Analysis of Immunological Memory for John Cunningham Virus in a Mexican Population of Patients with Multiple Sclerosis Under Treatment
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baskaran, A.B.; Grebenciucova, E.; Shoemaker, T.; Graham, E.L. Current Updates on the Diagnosis and Management of Multiple Sclerosis for the General Neurologist. J. Clin. Neurol. 2023, 19, 217–229. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wallin, M.T.; Culpepper, W.J.; Campbell, J.D.; Nelson, L.M.; Langer-Gould, A.; Marrie, R.A.; Cutter, G.R.; Kaye, W.E.; Wagner, L.; Tremlett, H.; et al. The prevalence of MS in the United States: A population-based estimate using health claims data. Neurology 2019, 92, e1029–e1040, Erratum in Neurology 2019, 93, 688. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shams, H.; Shao, X.; Santaniello, A.; Kirkish, G.; Harroud, A.; Ma, Q.; Isobe, N.; Alexander, J.; Bove, R.; Baranzini, S.; et al. Polygenic risk score association with multiple sclerosis susceptibility and phenotype in Europeans. Brain 2023, 146, 645–656. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bar-Or, A.; Pender, M.P.; Khanna, R.; Steinman, L.; Hartung, H.P.; Maniar, T.; Croze, E.; Aftab, B.T.; Giovannoni, G.; Joshi, M.A. Epstein-Barr Virus in Multiple Sclerosis: Theory and Emerging Immunotherapies. Trends Mol. Med. 2020, 26, 296–310, Erratum in Trends Mol. Med. 2021, 27, 410–411. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Weiner, H.L. The challenge of multiple sclerosis: How do we cure a chronic heterogeneous disease? Ann. Neurol. 2009, 65, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Elliott, C.; Wolinsky, J.S.; Hauser, S.L.; Kappos, L.; Barkhof, F.; Bernasconi, C.; Wei, W.; Belachew, S.; Arnold, D.L. Slowly expanding/evolving lesions as a magnetic resonance imaging marker of chronic active multiple sclerosis lesions. Mult. Scler. J. 2019, 25, 1915–1925. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Freedman, M.S.; Devonshire, V.; Duquette, P.; Giacomini, P.S.; Giuliani, F.; Levin, M.C.; Montalban, X.; Morrow, S.A.; Oh, J.; Rotstein, D.; et al. Treatment Optimization in Multiple Sclerosis: Canadian MS Working Group Recommendations. Can. J. Neurol. Sci. 2020, 47, 437–455. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.; Hersh, C.M. Updates and advances in multiple sclerosis neurotherapeutics. Neurodegener. Dis. Manag. 2023, 13, 47–70. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Graf, J.; Aktas, O.; Rejdak, K.; Hartung, H.P. Monoclonal Antibodies for Multiple Sclerosis: An Update. BioDrugs 2019, 33, 61–78. [Google Scholar] [CrossRef] [PubMed]
- Morrow, S.A.; Clift, F.; Devonshire, V.; Lapointe, E.; Schneider, R.; Stefanelli, M.; Vosoughi, R. Use of natalizumab in persons with multiple sclerosis: 2022 update. Mult. Scler. Relat. Disord. 2022, 65, 103995. [Google Scholar] [CrossRef] [PubMed]
- Bloomgren, G.; Richman, S.; Hotermans, C.; Subramanyam, M.; Goelz, S.; Natarajan, A.; Lee, S.; Plavina, T.; Scanlon, J.V.; Sandrock, A.; et al. Risk of natalizumab-associated progressive multifocal leukoencephalopathy. N. Engl. J. Med. 2012, 366, 1870–1880. [Google Scholar] [CrossRef]
- Ho, P.R.; Koendgen, H.; Campbell, N.; Haddock, B.; Richman, S.; Chang, I. Risk of natalizumab-associated progressive multifocal leukoencephalopathy in patients with multiple sclerosis: A retrospective analysis of data from four clinical studies. Lancet Neurol. 2017, 16, 925–933. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Tolaymat, S.; Yu, H.; Elkhooly, M.; Jaiswal, S.; Jena, A.; Kakara, M.; Sriwastava, S. Progressive multifocal leukoencephalopathy in anti-CD20 and other monoclonal antibody (mAb) therapies used in multiple sclerosis: A review. J. Neurol. Sci. 2022, 443, 120459. [Google Scholar] [CrossRef] [PubMed]
- Jordan, A.L.; Yang, J.; Fisher, C.J.; Racke, M.K.; Mao-Draayer, Y. Progressive multifocal leukoencephalopathy in dimethyl fumarate-treated multiple sclerosis patients. Mult. Scler. J. 2022, 28, 7–15. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lombardo-Del Toro, P.; Bragado-Trigo, I.; Arroyo, P.; Tena-Cucala, R.; Bau, L.; Matas, E.; Muñoz-Vendrell, A.; Simó, M.; Pons-Escoda, A.; Martínez-Yélamos, A.; et al. Fingolimod-associated progressive multifocal leukoencephalopathy in a multiple sclerosis patient with a good response to filgrastim. J. Neurol. 2023, 270, 5196–5200. [Google Scholar] [CrossRef] [PubMed]
- Rindi, L.V.; Zaçe, D.; Braccialarghe, N.; Massa, B.; Barchi, V.; Iannazzo, R.; Fato, I.; De Maria, F.; Kontogiannis, D.; Malagnino, V.; et al. Drug-Induced Progressive Multifocal Leukoencephalopathy (PML): A Systematic Review and Meta-Analysis. Drug Saf. 2024, 47, 333–354. [Google Scholar] [CrossRef] [PubMed]
- Kowalec, K.; Carleton, B.; Tremlett, H. The potential role of pharmacogenomics in the prevention of serious adverse drug reactions in multiple sclerosis. Mult. Scler. Relat. Disord. 2013, 2, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Quiñones-Aguilar, S.; Sauri-Suárez, S.; Alcaraz-Estrada, S.; García, S. Progressive Multifocal Leukoencephalopathy associated to treatment with natalizumab in Mexican patient Multiple Sclerosis. Case report, analysis and update. Neuro Endocrinol. Lett. 2019, 40, 222–226. [Google Scholar]
- Lara, R.A.C. McDonald and MAGNIMS criteria in multiple sclerosis. Neurol. Neurocir. Psiquiatr. 2023, 51, 44–45. [Google Scholar]
- Merkel, B.; Butzkueven, H.; Traboulsee, A.L.; Havrdova, E.; Kalincik, T. Timing of high-efficacy therapy in relapsing-remitting multiple sclerosis: A systematic review. Autoimmun. Rev. 2017, 16, 658–665. [Google Scholar] [CrossRef]
- Selmaj, K.; Cree, B.A.C.; Barnett, M.; Thompson, A.; Hartung, H.P. Multiple sclerosis: Time for early treatment with high-efficacy drugs. J. Neurol. 2024, 271, 105–115. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bjornevik, K.; Cortese, M.; Healy, B.C.; Kuhle, J.; Mina, M.J.; Leng, Y.; Elledge, S.J.; Niebuhr, D.W.; Scher, A.I.; Munge, A.L. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science 2022, 375, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Thorley-Lawson, D.A. Epstein-Barr virus: Exploiting the immune system. Nat. Rev. Immunol. 2001, 1, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Soldan, S.S.; Lieberman, P.M. Epstein-Barr virus and multiple sclerosis. Nat. Rev. Microbiol. 2023, 21, 51–64. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Harley, J.B.; Chen, X.; Pujato, M.; Miller, D.; Maddox, A.; Forney, A.; Magnusen, A.F.; Lynch, A.; Chetal, K.; Yukawa, M.; et al. Transcription factors operate across disease loci, with EBNA2 implicated in autoimmunity. Nat. Genet. 2018, 50, 699–707. [Google Scholar] [CrossRef]
- Kartau, M.; Sipilä, J.O.; Auvinen, E.; Palomäki, M.; Verkkoniemi-Ahola, A. Progressive Multifocal Leukoencephalopathy: Current Insights. Degener. Neurol. Neuromuscul. Dis. 2019, 9, 109–121. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Auer, M.; Hegen, H.; Sellner, J.; Oppermann, K.; Bsteh, G.; Di Pauli, F.; Berger, T.; Deisenhammer, F. Conversion and reversion of anti-John Cunningham virus antibody serostatus: A prospective study. Brain Behav. 2019, 9, e01332. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ferenczy, M.W.; Marshall, L.J.; Nelson, C.D.; Atwood, W.J.; Nath, A.; Khalili, K.; Major, E.O. Molecular biology, epidemiology, and pathogenesis of progressive multifocal leukoencephalopathy, the JC virus-induced demyelinating disease of the human brain. Clin. Microbiol. Rev. 2012, 25, 471–506. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Trampe, A.K.; Hemmelmann, C.; Stroet, A.; Haghikia, A.; Hellwig, K.; Wiendl, H.; Goelz, S.; Ziegler, A.; Gold, R.; Chan, A. Anti-JC virus antibodies in a large German natalizumab-treated multiple sclerosis cohort. Neurology 2012, 78, 1736–1742. [Google Scholar] [CrossRef] [PubMed]
- Brew, B.J.; Davies, N.W.S.; Cinque, P.; Clifford, D.B.; Nath, A. Progressive multifocal leukoencephalopathy and other forms of JC virus disease. Nat. Rev. Neurol. 2010, 6, 667–679. [Google Scholar] [CrossRef]
- Paz, S.P.C.; Branco, L.; Pereira, M.A.C.; Spessotto, C.; Fragoso, Y.D. Systematic review of the published data on the worldwide prevalence of John Cunningham virus in patients with multiple sclerosis and neuromyelitis optica. Epidemiol. Health 2018, 40, e2018001. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schwab, N.; Schneider-Hohendorf, T.; Hoyt, T.; Gross, C.C.; Meuth, S.G.; Klotz, L.; Foley, J.F.; Wiendl, H. Anti-JCV serology during natalizumab treatment: Review and meta-analysis of 17 independent patient cohorts analyzing anti-John Cunningham polyoma virus sero-conversion rates under natalizumab treatment and differences between technical and biological sero-converters. Mult. Scler. J. 2018, 24, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Koolaji, S.; Allahabadi, N.S.; Ahmadi, A.; Eskandarieh, S.; Moghadasi, A.N.; Azimi, A.R.; Sahraian, M.A. Anti-JC virus antibody sera positivity and index value among patients with multiple sclerosis may be correlated with age, sex, and area of residence. J. Neurovirol. 2018, 24, 570–576. [Google Scholar] [CrossRef] [PubMed]
- Pietropaolo, V.; Prezioso, C.; Bagnato, F.; Antonelli, G. John Cunningham virus: An overview on biology and disease of the etiological agent of the progressive multifocal leukoencephalopathy. New Microbiol. 2018, 41, 179–186. [Google Scholar] [PubMed]
- Branco, L.P.; Adoni, T.; Apostolos-Pereira, S.L.; Brooks, J.B.B.; Correa, E.C.; Damasceno, C.A.; Eboni, A.C.B.; Fezer, L.; Gama, P.D.D.; Goncalves, M.V.M.; et al. Serological profile of John Cunningham virus (JCV) in patients with multiple sclerosis. Arq. Neuropsiquiatr. 2018, 76, 588–591. [Google Scholar] [CrossRef] [PubMed]
- Fragoso, Y.D.; Mendes, M.F.; Arruda, W.O.; Becker, J.; Brooks, J.B.; Carvalho Mde, J.; Comini-Frota, E.R.; Domingues, R.B.; Ferreira, M.L.; Finkelsztejn, A.; et al. Nearly one-half of Brazilian patients with multiple sclerosis using natalizumab are DNA-JC virus positive. Arq. Neuropsiquiatr. 2013, 71, 780–782. [Google Scholar] [CrossRef] [PubMed]
- Bozic, C.; Subramanyam, M.; Richman, S.; Plavina, T.; Zhang, A.; Ticho, B. Anti-JC virus (JCV) antibody prevalence in the JCV Epidemiology in MS (JEMS) trial. Eur. J. Neurol. 2014, 21, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Olsson, T.; Achiron, A.; Alfredsson, L.; Berger, T.; Brassat, D.; Chan, A.; Comi, G.; Eraksoy, M.; Hegen, H.; Hillert, J.; et al. Anti-JC virus antibody prevalence in a multinational multiple sclerosis cohort. Mult. Scler. J. 2013, 19, 1533–1538. [Google Scholar] [CrossRef] [PubMed]
- Bhan, V.; Lapierre, Y.; Freedman, M.S.; Duquette, P.; Selchen, D.; Migounov, V.; Walt, L.; Zhang, A. Anti-JC Virus Antibody Prevalence in Canadian MS Patients. Can. J. Neurol. Sci. 2014, 41, 748–752. [Google Scholar] [CrossRef] [PubMed]
- Sá, M.J.; Nunes, C.C.; da Silva, A.M.; Mota, P.; Pinto-Marques, J.; on behalf of the JUSTIFY Investigators. JC virus antibodies in Portuguese multiple sclerosis patients: JUSTIFY study results. J. Neurol. Sci. 2019, 406, 116426. [Google Scholar] [CrossRef]
- Bonek, R.; Guenter, W.; Jałowiński, R.; Karbicka, A.; Litwin, A.; Maciejowski, M.; Zajdel, R.; Zajdel, K.; Petit, V.; Rejdak, K. JC Virus Seroprevalence and JCVAb Index in Polish Multiple Sclerosis Patients Treated with Immunomodulating or Immunosuppressive Therapies. J. Clin. Med. 2021, 10, 1998. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, X.; Zhang, L.; Lei, Y.; Liu, X.; Zhou, X.; Liu, Y.; Wang, M.; Yang, L.; Zhang, L.; Fan, S.; et al. Meta-analysis of infectious agents and depression. Sci. Rep. 2014, 4, 4530. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yu, X.; Wang, S.; Wu, W.; Chang, H.; Shan, P.; Yang, L.; Zhang, W.; Wang, X. Exploring New Mechanism of Depression from the Effects of Virus on Nerve Cells. Cells 2023, 12, 1767. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Park, E.S.; Shin, C.Y.; Jeon, S.J.; Ham, B.J. Is There such a Thing as Post-Viral Depression?: Implications for Precision Medicine. Biomol. Ther. 2024, 32, 659. [Google Scholar] [CrossRef] [PubMed]
Patients with MS | |
---|---|
Number of Participants | 121 |
Women | 76 (62.8%) |
Age | 42.28 ± 10.62 |
Educational Level | |
Postgraduate | 12 |
Bachelor’s Degree | 69 |
High School or Technical Degree | 34 |
Secondary School | 3 |
Primary School | 3 |
Marital Status | |
Single | 61 |
Married | 44 |
Free Union | 8 |
Divorced | 7 |
Widowed | 1 |
Place of Residence | |
Mexico City and Metropolitan Area | 86 |
Rest of the Country | 35 |
Occupation | |
Professionals | 17 |
Public Sector Administrators | 33 |
Home | 16 |
Pensioners | 15 |
Teachers | 10 |
Unemployed | 14 |
Students | 4 |
Police | 3 |
Merchants | 2 |
Other | 7 |
*RRMS | **SPMS | ***PPMS | |
---|---|---|---|
Number of patients | 98 (81%) | 21 (17.35%) | 2 (1.65%) |
Duration of the disease in months | |||
Mean | 139 ± 88 | 181 ± 88 | 96 |
Median | 120 (408–24) | 180 (306–24) | 180 |
Women | 66 (67.34%) | 10 (47.61%) | 0 |
Age in years | |||
Mean | 30.68 ± 9.65 | 33.64 ± 11.27 | 19 |
Median | 30 (50–12) | 32 (59–17) | 30 |
Cognitive impairment | 42 (41%) | 14 (66%) | 2 (100%) |
History of depression | 29 (29.5%) | 13 (62%) | 1 (50%) |
Negative history of another neurological disease | 90 (92%) | 20 (95.2%) | 2 (199%) |
EDSS | |||
0 | 6 | - | - |
1.0 | 13 | - | - |
1.5 | 15 | - | - |
2.0 | 3 | - | - |
2.5 | 6 | - | - |
3.0 | 8 | - | - |
3.5 | 2 | - | - |
4.0 | 4 | 1 | - |
4.5 | 2 | - | - |
5.0 | 5 | - | - |
5.5 | 4 | 1 | - |
6.0 | 10 | 4 | 1 |
6.5 | 15 | 3 | 1 |
7.0 | 3 | 5 | - |
7.5 | 1 | 3 | - |
8.0 | - | 4 | - |
8.5 | - | - | - |
9.0 | 1 | - | - |
Sex | Age in Years | Type of MS | Evolution in Months | Current Treatment | EDSS | JCV Index | |
---|---|---|---|---|---|---|---|
Woman | 28 | RRMS | 108 | Natalizumab | 2.5 | 0.07 | Negative |
Woman | 66 | RRMS | 228 | Natalizumab | 6.5 | 0.08 | Negative |
Woman | 33 | RRMS | 216 | Natalizumab | 6.0 | 0.08 | Negative |
Woman | 50 | RRMS | 96 | Natalizumab | 2.5 | 0.09 | Negative |
Man | 60 | SPMS | 180 | Interferon | 8.0 | 0.1 | Negative |
Woman | 51 | RRMS | 336 | Natalizumab | 5.0 | 0.1 | Negative |
Man | 25 | RRMS | 168 | Natalizumab | 1.5 | 0.1 | Negative |
Woman | 56 | RRMS | 312 | Azathioprine | 7.0 | 0.1 | Negative |
Woman | 59 | RRMS | 180 | Teriflunomide | 2.5 | 0.1 | Negative |
Woman | 42 | RRMS | 144 | Ocrelizumab | 6.0 | 0.12 | Negative |
Woman | 27 | RRMS | 24 | Natalizumab | 2.5 | 0.12 | Negative |
Woman | 46 | RRMS | 300 | Natalizumab | 3.0 | 0.12 | Negative |
Man | 28 | RRMS | 120 | Natalizumab | 3.0 | 0.12 | Negative |
Woman | 50 | RRMS | 132 | Natalizumab | 6.5 | 0.12 | Negative |
Man | 37 | RRMS | 48 | Natalizumab | 6.0 | 0.13 | Negative |
Woman | 48 | RRMS | 72 | Natalizumab | 2.5 | 0.13 | Negative |
Woman | 38 | SPMS | 84 | Natalizumab | 7.0 | 0.14 | Negative |
Woman | 33 | RRMS | 24 | Natalizumab | 1.5 | 0.14 | Negative |
Man | 26 | RRMS | 60 | Natalizumab | 1.0 | 0.14 | Negative |
Woman | 34 | RRMS | 48 | Natalizumab | 1.0 | 0.16 | Negative |
Man | 32 | SPMS | 156 | Natalizumab | 5.5 | 0.16 | Negative |
Man | 59 | RRMS | 120 | Natalizumab | 1.5 | 0.16 | Negative |
Woman | 58 | RRMS | 168 | Natalizumab | 1.0 | 0.16 | Negative |
Man | 58 | RRMS | 96 | Natalizumab | 3.0 | 0.16 | Negative |
Woman | 34 | RRMS | 84 | Natalizumab | 6.5 | 0.17 | Negative |
Woman | 43 | RRMS | 228 | Teriflunomide | 0.0 | 0.17 | Negative |
Woman | 40 | RRMS | 156 | Natalizumab | 6.5 | 0.17 | Negative |
Woman | 55 | RRMS | 204 | Natalizumab | 6.0 | 0.18 | Negative |
Man | 42 | RRMS | 36 | Natalizumab | 1.0 | 0.18 | Negative |
Man | 41 | RRMS | 72 | Natalizumab | 5.0 | 0.18 | Negative |
Woman | 26 | RRMS | 72 | Natalizumab | 1.0 | 0.19 | Negative |
Mean | 42.74 ± 12.2 | 137.80 ± 85.12 | 0.25 ± 0.052 | ||||
Median | 42 (66–25) | 120 (336–24) | 0.13 (0.19–0.07) |
Sex | Age in Years | Type of MS | Evolution in Months | Current Treatment | EDSS | JCV Index | |
---|---|---|---|---|---|---|---|
Woman | 40 | RRMS | 156 | Natalizumab | 0.0 | 0.2 | Indeterminate |
Woman | 32 | RRMS | 240 | Natalizumab | 7.0 | 0.2 | Indeterminate |
Woman | 30 | RRMS | 204 | Natalizumab | 1.5 | 0.21 | Indeterminate |
Woman | 29 | RRMS | 96 | Natalizumab | 3.5 | 0.22 | Indeterminate |
Man | 28 | RRMS | 84 | Natalizumab | 0.0 | 0.22 | Indeterminate |
Woman | 41 | RRMS | 72 | Natalizumab | 5.5 | 0.23 | Indeterminate |
Woman | 47 | RRMS | 228 | Natalizumab | 6.5 | 0.23 | Indeterminate |
Woman | 38 | SPMS | 24 | Natalizumab | 6.5 | 0.24 | Indeterminate |
Man | 37 | RRMS | 108 | Natalizumab | 1.5 | 0.25 | Indeterminate |
Man | 22 | RRMS | 84 | Natalizumab | 0.0 | 0.26 | Indeterminate |
Woman | 37 | RRMS | 72 | Natalizumab | 1.5 | 0.27 | Indeterminate |
Woman | 59 | RRMS | 228 | Fingolimod | 6.5 | 0.3 | Indeterminate |
Woman | 49 | RRMS | 55 | Natalizumab | 6.0 | 0.36 | Indeterminate |
Man | 37 | RRMS | 72 | Glatiramer * | 6.0 | 0.37 | Indeterminate |
Mean | 37.57 ± 9.58 | 123.07 ± 73.1 | 0.254 ± 0.052 | ||||
Median | 37 (59–22) | 90 (240–24) | 0.23 (0.37–0.2) |
Sex | Age in Years | Type of MS | Evolution in Months | Current Treatment | EDSS | JCV Index | |
---|---|---|---|---|---|---|---|
Woman | 38 | RRMS | 48 | Natalizumab | 3.0 | 0.41 | Positive |
Woman | 34 | RRMS | 156 | Alemtuzumab | 6.0 | 0.51 | Positive |
Woman | 49 | RRMS | 264 | Natalizumab | 1.5 | 0.51 | Positive |
Woman | 33 | RRMS | 36 | Natalizumab | 1.0 | 0.58 | Positive |
Woman | 29 | RRMS | 24 | Natalizumab | 4.5 | 0.62 | Positive |
Woman | 34 | RRMS | 72 | Natalizumab | 1.5 | 0.83 | Positive |
Man | 31 | RRMS | 228 | Natalizumab | 4.0 | 0.89 | Positive |
Woman | 41 | RRMS | 55 | Natalizumab | 6.5 | 0.9 | Positive |
Man | 43 | RRMS | 48 | Natalizumab | 5.5 | 0.91 | Positive |
Woman | 46 | SPMS | 204 | Natalizumab | 6.5 | 0.92 | Positive |
Woman | 56 | RRMS | 84 | Natalizumab | 3.0 | 1 | Positive |
Woman | 40 | RRMS | 120 | Natalizumab | 6.5 | 1.03 | Positive |
Woman | 35 | RRMS | 36 | Natalizumab | 1.5 | 1.14 | Positive |
Woman | 42 | RRMS | 27 | Natalizumab | 1.5 | 1.14 | Positive |
Man | 56 | RRMS | 252 | Natalizumab | 0.0 | 1.16 | Positive |
Man | 37 | SPMS | 144 | Natalizumab | 7.5 | 1.27 | Positive |
Man | 28 | RRMS | 132 | Glatiramer * | 0.0 | 1.43 | Positive |
Woman | 32 | RRMS | 72 | Natalizumab | 2.0 | 1.48 | Positive |
Woman | 41 | RRMS | 156 | Cladribine | 4.0 | 1.63 | Positive |
Woman | 60 | RRMS | 120 | Teriflunomide | 4.0 | 1.71 | Positive |
Woman | 34 | RRMS | 216 | Natalizumab | 1.5 | 1.79 | Positive |
Man | 53 | SPMS | 360 | Natalizumab | 8.0 | 1.8 | Positive |
Man | 51 | RRMS | 384 | Natalizumab | 6.5 | 1.86 | Positive |
Man | 60 | SPMS | 228 | Natalizumab | 6.5 | 1.92 | Positive |
Woman | 47 | SPMS | 360 | Natalizumab | 6.0 | 1.92 | Positive |
Man | 42 | RRMS | 120 | Natalizumab | 1.5 | 1.96 | Positive |
Woman | 64 | RRMS | 228 | Cladribine | 6.5 | 1.99 | Positive |
Woman | 56 | RRMS | 408 | Natalizumab | 5.5 | 2 | Positive |
Woman | 33 | RRMS | 120 | Natalizumab | 4.5 | 2.07 | Positive |
Woman | 39 | RRMS | 36 | Natalizumab | 6.5 | 2.08 | Positive |
Man | 46 | RRMS | 156 | Natalizumab | 5.0 | 2.1 | Positive |
Woman | 46 | RRMS | 120 | Natalizumab | 7.0 | 2.1 | Positive |
Woman | 38 | RRMS | 264 | Teriflunomide | 5.5 | 2.12 | Positive |
Man | 44 | RRMS | 84 | Natalizumab | 1.5 | 2.14 | Positive |
Woman | 58 | RRMS | 192 | Immunoglobulin G | 9.0 | 2.15 | Positive |
Man | 40 | RRMS | 192 | Teriflunomide | 5.0 | 2.26 | Positive |
Woman | 47 | RRMS | 288 | Natalizumab | 3.0 | 2.5 | Positive |
Woman | 54 | RRMS | 108 | Natalizumab | 6.0 | 2.5 | Positive |
Man | 46 | RRMS | 252 | Teriflunomide | 7.5 | 2.56 | Positive |
Man | 44 | SPMS | 228 | Natalizumab | 7.5 | 2.61 | Positive |
Man | 48 | RRMS | 144 | Teriflunomide | 3.0 | 2.62 | Positive |
Woman | 52 | RRMS | 300 | Natalizumab | 1.5 | 2.75 | Positive |
Woman | 29 | SPMS | 204 | Natalizumab | 8.0 | 2.9 | Positive |
Woman | 45 | RRMS | 132 | Natalizumab | 1.0 | 2.92 | Positive |
Woman | 27 | RRMS | 36 | Glatiramer * | 1.0 | 2.94 | Positive |
Man | 38 | PPMS | 96 | Fingolimod | 6.5 | 3 | Positive |
Woman | 43 | RRMS | 96 | Natalizumab | 6.5 | 3.1 | Positive |
Woman | 49 | RRMS | 60 | Ocrelizumab | 3.0 | 3.15 | Positive |
Woman | 33 | SPMS | 144 | Alemtuzumab | 7.0 | 3.2 | Positive |
Man | 41 | RRMS | 72 | Fingolimod | 1.0 | 3.2 | Positive |
Woman | 31 | RRMS | 180 | Natalizumab | 2.0 | 3.26 | Positive |
Man | 61 | RRMS | 132 | Natalizumab | 3.3 | 3.26 | Positive |
Man | 30 | RRMS | 84 | Natalizumab | 1.0 | 3.27 | Positive |
Woman | 59 | RRMS | 276 | Fingolimod | 6.5 | 3.27 | Positive |
Man | 37 | RRMS | 48 | Natalizumab | 6.5 | 3.32 | Positive |
Man | 52 | RRMS | 288 | Teriflunomide | 6.0 | 3.34 | Positive |
Man | 22 | RRMS | 50 | Teriflunomide | 1.0 | 3.34 | Positive |
Man | 68 | SPMS | 300 | Natalizumab | 8.0 | 3.35 | Positive |
Man | 59 | SPMS | 120 | Alemtuzumab | 6.0 | 3.36 | Positive |
Woman | 30 | RRMS | 60 | Teriflunomide | 2.0 | 3.38 | Positive |
Man | 52 | SPMS | 144 | Natalizumab | 7.0 | 3.4 | Positive |
Woman | 33 | RRMS | 36 | Fingolimod | 4.0 | 3.44 | Positive |
Man | 50 | SPMS | 156 | Teriflunomide | 6.0 | 3.45 | Positive |
Woman | 52 | RRMS | 84 | Teriflunomide | 2.5 | 3.45 | Positive |
Woman | 40 | RRMS | 72 | Fingolimod | 6.5 | 3.46 | Positive |
Woman | 32 | RRMS | 132 | Alemtuzumab | 6.0 | 3.46 | Positive |
Man | 40 | RRMS | 120 | Fingolimod | 5.0 | 3.49 | Positive |
Man | 55 | SPMS | 36 | Fingolimod | 7.0 | 3.53 | Positive |
Woman | 34 | SPMS | 109 | Fingolimod | 4.0 | 3.57 | Positive |
Woman | 34 | RRMS | 96 | Natalizumab | 1.0 | 3.6 | Positive |
Woman | 42 | SPMS | 204 | Natalizumab | 7.5 | 3.62 | Positive |
Man | 36 | RRMS | 120 | Teriflunomide | 1.0 | 3.66 | Positive |
Woman | 41 | SPMS | 228 | Fingolimod | 7.0 | 3.73 | Positive |
Woman | 46 | SPMS | 192 | Teriflunomide | 6.0 | 3.73 | Positive |
Man | 46 | RRMS | 252 | Natalizumab | 1.5 | 3.78 | Positive |
Man | 31 | PPMS | 180 | Fingolimod | 6.0 | 3.93 | Positive |
Mean | 43.12 ± 10.1 | 152.33 ± 93.37 | 2.38 ± 1.02 | ||||
Median | 22 (68–22) | 132 (408–24) | 2.53 (3.93–0.41) |
Clinical Condition | Type of Analysis | R (Pearson) | p-Value |
---|---|---|---|
Cognitive impairment | Association | -- | 0.047 |
History of depression | Association | -- | 0.040 |
Absence of other neurological disease | Association | -- | 0.041 |
History of depression | Correlation | −0.202 | 0.020 |
Duration of fingolimod use | Correlation | 0.480 | 0.030 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García, S.; García-Martell, A.; Quiñones-Aguilar, S.; Sauri-Suárez, S.; Téllez González, M.A.; García-Castillo, G.; Suárez-Cuenca, J.A.; Toledo-Lozano, C.G.; Mondragón Terán, P.; Alcaraz-Estrada, S.L. Analysis of Immunological Memory for John Cunningham Virus in a Mexican Population of Patients with Multiple Sclerosis Under Treatment. Biomedicines 2024, 12, 2737. https://doi.org/10.3390/biomedicines12122737
García S, García-Martell A, Quiñones-Aguilar S, Sauri-Suárez S, Téllez González MA, García-Castillo G, Suárez-Cuenca JA, Toledo-Lozano CG, Mondragón Terán P, Alcaraz-Estrada SL. Analysis of Immunological Memory for John Cunningham Virus in a Mexican Population of Patients with Multiple Sclerosis Under Treatment. Biomedicines. 2024; 12(12):2737. https://doi.org/10.3390/biomedicines12122737
Chicago/Turabian StyleGarcía, Silvia, Adriana García-Martell, Sandra Quiñones-Aguilar, Sergio Sauri-Suárez, Mario Antonio Téllez González, Guillermo García-Castillo, Juan Antonio Suárez-Cuenca, Christian Gabriel Toledo-Lozano, Paul Mondragón Terán, and Sofia Lizeth Alcaraz-Estrada. 2024. "Analysis of Immunological Memory for John Cunningham Virus in a Mexican Population of Patients with Multiple Sclerosis Under Treatment" Biomedicines 12, no. 12: 2737. https://doi.org/10.3390/biomedicines12122737
APA StyleGarcía, S., García-Martell, A., Quiñones-Aguilar, S., Sauri-Suárez, S., Téllez González, M. A., García-Castillo, G., Suárez-Cuenca, J. A., Toledo-Lozano, C. G., Mondragón Terán, P., & Alcaraz-Estrada, S. L. (2024). Analysis of Immunological Memory for John Cunningham Virus in a Mexican Population of Patients with Multiple Sclerosis Under Treatment. Biomedicines, 12(12), 2737. https://doi.org/10.3390/biomedicines12122737