.; Paulovich, A.G. Clinical potential of mass spectrometry-based proteogenomics. Nat. Rev. Clin. Oncol. 2019, 16, 256–268. [Google Scholar] [CrossRef]
- Alharbi, R.A. Proteomics approach and techniques in identification of reliable biomarkers for diseases. Saudi J. Biol. Sci. 2020, 27, 968–974. [Google Scholar] [CrossRef]
- Jose, A.; Kulkarni, P.; Thilakan, J.; Munisamy, M.; Malhotra, A.G.; Singh, J.; Kumar, A.; Rangnekar, V.M.; Arya, N.; Rao, M. Integration of pan-omics technologies and three-dimensional in vitro tumor models: An approach toward drug discovery and precision medicine. Mol. Cancer 2024, 23, 50. [Google Scholar] [CrossRef]
- Zhou, J.; Zhong, L. Applications of liquid chromatography-mass spectrometry based metabolomics in predictive and personalized medicine. Front. Mol. Biosci. 2022, 9, 1049016. [Google Scholar] [CrossRef]
- Huang, X.; Zhou, Y.; Tang, H.; Liu, B.; Su, B.; Wang, Q. Differential metabolic network construction for personalized medicine: Study of type 2 diabetes mellitus patients’ response to gliclazide-modified-release-treated. J. Biomed. Inform. 2021, 118, 103796. [Google Scholar] [CrossRef]
- Li, B.; He, X.; Jia, W.; Li, H. Novel applications of metabolomics in personalized medicine: A mini-review. Molecules 2017, 22, 1173. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, E.-M.; Xu, L.-Y. Guide to metabolomics analysis: A bioinformatics workflow. Metabolites 2022, 12, 357. [Google Scholar] [CrossRef]
- Kelsey, G.; Stegle, O.; Reik, W. Single-cell epigenomics: Recording the past and predicting the future. Science 2017, 358, 69–75. [Google Scholar] [CrossRef]
- Tiffon, C. The impact of nutrition and environmental epigenetics on human health and disease. Int. J. Mol. Sci. 2018, 19, 3425. [Google Scholar] [CrossRef] [PubMed]
- Neumann, A.; Sammallahti, S.; Cosin-Tomas, M.; Reese, S.; Tiemeier, H.; London, S.; Felix, J.; Cecil, C. Epigenetic timing effects on child developmental outcomes: A longitudinal meta-regression of findings from the Pregnancy and Childhood Epigenetics Consortium. medRxiv 2024. medRxiv:2024-02. [Google Scholar]
- Martínez-Iglesias, O.; Naidoo, V.; Corzo, L.; Pego, R.; Seoane, S.; Rodríguez, S.; Alcaraz, M.; Muñiz, A.; Cacabelos, N.; Cacabelos, R. DNA methylation as a biomarker for monitoring disease outcome in patients with hypovitaminosis and Neurological Disorders. Genes 2023, 14, 365. [Google Scholar] [CrossRef] [PubMed]
- Kelly, T.K.; De Carvalho, D.D.; Jones, P.A. Epigenetic modifications as therapeutic targets. Nat. Biotechnol. 2010, 28, 1069–1078. [Google Scholar] [CrossRef]
- Gelato, K.A.; Adler, D.; Ocker, M.; Haendler, B.; Shaikhibrahim, Z. Targeting epigenetic regulators for cancer therapy: Modulation of bromodomain proteins, methyltransferases, demethylases, and microRNAs. Expert Opin. Ther. Targets 2016, 20, 783–799. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.M.; Hashemi, S.A.; Kalashgrani, M.Y.; Rahmanian, V.; Riazi, M.; Omidifar, N.; Althomali, R.H.; Rahman, M.M.; Chiang, W.; Gholami, A. Recent Progress in Prompt Molecular Detection of Exosomes Using CRISPR/Cas and Microfluidic-Assisted Approaches Toward Smart Cancer Diagnosis and Analysis. ChemMedChem 2024, 19, e202300359. [Google Scholar] [CrossRef] [PubMed]
- Dudley, J.T.; Listgarten, J.; Stegle, O.; Brenner, S.E.; Parts, L. Personalized medicine: From genotypes, molecular phenotypes and the quantified self, towards improved medicine. In Proceedings of the Pacific Symposium on Biocomputing, Kohala Coast, HI, USA, 3–7 January 2014. [Google Scholar]
- Pravin, B.; Kishor, O.; Ashwini, B. Personalized medicine: The future of Modern Medicine. Authorea 2021. [Google Scholar] [CrossRef]
- Hopkins, C.E. Emerging technologies in personalized medicine. Mol. Asp. Med. 2023, 91, 101182. [Google Scholar] [CrossRef]
- Arakelyan, A.; Melkonyan, A.; Hakobyan, S.; Boyarskih, U.; Simonyan, A.; Nersisyan, L.; Nikoghosyan, M.; Filipenko, M.; Binder, H. Transcriptome patterns of BRCA1-and BRCA2-mutated breast and ovarian cancers. Int. J. Mol. Sci. 2021, 22, 1266. [Google Scholar] [CrossRef] [PubMed]
- Waarts, M.R.; Stonestrom, A.J.; Park, Y.C.; Levine, R.L. Targeting mutations in cancer. J. Clin. Investig. 2022, 132, e154943. [Google Scholar] [CrossRef] [PubMed]
- Ginsburg, G.S.; Kuderer, N.M. Comparative effectiveness research, genomics-enabled personalized medicine, and rapid learning health care: A common bond. J. Clin. Oncol. 2012, 30, 4233–4242. [Google Scholar] [CrossRef] [PubMed]
- Pirmohamed, M. Pharmacogenetics and pharmacogenomics. Br. J. Clin. Pharmacol. 2001, 52, 345. [Google Scholar] [CrossRef] [PubMed]
- Yahata, N.; Kasai, K.; Kawato, M. Computational neuroscience approach to biomarkers and treatments for mental disorders. Psychiatry Clin. Neurosci. 2017, 71, 215–237. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, J.T.; Hersom, M. Companion diagnostics-a tool to improve pharmacotherapy. Ann. Transl. Med. 2016, 4, 482. [Google Scholar] [CrossRef] [PubMed]
- Weinshilboum, R.M.; Wang, L. Pharmacogenomics: Precision medicine and drug response. Mayo Clin. Proc. 2017, 92, 1711–1722. [Google Scholar] [CrossRef] [PubMed]
- Kozyra, M.; Ingelman-Sundberg, M.; Lauschke, V.M. Rare genetic variants in cellular transporters, metabolic enzymes, and nuclear receptors can be important determinants of interindividual differences in drug response. Genet. Med. 2017, 19, 20–29. [Google Scholar] [CrossRef]
- Ma, Q.; Lu, A.Y. Pharmacogenetics, pharmacogenomics, and individualized medicine. Pharmacol. Rev. 2011, 63, 437–459. [Google Scholar] [CrossRef] [PubMed]
- Al-Eitan, L.N.; Almasri, A.Y.; Khasawneh, R.H. Impact of CYP2C9 and VKORC1 polymorphisms on warfarin sensitivity and responsiveness in Jordanian cardiovascular patients during the initiation therapy. Genes 2018, 9, 578. [Google Scholar] [CrossRef] [PubMed]
- Rysz, J.; Franczyk, B.; Rysz-Górzyńska, M.; Gluba-Brzózka, A. Pharmacogenomics of hypertension treatment. Int. J. Mol. Sci. 2020, 21, 4709. [Google Scholar] [CrossRef] [PubMed]
- Brittain, H.K.; Scott, R.; Thomas, E. The rise of the genome and personalised medicine. Clin. Med. 2017, 17, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Turro, E.; Astle, W.J.; Megy, K.; Gräf, S.; Greene, D.; Shamardina, O.; Allen, H.L.; Sanchis-Juan, A.; Frontini, M.; Thys, C.; et al. Whole-genome sequencing of patients with rare diseases in a national health system. Nature 2020, 583, 96–102. [Google Scholar] [CrossRef]
- Ganapathy, A.; Mishra, A.; Soni, M.R.; Kumar, P.; Sadagopan, M.; Kanthi, A.V.; Patric, I.R.P.; George, S.; Sridharan, A.; Thyagarajan, T.C.; et al. Multi-gene testing in neurological disorders showed an improved diagnostic yield: Data from over 1000 Indian patients. J. Neurol. 2019, 266, 1919–1926. [Google Scholar] [CrossRef]
- Kunkle, B.W.; Boley-Grenier, B.; Sims, R.; Bis, J.C.; Damotte, V.; Naj, A.C.; Boland, A.; Vronskaya, M.; van der Lee, S.J.; Wolf-Amlie, A.; et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat. Genet. 2019, 51, 414–430. [Google Scholar] [CrossRef] [PubMed]
- Venugopalan, J.; Tong, L.; Hassanzadeh, H.R.; Wang, M.D. Multimodal deep learning models for early detection of Alzheimer’s disease stage. Sci. Rep. 2021, 11, 3254. [Google Scholar] [CrossRef]
- Bhagwat, N.; Viviano, J.D.; Voineskos, A.N.; Chakravarty, M.M.; Initiative, A.D.N. Modeling and prediction of clinical symptom trajectories in Alzheimer’s disease using longitudinal data. PLoS Comput. Biol. 2018, 14, e1006376. [Google Scholar] [CrossRef] [PubMed]
- Jain, K.K. Personalized Management of Infectious Diseases. In Textbook of Personalized Medicine; Springer: Amsterdam, The Netherlands, 2015; pp. 383–408. [Google Scholar]
- Haddad-Boubaker, S.; Mbarek, H.; Yassine, H.M. Personalized medicine and infectious disease management. Front. Med. 2023, 10, 1191147. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Luo, F.; Li, Z.; Dai, G.; Chu, Z.; Zhang, J.; Zhang, F.; Wang, Q.; He, P. Ultrasensitive microchip electrophoretic detection of the mecA gene in methicillin-resistant Staphylococcus aureus (MRSA) based on isothermal strand-displacement polymerase reaction. Talanta 2021, 222, 121686. [Google Scholar] [CrossRef]
- Murray, A.K.; Clairegaze, A. Novel insights into selection for antibiotic resistance in complex microbial communities. MBio 2018, 9, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Papaventsis, D.; Casali, N.; Kontsevaya, I.; Drobniewski, F.; Cirillo, D.; Nikolayevskyy, V. Whole genome sequencing of Mycobacterium tuberculosis for detection of drug resistance: A systematic review. Clin. Microbiol. Infect. 2017, 23, 61–68. [Google Scholar] [CrossRef]
- Adissu, W.; Brito, M.; Garbin, E.; Macedo, M.; Monteiro, W.; Mukherjee, S.K.; Myburg, J.; Alam, M.S.; Bancone, G.; Bansil, P.; et al. Clinical performance validation of the STANDARD G6PD test: A multi-country pooled analysis. PLoS Neglected Trop. Dis. 2023, 17, e0011652. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, M.I. Painting a new picture of personalised medicine for diabetes. Diabetologia 2017, 60, 793–799. [Google Scholar] [CrossRef]
- Yee, J.; Heo, Y.; Kim, H.; Yoon, H.Y.; Song, G.; Gwak, H.S. Association between the CYP2C9 genotype and hypoglycemia among patients with type 2 diabetes receiving sulfonylurea treatment: A meta-analysis. Clin. Ther. 2021, 43, 836–843.e4. [Google Scholar] [CrossRef]
- Kim, H.; Bae, S.; Yoon, H.Y.; Yee, J.; Gwak, H.S. Association of the SLC47A1 gene variant with responses to metformin monotherapy in drug-naive patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 2022, 107, 2684–2690. [Google Scholar] [CrossRef] [PubMed]
- Bisio, A.; Anderson, S.; Norlander, L.; O’malley, G.; Robic, J.; Ogyaadu, S.; Hsu, L.; Levister, C.; Ekhlaspour, L.; Lam, D.W.; et al. Impact of a novel diabetes support system on a cohort of individuals with type 1 diabetes treated with multiple daily injections: A multicenter randomized study. Diabetes Care 2022, 45, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Breton, M.D.; Patek, S.D.; Lv, D.; Schertz, E.; Robic, J.; Pinnata, J.; Kollar, L.; Barnett, C.; Wakeman, C.; Oliveri, M.; et al. Continuous glucose monitoring and insulin informed advisory system with automated titration and dosing of insulin reduces glucose variability in type 1 diabetes mellitus. Diabetes Technol. Ther. 2018, 20, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Aldubayan, M.A.; Pigsborg, K.; Gormsen, S.M.; Serra, F.; Palou, M.; Mena, P.; Hjorth, M.F. Empowering consumers to PREVENT diet-related diseases through OMICS sciences (PREVENTOMICS): Protocol for a parallel double-blinded randomised intervention trial to investigate biomarker-based nutrition plans for weight loss. BMJ Open 2022, 12, e051285. [Google Scholar] [CrossRef]
- Ingelman-Sundberg, M. Personalized medicine into the next generation. J. Intern. Med. 2015, 277, 152. [Google Scholar] [CrossRef]
- Schwaederle, M.; Zhao, M.; Lee, J.J.; Eggermont, A.M.; Schilsky, R.L.; Mendelsohn, J.; Lazar, V.; Kurzrock, R. Impact of precision medicine in diverse cancers: A meta-analysis of phase II clinical trials. J. Clin. Oncol. 2015, 33, 3817–3825. [Google Scholar] [CrossRef] [PubMed]
- Horgan, D.; Jansen, M.; Leyens, L.; Lal, J.A.; Sudbrak, R.; Hackenitz, E.; Buβhoff, U.; Ballensiefen, W.; Brand, A. An index of barriers for the implementation of personalised medicine and pharmacogenomics in Europe. Public Health Genom. 2014, 17, 287–298. [Google Scholar] [CrossRef]
- Wells, C.J. A consensus on collaboration: Reviewing the 15th annual personalized medicine conference at Harvard Medical School. Pers. Med. 2020, 17, 79–81. [Google Scholar] [CrossRef]
- Laschinger, S.; Medves, J.; Pulling, C.; McGraw, D.R.; Waytuck, B.; Harrison, M.B.; Gambeta, K. Effectiveness of simulation on health profession students’ knowledge, skills, confidence and satisfaction. Int. J. Evid.-Based Healthc. 2008, 6, 278–302. [Google Scholar] [CrossRef] [PubMed]
- Raisaro, J.L. Privacy-Enhancing Technologies for Medical and Genomic Data: From Theory to Practice. Ph.D. Thesis, Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland, 2018. [Google Scholar]
- Jin, H.; Luo, Y.; Li, P.; Mathew, J. A review of secure and privacy-preserving medical data sharing. IEEE Access 2019, 7, 61656–61669. [Google Scholar] [CrossRef]
- Gymrek, M.; McGuire, A.L.; Golan, D.; Halperin, E.; Erlich, Y. Identifying personal genomes by surname inference. Science 2013, 339, 321–324. [Google Scholar] [CrossRef]
- Vayena, E.; Blasimme, A. Health Research with Big Data: Time for Systemic Oversight. J. Law Med. Ethics 2018, 46, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Brothers, K.B.; Rothstein, M.A. Ethical, legal and social implications of incorporating personalized medicine into healthcare. Pers. Med. 2015, 12, 43–51. [Google Scholar] [CrossRef]
- Garrison, N.A. Genomic justice for Native Americans: Impact of the Havasupai case on genetic research. Sci. Technol. Hum. Values 2013, 38, 201–223. [Google Scholar] [CrossRef] [PubMed]
- Sharrer, G.T. Personalized medicine: Ethical aspects. Mol. Profiling Methods Protoc. 2017, 1606, 37–50. [Google Scholar]
- Knowles, L.; Luth, W.; Bubela, T. Paving the road to personalized medicine: Recommendations on regulatory, intellectual property and reimbursement challenges. J. Law Biosci. 2017, 4, 453–506. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Gaiteri, C.; Bodea, L.-G.; Wang, Z.; McElwee, J.; Podtelezhnikov, A.A.; Zhang, C.; Xie, T.; Tran, L.; Dobrin, R.; et al. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell 2013, 153, 707–720. [Google Scholar] [CrossRef] [PubMed]
- Beccia, F.; Hoxhaj, I.; Castagna, C.; Strohäker, T.; Cadeddu, C.; Ricciardi, W.; Boccia, S. An overview of Personalized Medicine landscape and policies in the European Union. Eur. J. Public Health 2022, 32, 844–851. [Google Scholar] [CrossRef]
- Shabaruddin, F.H.; Fleeman, N.D.; Payne, K. Economic evaluations of personalized medicine: Existing challenges and current developments. Pharmacogenomics Pers. Med. 2015, 8, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Trosman, J.R.; Van Bebber, S.L.; Phillips, K.A. Health technology assessment and private payers’ coverage of personalized medicine. J. Oncol. Pract. 2011, 7 (Suppl. 3), 18s–24s. [Google Scholar] [CrossRef]
- Davis, J.C.; Furstenthal, L.; Desai, A.A.; Norris, T.; Sutaria, S.; Fleming, M.P. The microeconomics of personalized medicine: Today’s challenge and tomorrow’s promise. Nat. Rev. Drug Discov. 2009, 8, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Hamburg, M.A.; Collins, F.S. The path to personalized medicine. N. Engl. J. Med. 2010, 363, 301–304. [Google Scholar] [CrossRef] [PubMed]
- Daack-Hirsch, S.; Jackson, B.; Belchez, C.A.; Elder, B.; Hurley, R.; Kerr, P.; Nissen, M.K. Integrating genetics and genomics into nursing curricula: You can do it too! Nurs. Clin. 2013, 48, 661–669. [Google Scholar]
- Bowdin, S.C.; Hayeems, R.Z.; Monfared, N.; Cohn, R.D.; Meyn, M.S. The SickKids Genome Clinic: Developing and evaluating a pediatric model for individualized genomic medicine. Clin. Genet. 2016, 89, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Beccia, F.; Causio, F.; Farina, S.; Savoia, C.; Osti, T.; Di Marcantonio, M.; Morsella, A.; Cadeddu, C.; Ricciardi, W.; Boccia, S. Personalised Medicine in shaping sustainable healthcare: A Delphi survey within the IC2PerMed project. Eur. J. Public Health 2022, 32 (Suppl. 3), ckac129.429. [Google Scholar] [CrossRef]
- Mirnezami, R.; Nicholson, J.; Darzi, A. Preparing for precision medicine. N. Engl. J. Med. 2012, 366, 489–491. [Google Scholar] [CrossRef] [PubMed]
- Bashraheel, S.S.; Domling, A.; Goda, S.K. Update on targeted cancer therapies, single or in combination, and their fine tuning for precision medicine. Biomed. Pharmacother. 2020, 125, 110009. [Google Scholar] [CrossRef]
- Branco, I.; Choupina, A. Bioinformatics: New tools and applications in life science and personalized medicine. Appl. Microbiol. Biotechnol. 2021, 105, 937–951. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Pritchard, D.; Gullett, L.; Amanti, K.G.; Gustavsen, G. A quantitative framework for measuring personalized medicine integration into us healthcare delivery organizations. J. Pers. Med. 2021, 11, 196. [Google Scholar] [CrossRef]
- Collins, F.S.; Varmus, H. A new initiative on precision medicine. N. Engl. J. Med. 2015, 372, 793–795. [Google Scholar] [CrossRef]
- Kaur, R.; Mandal, D.; Potdar, V.; Gosavi, M.S.; Kumar, A. Multi-Omics and Its Clinical Application. In Multi-Omics Analysis of the Human Microbiome: From Technology to Clinical Applications; Springer: Berlin/Heidelberg, Germany, 2024; pp. 295–319. [Google Scholar]
- Arifuzzaman, M.; Collins, N.; Guo, C.-J.; Artis, D. Nutritional regulation of microbiota-derived metabolites: Implications for immunity and inflammation. Immunity 2024, 57, 14–27. [Google Scholar] [CrossRef] [PubMed]
- Stanojevic, S.; Li, Y.; Ristivojevic, A.; Garmire, L.X. Computational methods for single-cell multi-omics integration and alignment. Genom. Proteom. Bioinform. 2022, 20, 836–849. [Google Scholar] [CrossRef] [PubMed]
- Dyer, N.L.; Surdam, J.; Srinivasan, R.; Agarwal, A.; Dusek, J.A. The impact of individualized complementary and integrative health interventions provided in clinical settings on quality of life: A systematic review of practice-based research. J. Integr. Complement. Med. 2022, 28, 618–640. [Google Scholar] [CrossRef] [PubMed]
- Wise, A.L.; Manolio, T.A.; Mensah, G.A.; Peterson, J.F.; Roden, D.M.; Tamburro, C.; Williams, M.S.; Green, E.D. Genomic medicine for undiagnosed diseases. Lancet 2019, 394, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Yang, Y.; Melton, P.E.; Singh, V.; Simpson-Yap, S.; Burdon, K.P.; Taylor, B.V.; Zhou, Y. Integrating genetic structural variations and whole-genome sequencing into clinical neurology. Neurol. Genet. 2022, 8, e200005. [Google Scholar] [CrossRef] [PubMed]
- Simons, M.J.H.G.; Retèl, V.P.; Ramaekers, B.L.T.; Butter, R.; Mankor, J.M.; Paats, M.S.; Aerts, J.G.J.V.; Mfumbilwa, Z.A.; Roepman, P.; Coupé, V.M.H.; et al. Early cost effectiveness of whole-genome sequencing as a clinical diagnostic test for patients with inoperable stage IIIB, C/IV non-squamous non-small-cell lung cancer. Pharmacoeconomics 2021, 39, 1429–1442. [Google Scholar] [CrossRef] [PubMed]
- Mesko, B. The Role of Artificial Intelligence in Precision Medicine; Taylor & Francis: Abingdon, UK, 2017; pp. 239–241. [Google Scholar]
- Vadapalli, S.; Abdelhalim, H.; Zeeshan, S.; Ahmed, Z. Artificial intelligence and machine learning approaches using gene expression and variant data for personalized medicine. Brief. Bioinform. 2022, 23, bbac191. [Google Scholar] [CrossRef]
- Ahmed, H.; Hamad, S.; Shedeed, H.A.; Hussein, A.S. Enhanced deep learning model for personalized cancer treatment. IEEE Access 2022, 10, 106050–106058. [Google Scholar] [CrossRef]
- Schumacher-Schuh, A.; Bieger, A.; Borelli, W.V.; Portley, M.K.; Awad, P.S.; Bandres-Ciga, S. Advances in proteomic and metabolomic profiling of neurodegenerative diseases. Front. Neurol. 2022, 12, 792227. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Zhang, F.; Xu, L.; Yue, L.; Kon, O.L.; Zhu, Y.; Guo, T. High-throughput proteomics and AI for cancer biomarker discovery. Adv. Drug Deliv. Rev. 2021, 176, 113844. [Google Scholar] [CrossRef]
- Molnár, V.; Sági, C.; Molnár, M.J. Sharing sensitive research data in the practice of personalised medicine. Orvosi Hetil. 2023, 164, 811–819. [Google Scholar] [CrossRef] [PubMed]
- Sheller, M.J.; Edwards, B.; Reina, G.A.; Martin, J.; Pati, S.; Kotrotsou, A.; Milchenko, M.; Xu, W.; Marcus, D.; Colen, R.R.; et al. Federated learning in medicine: Facilitating multi-institutional collaborations without sharing patient data. Sci. Rep. 2020, 10, 12598. [Google Scholar] [CrossRef] [PubMed]
- Weyant, C.; Brandeau, M.L. Partial Personalization of Medical Treatment Decisions: Adverse Effects and Possible Solutions. Med. Decis. Mak. 2022, 42, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Denny, J.C.; Collins, F.S. Precision medicine in 2030—Seven ways to transform healthcare. Cell 2021, 184, 1415–1419. [Google Scholar] [CrossRef] [PubMed]
- Gjødsbøl, I.M.; Winkel, B.G.; Bundgaard, H. Personalized medicine and preventive health care: Juxtaposing health policy and clinical practice. Crit. Public Health 2021, 31, 327–337. [Google Scholar] [CrossRef]
Features of Personalized Medicine | Features of Conventional Medicine |
---|---|
Utilizes a patient’s genetic profile | Relies on standardized treatments |
Targeted therapies | Designed for broad groups of people |
Predictive and preventive healthcare | Focus on disease diagnosis and treatment |
Biomarker-based diagnostics | Treatments and interventions are based on scientific research, clinical trials, and rigorous testing |
Customized treatment plans | Pharmaceuticals (drugs) and surgical interventions are central |
Incorporates large-scale data analysis, such as “big data” from electronic health records | Relies heavily on advanced diagnostic tools and technologies, such as X-rays and MRI scans |
A patient-centric approach | Medical practice is guided by clinical guidelines |
Precise dosage of medications | Drug dosages and treatment protocols are generally standardized |
Besides genetics, personalized medicine integrates lifestyle factors | Focuses on managing symptoms |
Drawbacks of Personalized Medicine | Drawbacks of Conventional Medicine |
---|---|
High cost for diagnosis, drug development and insurance coverage | Costs can rise due to unnecessary diagnostic tests or treatments |
Genetic data privacy issue | Less focus on data privacy |
Limited availability | More likely available |
Complexity in implementation | One-size-fits-all approach |
Regulatory and legal challenges | Strict regulation |
Relies on advanced technologies and specialized knowledge | Symptom-focused |
Lack of expertise but advancing quickly | Healthcare inequities and slow to adopt new technologies or practices |
Equity in access to treatment | Antibiotic resistance and surgical risks |
Predictive testing | Reactive, not preventive |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molla, G.; Bitew, M. Revolutionizing Personalized Medicine: Synergy with Multi-Omics Data Generation, Main Hurdles, and Future Perspectives. Biomedicines 2024, 12, 2750. https://doi.org/10.3390/biomedicines12122750
Molla G, Bitew M. Revolutionizing Personalized Medicine: Synergy with Multi-Omics Data Generation, Main Hurdles, and Future Perspectives. Biomedicines. 2024; 12(12):2750. https://doi.org/10.3390/biomedicines12122750
Chicago/Turabian StyleMolla, Getnet, and Molalegne Bitew. 2024. "Revolutionizing Personalized Medicine: Synergy with Multi-Omics Data Generation, Main Hurdles, and Future Perspectives" Biomedicines 12, no. 12: 2750. https://doi.org/10.3390/biomedicines12122750
APA StyleMolla, G., & Bitew, M. (2024). Revolutionizing Personalized Medicine: Synergy with Multi-Omics Data Generation, Main Hurdles, and Future Perspectives. Biomedicines, 12(12), 2750. https://doi.org/10.3390/biomedicines12122750