Analysis of Immunological Memory for John Cunningham Virus in a Mexican Population of Patients with Multiple Sclerosis Under Treatment
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baskaran, A.B.; Grebenciucova, E.; Shoemaker, T.; Graham, E.L. Current Updates on the Diagnosis and Management of Multiple Sclerosis for the General Neurologist. J. Clin. Neurol. 2023, 19, 217–229. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wallin, M.T.; Culpepper, W.J.; Campbell, J.D.; Nelson, L.M.; Langer-Gould, A.; Marrie, R.A.; Cutter, G.R.; Kaye, W.E.; Wagner, L.; Tremlett, H.; et al. The prevalence of MS in the United States: A population-based estimate using health claims data. Neurology 2019, 92, e1029–e1040, Erratum in Neurology 2019, 93, 688. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shams, H.; Shao, X.; Santaniello, A.; Kirkish, G.; Harroud, A.; Ma, Q.; Isobe, N.; Alexander, J.; Bove, R.; Baranzini, S.; et al. Polygenic risk score association with multiple sclerosis susceptibility and phenotype in Europeans. Brain 2023, 146, 645–656. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bar-Or, A.; Pender, M.P.; Khanna, R.; Steinman, L.; Hartung, H.P.; Maniar, T.; Croze, E.; Aftab, B.T.; Giovannoni, G.; Joshi, M.A. Epstein-Barr Virus in Multiple Sclerosis: Theory and Emerging Immunotherapies. Trends Mol. Med. 2020, 26, 296–310, Erratum in Trends Mol. Med. 2021, 27, 410–411. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Weiner, H.L. The challenge of multiple sclerosis: How do we cure a chronic heterogeneous disease? Ann. Neurol. 2009, 65, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Elliott, C.; Wolinsky, J.S.; Hauser, S.L.; Kappos, L.; Barkhof, F.; Bernasconi, C.; Wei, W.; Belachew, S.; Arnold, D.L. Slowly expanding/evolving lesions as a magnetic resonance imaging marker of chronic active multiple sclerosis lesions. Mult. Scler. J. 2019, 25, 1915–1925. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Freedman, M.S.; Devonshire, V.; Duquette, P.; Giacomini, P.S.; Giuliani, F.; Levin, M.C.; Montalban, X.; Morrow, S.A.; Oh, J.; Rotstein, D.; et al. Treatment Optimization in Multiple Sclerosis: Canadian MS Working Group Recommendations. Can. J. Neurol. Sci. 2020, 47, 437–455. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.; Hersh, C.M. Updates and advances in multiple sclerosis neurotherapeutics. Neurodegener. Dis. Manag. 2023, 13, 47–70. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Graf, J.; Aktas, O.; Rejdak, K.; Hartung, H.P. Monoclonal Antibodies for Multiple Sclerosis: An Update. BioDrugs 2019, 33, 61–78. [Google Scholar] [CrossRef] [PubMed]
- Morrow, S.A.; Clift, F.; Devonshire, V.; Lapointe, E.; Schneider, R.; Stefanelli, M.; Vosoughi, R. Use of natalizumab in persons with multiple sclerosis: 2022 update. Mult. Scler. Relat. Disord. 2022, 65, 103995. [Google Scholar] [CrossRef] [PubMed]
- Bloomgren, G.; Richman, S.; Hotermans, C.; Subramanyam, M.; Goelz, S.; Natarajan, A.; Lee, S.; Plavina, T.; Scanlon, J.V.; Sandrock, A.; et al. Risk of natalizumab-associated progressive multifocal leukoencephalopathy. N. Engl. J. Med. 2012, 366, 1870–1880. [Google Scholar] [CrossRef]
- Ho, P.R.; Koendgen, H.; Campbell, N.; Haddock, B.; Richman, S.; Chang, I. Risk of natalizumab-associated progressive multifocal leukoencephalopathy in patients with multiple sclerosis: A retrospective analysis of data from four clinical studies. Lancet Neurol. 2017, 16, 925–933. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Tolaymat, S.; Yu, H.; Elkhooly, M.; Jaiswal, S.; Jena, A.; Kakara, M.; Sriwastava, S. Progressive multifocal leukoencephalopathy in anti-CD20 and other monoclonal antibody (mAb) therapies used in multiple sclerosis: A review. J. Neurol. Sci. 2022, 443, 120459. [Google Scholar] [CrossRef] [PubMed]
- Jordan, A.L.; Yang, J.; Fisher, C.J.; Racke, M.K.; Mao-Draayer, Y. Progressive multifocal leukoencephalopathy in dimethyl fumarate-treated multiple sclerosis patients. Mult. Scler. J. 2022, 28, 7–15. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lombardo-Del Toro, P.; Bragado-Trigo, I.; Arroyo, P.; Tena-Cucala, R.; Bau, L.; Matas, E.; Muñoz-Vendrell, A.; Simó, M.; Pons-Escoda, A.; Martínez-Yélamos, A.; et al. Fingolimod-associated progressive multifocal leukoencephalopathy in a multiple sclerosis patient with a good response to filgrastim. J. Neurol. 2023, 270, 5196–5200. [Google Scholar] [CrossRef] [PubMed]
- Rindi, L.V.; Zaçe, D.; Braccialarghe, N.; Massa, B.; Barchi, V.; Iannazzo, R.; Fato, I.; De Maria, F.; Kontogiannis, D.; Malagnino, V.; et al. Drug-Induced Progressive Multifocal Leukoencephalopathy (PML): A Systematic Review and Meta-Analysis. Drug Saf. 2024, 47, 333–354. [Google Scholar] [CrossRef] [PubMed]
- Kowalec, K.; Carleton, B.; Tremlett, H. The potential role of pharmacogenomics in the prevention of serious adverse drug reactions in multiple sclerosis. Mult. Scler. Relat. Disord. 2013, 2, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Quiñones-Aguilar, S.; Sauri-Suárez, S.; Alcaraz-Estrada, S.; García, S. Progressive Multifocal Leukoencephalopathy associated to treatment with natalizumab in Mexican patient Multiple Sclerosis. Case report, analysis and update. Neuro Endocrinol. Lett. 2019, 40, 222–226. [Google Scholar]
- Lara, R.A.C. McDonald and MAGNIMS criteria in multiple sclerosis. Neurol. Neurocir. Psiquiatr. 2023, 51, 44–45. [Google Scholar]
- Merkel, B.; Butzkueven, H.; Traboulsee, A.L.; Havrdova, E.; Kalincik, T. Timing of high-efficacy therapy in relapsing-remitting multiple sclerosis: A systematic review. Autoimmun. Rev. 2017, 16, 658–665. [Google Scholar] [CrossRef]
- Selmaj, K.; Cree, B.A.C.; Barnett, M.; Thompson, A.; Hartung, H.P. Multiple sclerosis: Time for early treatment with high-efficacy drugs. J. Neurol. 2024, 271, 105–115. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bjornevik, K.; Cortese, M.; Healy, B.C.; Kuhle, J.; Mina, M.J.; Leng, Y.; Elledge, S.J.; Niebuhr, D.W.; Scher, A.I.; Munge, A.L. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science 2022, 375, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Thorley-Lawson, D.A. Epstein-Barr virus: Exploiting the immune system. Nat. Rev. Immunol. 2001, 1, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Soldan, S.S.; Lieberman, P.M. Epstein-Barr virus and multiple sclerosis. Nat. Rev. Microbiol. 2023, 21, 51–64. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Harley, J.B.; Chen, X.; Pujato, M.; Miller, D.; Maddox, A.; Forney, A.; Magnusen, A.F.; Lynch, A.; Chetal, K.; Yukawa, M.; et al. Transcription factors operate across disease loci, with EBNA2 implicated in autoimmunity. Nat. Genet. 2018, 50, 699–707. [Google Scholar] [CrossRef]
- Kartau, M.; Sipilä, J.O.; Auvinen, E.; Palomäki, M.; Verkkoniemi-Ahola, A. Progressive Multifocal Leukoencephalopathy: Current Insights. Degener. Neurol. Neuromuscul. Dis. 2019, 9, 109–121. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Auer, M.; Hegen, H.; Sellner, J.; Oppermann, K.; Bsteh, G.; Di Pauli, F.; Berger, T.; Deisenhammer, F. Conversion and reversion of anti-John Cunningham virus antibody serostatus: A prospective study. Brain Behav. 2019, 9, e01332. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ferenczy, M.W.; Marshall, L.J.; Nelson, C.D.; Atwood, W.J.; Nath, A.; Khalili, K.; Major, E.O. Molecular biology, epidemiology, and pathogenesis of progressive multifocal leukoencephalopathy, the JC virus-induced demyelinating disease of the human brain. Clin. Microbiol. Rev. 2012, 25, 471–506. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Trampe, A.K.; Hemmelmann, C.; Stroet, A.; Haghikia, A.; Hellwig, K.; Wiendl, H.; Goelz, S.; Ziegler, A.; Gold, R.; Chan, A. Anti-JC virus antibodies in a large German natalizumab-treated multiple sclerosis cohort. Neurology 2012, 78, 1736–1742. [Google Scholar] [CrossRef] [PubMed]
- Brew, B.J.; Davies, N.W.S.; Cinque, P.; Clifford, D.B.; Nath, A. Progressive multifocal leukoencephalopathy and other forms of JC virus disease. Nat. Rev. Neurol. 2010, 6, 667–679. [Google Scholar] [CrossRef]
- Paz, S.P.C.; Branco, L.; Pereira, M.A.C.; Spessotto, C.; Fragoso, Y.D. Systematic review of the published data on the worldwide prevalence of John Cunningham virus in patients with multiple sclerosis and neuromyelitis optica. Epidemiol. Health 2018, 40, e2018001. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schwab, N.; Schneider-Hohendorf, T.; Hoyt, T.; Gross, C.C.; Meuth, S.G.; Klotz, L.; Foley, J.F.; Wiendl, H. Anti-JCV serology during natalizumab treatment: Review and meta-analysis of 17 independent patient cohorts analyzing anti-John Cunningham polyoma virus sero-conversion rates under natalizumab treatment and differences between technical and biological sero-converters. Mult. Scler. J. 2018, 24, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Koolaji, S.; Allahabadi, N.S.; Ahmadi, A.; Eskandarieh, S.; Moghadasi, A.N.; Azimi, A.R.; Sahraian, M.A. Anti-JC virus antibody sera positivity and index value among patients with multiple sclerosis may be correlated with age, sex, and area of residence. J. Neurovirol. 2018, 24, 570–576. [Google Scholar] [CrossRef] [PubMed]
- Pietropaolo, V.; Prezioso, C.; Bagnato, F.; Antonelli, G. John Cunningham virus: An overview on biology and disease of the etiological agent of the progressive multifocal leukoencephalopathy. New Microbiol. 2018, 41, 179–186. [Google Scholar] [PubMed]
- Branco, L.P.; Adoni, T.; Apostolos-Pereira, S.L.; Brooks, J.B.B.; Correa, E.C.; Damasceno, C.A.; Eboni, A.C.B.; Fezer, L.; Gama, P.D.D.; Goncalves, M.V.M.; et al. Serological profile of John Cunningham virus (JCV) in patients with multiple sclerosis. Arq. Neuropsiquiatr. 2018, 76, 588–591. [Google Scholar] [CrossRef] [PubMed]
- Fragoso, Y.D.; Mendes, M.F.; Arruda, W.O.; Becker, J.; Brooks, J.B.; Carvalho Mde, J.; Comini-Frota, E.R.; Domingues, R.B.; Ferreira, M.L.; Finkelsztejn, A.; et al. Nearly one-half of Brazilian patients with multiple sclerosis using natalizumab are DNA-JC virus positive. Arq. Neuropsiquiatr. 2013, 71, 780–782. [Google Scholar] [CrossRef] [PubMed]
- Bozic, C.; Subramanyam, M.; Richman, S.; Plavina, T.; Zhang, A.; Ticho, B. Anti-JC virus (JCV) antibody prevalence in the JCV Epidemiology in MS (JEMS) trial. Eur. J. Neurol. 2014, 21, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Olsson, T.; Achiron, A.; Alfredsson, L.; Berger, T.; Brassat, D.; Chan, A.; Comi, G.; Eraksoy, M.; Hegen, H.; Hillert, J.; et al. Anti-JC virus antibody prevalence in a multinational multiple sclerosis cohort. Mult. Scler. J. 2013, 19, 1533–1538. [Google Scholar] [CrossRef] [PubMed]
- Bhan, V.; Lapierre, Y.; Freedman, M.S.; Duquette, P.; Selchen, D.; Migounov, V.; Walt, L.; Zhang, A. Anti-JC Virus Antibody Prevalence in Canadian MS Patients. Can. J. Neurol. Sci. 2014, 41, 748–752. [Google Scholar] [CrossRef] [PubMed]
- Sá, M.J.; Nunes, C.C.; da Silva, A.M.; Mota, P.; Pinto-Marques, J.; on behalf of the JUSTIFY Investigators. JC virus antibodies in Portuguese multiple sclerosis patients: JUSTIFY study results. J. Neurol. Sci. 2019, 406, 116426. [Google Scholar] [CrossRef]
- Bonek, R.; Guenter, W.; Jałowiński, R.; Karbicka, A.; Litwin, A.; Maciejowski, M.; Zajdel, R.; Zajdel, K.; Petit, V.; Rejdak, K. JC Virus Seroprevalence and JCVAb Index in Polish Multiple Sclerosis Patients Treated with Immunomodulating or Immunosuppressive Therapies. J. Clin. Med. 2021, 10, 1998. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, X.; Zhang, L.; Lei, Y.; Liu, X.; Zhou, X.; Liu, Y.; Wang, M.; Yang, L.; Zhang, L.; Fan, S.; et al. Meta-analysis of infectious agents and depression. Sci. Rep. 2014, 4, 4530. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yu, X.; Wang, S.; Wu, W.; Chang, H.; Shan, P.; Yang, L.; Zhang, W.; Wang, X. Exploring New Mechanism of Depression from the Effects of Virus on Nerve Cells. Cells 2023, 12, 1767. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Park, E.S.; Shin, C.Y.; Jeon, S.J.; Ham, B.J. Is There such a Thing as Post-Viral Depression?: Implications for Precision Medicine. Biomol. Ther. 2024, 32, 659. [Google Scholar] [CrossRef] [PubMed]
Patients with MS | |
---|---|
Number of Participants | 121 |
Women | 76 (62.8%) |
Age | 42.28 ± 10.62 |
Educational Level | |
Postgraduate | 12 |
Bachelor’s Degree | 69 |
High School or Technical Degree | 34 |
Secondary School | 3 |
Primary School | 3 |
Marital Status | |
Single | 61 |
Married | 44 |
Free Union | 8 |
Divorced | 7 |
Widowed | 1 |
Place of Residence | |
Mexico City and Metropolitan Area | 86 |
Rest of the Country | 35 |
Occupation | |
Professionals | 17 |
Public Sector Administrators | 33 |
Home | 16 |
Pensioners | 15 |
Teachers | 10 |
Unemployed | 14 |
Students | 4 |
Police | 3 |
Merchants | 2 |
Other | 7 |
*RRMS | **SPMS | ***PPMS | |
---|---|---|---|
Number of patients | 98 (81%) | 21 (17.35%) | 2 (1.65%) |
Duration of the disease in months | |||
Mean | 139 ± 88 | 181 ± 88 | 96 |
Median | 120 (408–24) | 180 (306–24) | 180 |
Women | 66 (67.34%) | 10 (47.61%) | 0 |
Age in years | |||
Mean | 30.68 ± 9.65 | 33.64 ± 11.27 | 19 |
Median | 30 (50–12) | 32 (59–17) | 30 |
Cognitive impairment | 42 (41%) | 14 (66%) | 2 (100%) |
History of depression | 29 (29.5%) | 13 (62%) | 1 (50%) |
Negative history of another neurological disease | 90 (92%) | 20 (95.2%) | 2 (199%) |
EDSS | |||
0 | 6 | - | - |
1.0 | 13 | - | - |
1.5 | 15 | - | - |
2.0 | 3 | - | - |
2.5 | 6 | - | - |
3.0 | 8 | - | - |
3.5 | 2 | - | - |
4.0 | 4 | 1 | - |
4.5 | 2 | - | - |
5.0 | 5 | - | - |
5.5 | 4 | 1 | - |
6.0 | 10 | 4 | 1 |
6.5 | 15 | 3 | 1 |
7.0 | 3 | 5 | - |
7.5 | 1 | 3 | - |
8.0 | - | 4 | - |
8.5 | - | - | - |
9.0 | 1 | - | - |
Sex | Age in Years | Type of MS | Evolution in Months | Current Treatment | EDSS | JCV Index | |
---|---|---|---|---|---|---|---|
Woman | 28 | RRMS | 108 | Natalizumab | 2.5 | 0.07 | Negative |
Woman | 66 | RRMS | 228 | Natalizumab | 6.5 | 0.08 | Negative |
Woman | 33 | RRMS | 216 | Natalizumab | 6.0 | 0.08 | Negative |
Woman | 50 | RRMS | 96 | Natalizumab | 2.5 | 0.09 | Negative |
Man | 60 | SPMS | 180 | Interferon | 8.0 | 0.1 | Negative |
Woman | 51 | RRMS | 336 | Natalizumab | 5.0 | 0.1 | Negative |
Man | 25 | RRMS | 168 | Natalizumab | 1.5 | 0.1 | Negative |
Woman | 56 | RRMS | 312 | Azathioprine | 7.0 | 0.1 | Negative |
Woman | 59 | RRMS | 180 | Teriflunomide | 2.5 | 0.1 | Negative |
Woman | 42 | RRMS | 144 | Ocrelizumab | 6.0 | 0.12 | Negative |
Woman | 27 | RRMS | 24 | Natalizumab | 2.5 | 0.12 | Negative |
Woman | 46 | RRMS | 300 | Natalizumab | 3.0 | 0.12 | Negative |
Man | 28 | RRMS | 120 | Natalizumab | 3.0 | 0.12 | Negative |
Woman | 50 | RRMS | 132 | Natalizumab | 6.5 | 0.12 | Negative |
Man | 37 | RRMS | 48 | Natalizumab | 6.0 | 0.13 | Negative |
Woman | 48 | RRMS | 72 | Natalizumab | 2.5 | 0.13 | Negative |
Woman | 38 | SPMS | 84 | Natalizumab | 7.0 | 0.14 | Negative |
Woman | 33 | RRMS | 24 | Natalizumab | 1.5 | 0.14 | Negative |
Man | 26 | RRMS | 60 | Natalizumab | 1.0 | 0.14 | Negative |
Woman | 34 | RRMS | 48 | Natalizumab | 1.0 | 0.16 | Negative |
Man | 32 | SPMS | 156 | Natalizumab | 5.5 | 0.16 | Negative |
Man | 59 | RRMS | 120 | Natalizumab | 1.5 | 0.16 | Negative |
Woman | 58 | RRMS | 168 | Natalizumab | 1.0 | 0.16 | Negative |
Man | 58 | RRMS | 96 | Natalizumab | 3.0 | 0.16 | Negative |
Woman | 34 | RRMS | 84 | Natalizumab | 6.5 | 0.17 | Negative |
Woman | 43 | RRMS | 228 | Teriflunomide | 0.0 | 0.17 | Negative |
Woman | 40 | RRMS | 156 | Natalizumab | 6.5 | 0.17 | Negative |
Woman | 55 | RRMS | 204 | Natalizumab | 6.0 | 0.18 | Negative |
Man | 42 | RRMS | 36 | Natalizumab | 1.0 | 0.18 | Negative |
Man | 41 | RRMS | 72 | Natalizumab | 5.0 | 0.18 | Negative |
Woman | 26 | RRMS | 72 | Natalizumab | 1.0 | 0.19 | Negative |
Mean | 42.74 ± 12.2 | 137.80 ± 85.12 | 0.25 ± 0.052 | ||||
Median | 42 (66–25) | 120 (336–24) | 0.13 (0.19–0.07) |
Sex | Age in Years | Type of MS | Evolution in Months | Current Treatment | EDSS | JCV Index | |
---|---|---|---|---|---|---|---|
Woman | 40 | RRMS | 156 | Natalizumab | 0.0 | 0.2 | Indeterminate |
Woman | 32 | RRMS | 240 | Natalizumab | 7.0 | 0.2 | Indeterminate |
Woman | 30 | RRMS | 204 | Natalizumab | 1.5 | 0.21 | Indeterminate |
Woman | 29 | RRMS | 96 | Natalizumab | 3.5 | 0.22 | Indeterminate |
Man | 28 | RRMS | 84 | Natalizumab | 0.0 | 0.22 | Indeterminate |
Woman | 41 | RRMS | 72 | Natalizumab | 5.5 | 0.23 | Indeterminate |
Woman | 47 | RRMS | 228 | Natalizumab | 6.5 | 0.23 | Indeterminate |
Woman | 38 | SPMS | 24 | Natalizumab | 6.5 | 0.24 | Indeterminate |
Man | 37 | RRMS | 108 | Natalizumab | 1.5 | 0.25 | Indeterminate |
Man | 22 | RRMS | 84 | Natalizumab | 0.0 | 0.26 | Indeterminate |
Woman | 37 | RRMS | 72 | Natalizumab | 1.5 | 0.27 | Indeterminate |
Woman | 59 | RRMS | 228 | Fingolimod | 6.5 | 0.3 | Indeterminate |
Woman | 49 | RRMS | 55 | Natalizumab | 6.0 | 0.36 | Indeterminate |
Man | 37 | RRMS | 72 | Glatiramer * | 6.0 | 0.37 | Indeterminate |
Mean | 37.57 ± 9.58 | 123.07 ± 73.1 | 0.254 ± 0.052 | ||||
Median | 37 (59–22) | 90 (240–24) | 0.23 (0.37–0.2) |
Sex | Age in Years | Type of MS | Evolution in Months | Current Treatment | EDSS | JCV Index | |
---|---|---|---|---|---|---|---|
Woman | 38 | RRMS | 48 | Natalizumab | 3.0 | 0.41 | Positive |
Woman | 34 | RRMS | 156 | Alemtuzumab | 6.0 | 0.51 | Positive |
Woman | 49 | RRMS | 264 | Natalizumab | 1.5 | 0.51 | Positive |
Woman | 33 | RRMS | 36 | Natalizumab | 1.0 | 0.58 | Positive |
Woman | 29 | RRMS | 24 | Natalizumab | 4.5 | 0.62 | Positive |
Woman | 34 | RRMS | 72 | Natalizumab | 1.5 | 0.83 | Positive |
Man | 31 | RRMS | 228 | Natalizumab | 4.0 | 0.89 | Positive |
Woman | 41 | RRMS | 55 | Natalizumab | 6.5 | 0.9 | Positive |
Man | 43 | RRMS | 48 | Natalizumab | 5.5 | 0.91 | Positive |
Woman | 46 | SPMS | 204 | Natalizumab | 6.5 | 0.92 | Positive |
Woman | 56 | RRMS | 84 | Natalizumab | 3.0 | 1 | Positive |
Woman | 40 | RRMS | 120 | Natalizumab | 6.5 | 1.03 | Positive |
Woman | 35 | RRMS | 36 | Natalizumab | 1.5 | 1.14 | Positive |
Woman | 42 | RRMS | 27 | Natalizumab | 1.5 | 1.14 | Positive |
Man | 56 | RRMS | 252 | Natalizumab | 0.0 | 1.16 | Positive |
Man | 37 | SPMS | 144 | Natalizumab | 7.5 | 1.27 | Positive |
Man | 28 | RRMS | 132 | Glatiramer * | 0.0 | 1.43 | Positive |
Woman | 32 | RRMS | 72 | Natalizumab | 2.0 | 1.48 | Positive |
Woman | 41 | RRMS | 156 | Cladribine | 4.0 | 1.63 | Positive |
Woman | 60 | RRMS | 120 | Teriflunomide | 4.0 | 1.71 | Positive |
Woman | 34 | RRMS | 216 | Natalizumab | 1.5 | 1.79 | Positive |
Man | 53 | SPMS | 360 | Natalizumab | 8.0 | 1.8 | Positive |
Man | 51 | RRMS | 384 | Natalizumab | 6.5 | 1.86 | Positive |
Man | 60 | SPMS | 228 | Natalizumab | 6.5 | 1.92 | Positive |
Woman | 47 | SPMS | 360 | Natalizumab | 6.0 | 1.92 | Positive |
Man | 42 | RRMS | 120 | Natalizumab | 1.5 | 1.96 | Positive |
Woman | 64 | RRMS | 228 | Cladribine | 6.5 | 1.99 | Positive |
Woman | 56 | RRMS | 408 | Natalizumab | 5.5 | 2 | Positive |
Woman | 33 | RRMS | 120 | Natalizumab | 4.5 | 2.07 | Positive |
Woman | 39 | RRMS | 36 | Natalizumab | 6.5 | 2.08 | Positive |
Man | 46 | RRMS | 156 | Natalizumab | 5.0 | 2.1 | Positive |
Woman | 46 | RRMS | 120 | Natalizumab | 7.0 | 2.1 | Positive |
Woman | 38 | RRMS | 264 | Teriflunomide | 5.5 | 2.12 | Positive |
Man | 44 | RRMS | 84 | Natalizumab | 1.5 | 2.14 | Positive |
Woman | 58 | RRMS | 192 | Immunoglobulin G | 9.0 | 2.15 | Positive |
Man | 40 | RRMS | 192 | Teriflunomide | 5.0 | 2.26 | Positive |
Woman | 47 | RRMS | 288 | Natalizumab | 3.0 | 2.5 | Positive |
Woman | 54 | RRMS | 108 | Natalizumab | 6.0 | 2.5 | Positive |
Man | 46 | RRMS | 252 | Teriflunomide | 7.5 | 2.56 | Positive |
Man | 44 | SPMS | 228 | Natalizumab | 7.5 | 2.61 | Positive |
Man | 48 | RRMS | 144 | Teriflunomide | 3.0 | 2.62 | Positive |
Woman | 52 | RRMS | 300 | Natalizumab | 1.5 | 2.75 | Positive |
Woman | 29 | SPMS | 204 | Natalizumab | 8.0 | 2.9 | Positive |
Woman | 45 | RRMS | 132 | Natalizumab | 1.0 | 2.92 | Positive |
Woman | 27 | RRMS | 36 | Glatiramer * | 1.0 | 2.94 | Positive |
Man | 38 | PPMS | 96 | Fingolimod | 6.5 | 3 | Positive |
Woman | 43 | RRMS | 96 | Natalizumab | 6.5 | 3.1 | Positive |
Woman | 49 | RRMS | 60 | Ocrelizumab | 3.0 | 3.15 | Positive |
Woman | 33 | SPMS | 144 | Alemtuzumab | 7.0 | 3.2 | Positive |
Man | 41 | RRMS | 72 | Fingolimod | 1.0 | 3.2 | Positive |
Woman | 31 | RRMS | 180 | Natalizumab | 2.0 | 3.26 | Positive |
Man | 61 | RRMS | 132 | Natalizumab | 3.3 | 3.26 | Positive |
Man | 30 | RRMS | 84 | Natalizumab | 1.0 | 3.27 | Positive |
Woman | 59 | RRMS | 276 | Fingolimod | 6.5 | 3.27 | Positive |
Man | 37 | RRMS | 48 | Natalizumab | 6.5 | 3.32 | Positive |
Man | 52 | RRMS | 288 | Teriflunomide | 6.0 | 3.34 | Positive |
Man | 22 | RRMS | 50 | Teriflunomide | 1.0 | 3.34 | Positive |
Man | 68 | SPMS | 300 | Natalizumab | 8.0 | 3.35 | Positive |
Man | 59 | SPMS | 120 | Alemtuzumab | 6.0 | 3.36 | Positive |
Woman | 30 | RRMS | 60 | Teriflunomide | 2.0 | 3.38 | Positive |
Man | 52 | SPMS | 144 | Natalizumab | 7.0 | 3.4 | Positive |
Woman | 33 | RRMS | 36 | Fingolimod | 4.0 | 3.44 | Positive |
Man | 50 | SPMS | 156 | Teriflunomide | 6.0 | 3.45 | Positive |
Woman | 52 | RRMS | 84 | Teriflunomide | 2.5 | 3.45 | Positive |
Woman | 40 | RRMS | 72 | Fingolimod | 6.5 | 3.46 | Positive |
Woman | 32 | RRMS | 132 | Alemtuzumab | 6.0 | 3.46 | Positive |
Man | 40 | RRMS | 120 | Fingolimod | 5.0 | 3.49 | Positive |
Man | 55 | SPMS | 36 | Fingolimod | 7.0 | 3.53 | Positive |
Woman | 34 | SPMS | 109 | Fingolimod | 4.0 | 3.57 | Positive |
Woman | 34 | RRMS | 96 | Natalizumab | 1.0 | 3.6 | Positive |
Woman | 42 | SPMS | 204 | Natalizumab | 7.5 | 3.62 | Positive |
Man | 36 | RRMS | 120 | Teriflunomide | 1.0 | 3.66 | Positive |
Woman | 41 | SPMS | 228 | Fingolimod | 7.0 | 3.73 | Positive |
Woman | 46 | SPMS | 192 | Teriflunomide | 6.0 | 3.73 | Positive |
Man | 46 | RRMS | 252 | Natalizumab | 1.5 | 3.78 | Positive |
Man | 31 | PPMS | 180 | Fingolimod | 6.0 | 3.93 | Positive |
Mean | 43.12 ± 10.1 | 152.33 ± 93.37 | 2.38 ± 1.02 | ||||
Median | 22 (68–22) | 132 (408–24) | 2.53 (3.93–0.41) |
Clinical Condition | Type of Analysis | R (Pearson) | p-Value |
---|---|---|---|
Cognitive impairment | Association | -- | 0.047 |
History of depression | Association | -- | 0.040 |
Absence of other neurological disease | Association | -- | 0.041 |
History of depression | Correlation | −0.202 | 0.020 |
Duration of fingolimod use | Correlation | 0.480 | 0.030 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García, S.; García-Martell, A.; Quiñones-Aguilar, S.; Sauri-Suárez, S.; Téllez González, M.A.; García-Castillo, G.; Suárez-Cuenca, J.A.; Toledo-Lozano, C.G.; Mondragón Terán, P.; Alcaraz-Estrada, S.L. Analysis of Immunological Memory for John Cunningham Virus in a Mexican Population of Patients with Multiple Sclerosis Under Treatment. Biomedicines 2024, 12, 2737. https://doi.org/10.3390/biomedicines12122737
García S, García-Martell A, Quiñones-Aguilar S, Sauri-Suárez S, Téllez González MA, García-Castillo G, Suárez-Cuenca JA, Toledo-Lozano CG, Mondragón Terán P, Alcaraz-Estrada SL. Analysis of Immunological Memory for John Cunningham Virus in a Mexican Population of Patients with Multiple Sclerosis Under Treatment. Biomedicines. 2024; 12(12):2737. https://doi.org/10.3390/biomedicines12122737
Chicago/Turabian StyleGarcía, Silvia, Adriana García-Martell, Sandra Quiñones-Aguilar, Sergio Sauri-Suárez, Mario Antonio Téllez González, Guillermo García-Castillo, Juan Antonio Suárez-Cuenca, Christian Gabriel Toledo-Lozano, Paul Mondragón Terán, and Sofia Lizeth Alcaraz-Estrada. 2024. "Analysis of Immunological Memory for John Cunningham Virus in a Mexican Population of Patients with Multiple Sclerosis Under Treatment" Biomedicines 12, no. 12: 2737. https://doi.org/10.3390/biomedicines12122737
APA StyleGarcía, S., García-Martell, A., Quiñones-Aguilar, S., Sauri-Suárez, S., Téllez González, M. A., García-Castillo, G., Suárez-Cuenca, J. A., Toledo-Lozano, C. G., Mondragón Terán, P., & Alcaraz-Estrada, S. L. (2024). Analysis of Immunological Memory for John Cunningham Virus in a Mexican Population of Patients with Multiple Sclerosis Under Treatment. Biomedicines, 12(12), 2737. https://doi.org/10.3390/biomedicines12122737