Antihypertensive, Anti-Inflammatory, and Antiangiogenic In Silico Activity of Lactoferrin-Derived Peptides of Equine Milk Hydrolysate
Abstract
1. Introduction
2. Materials and Methods
2.1. Lactoferrin Separation from Milk Components
2.2. Protein Extraction
2.3. Mass Spectrometry Analysis
2.4. Biological Activity of Peptides In Silico
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Global Report on Hypertension: The Race Against a Silent Killer. World Health Organization. 2023. Available online: https://www.who.int/publications/i/item/9789240081062 (accessed on 4 November 2024).
- Mills, K.T.; Stefanescu, A.; He, J. The global epidemiology of hypertension. Nat. Rev. Nephrol. 2020, 16, 223–237. [Google Scholar] [CrossRef] [PubMed]
- Khalil, H.; Zeltser, R. Antihypertensive medications. In StatPearls; StatPearls Publishing: St. Petersburg, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK554579/ (accessed on 4 November 2024).
- Chen, D.; Rehfeld, J.F.; Watts, A.G.; Rorsman, P.; Gundlach, A.L. History of key regulatory peptide systems and perspectives for future research. J. Neuroendocrinol. 2023, 35, e13251. [Google Scholar] [CrossRef] [PubMed]
- Awaludin, A.; Rahayu, C.; Daud NA, A.; Zakiyah, N. Antihypertensive medications for severe hypertension in pregnancy: A systematic review and meta-analysis. Healthcare 2022, 10, 325. [Google Scholar] [CrossRef]
- Stergiou, G.; Brunström, M.; MacDonald, T.; Kyriakoulis, K.G.; Bursztyn, M.; Khan, N.; Bakris, G.; Kollias, A.; Menti, A.; Muntner, P.; et al. Bedtime dosing of antihypertensive medications: Systematic review and consensus statement: International Society of Hypertension position paper endorsed by World Hypertension League and European Society of Hypertension. J. Hypertens. 2022, 40, 1847–1858. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.K.; Sonnahalli, N.K.; Chowdhary, R. Do antihypertensive medications have an effect on dental implants? A systematic review. Oral Maxillofac. Surg. 2024, 28, 459–468. [Google Scholar] [CrossRef]
- Leorita, M.; Ikawati, Z.; Endro-Nugroho, A.; Setyopranoto, I. Comparison of the efficacy and tolerability of candesartan cilexetil between hypertension patients of muna and tolaki ethnicity. Res. J. Pharm. Technol. 2024, 17, 1503–1509. [Google Scholar] [CrossRef]
- Hanna, S.M.; Rabea, H.M.; Abdelrahim ME, A.; Mahmoud, H.B. Safety and efficacy of candesartan versus valsartan combined with amlodipine on peripheral and central blood pressure. Hipertens. Y Riesgo Vasc. 2024, 41, 17–25. [Google Scholar] [CrossRef]
- Evaluation of Soybean Peptides Product on Regulation of Blood Pressure Effect in Humans ClinicalTrials.gov ID NCT03828955 Sponsor Chung Shan Medical University Information provided by You-Cheng Shen, Chung Shan Medical University. Available online: https://clinicaltrials.gov/study/NCT03828955?cond=NCT03828955%20&rank=1 (accessed on 1 October 2024).
- Samuel, P.O.; Edo, G.I.; Emakpor, O.L.; Oloni, G.O.; Ezekiel, G.O.; Essaghah, A.E.A.; Agoh, E.; Agbo, J.J. Lifestyle modifications for preventing and managing cardiovascular diseases. Sport Sci. Health 2024, 20, 23–36. [Google Scholar] [CrossRef]
- Nouri, M.; Shateri, Z.; Vali, M.; Faghih, S. The relationship between the intake of fruits, vegetables, and dairy products with hypertension: Findings from the STEPS study. BMC Nutr. 2023, 9, 99. [Google Scholar] [CrossRef]
- LACTOPRES: Study on the Effect of Dairy Peptides on Blood Pressure in Untreated Hypertensive Subjects. Available online: https://clinicaltrials.gov/study/NCT00167869?cond=NCT00167869%20&rank=1 (accessed on 1 October 2024).
- Ansari, S.; Mohammadifard, N.; Hajihashemi, P.; Haghighatdoost, F.; Zarepur, E.; Mahmoudi, S.; Nouri, F.; Nouhi, F.; Kazemi, T.; Salehi, N.; et al. The relationship between fermented and nonfermented dairy products consumption and hypertension among premature coronary artery disease patients: Iran premature coronary artery disease study. Food Sci. Nutr. 2024, 12, 3322–3335. [Google Scholar] [CrossRef]
- Hemp Seed Protein and Bioactive Peptides Consumption for Hypertension. Available online: https://clinicaltrials.gov/study/NCT03508895?cond=hypertension&term=peptides&rank=3 (accessed on 5 November 2024).
- Kumar, S.; Sanap, S.N.; Vasoya, M.; Handa, M.; Pandey, P.; Khopade, A.; Sawant, K.K. USFDA-approved parenteral peptide formulations and excipients: Industrial perspective. J. Drug Deliv. Sci. Technol. 2024, 95, 105589. [Google Scholar] [CrossRef]
- WHO. Hypertension Kazakhstan 2023 Country Profile. Available online: https://cdn.who.int/media/docs/default-source/country-profiles/hypertension/hypertension-2023/hypertension_kaz_2023.pdf?sfvrsn=9b4f3611_4&download=true (accessed on 5 November 2024).
- Average Annual Consumption of Milk Products in Kazakhstan. Available online: https://dairynews.today/global/news/57-9-kg-of-milk-and-dairy-products-were-consumed-on-average-by-residents-of-kazakhstan-during-the-se.html (accessed on 1 October 2024).
- Miraglia, N.; Salimei, E.; Fantuz, F. Fantuz Equine milk production and valorization of marginal areas—A review. Animals 2020, 10, 353. [Google Scholar] [CrossRef] [PubMed]
- Uniacke-Lowe, T.; Huppertz, T.; Fox, P.F. Equine milk proteins: Chemistry, structure and nutritional significance. Int. Dairy J. 2010, 20, 609–629. [Google Scholar] [CrossRef]
- Barreto, Í.M.L.G.; Rangel, A.H.D.N.; Urbano, S.A.; Bezerra, J.d.S.; Oliveira, C.A.d.A. Equine milk and its potential use in the human diet. Food Sci. Technol. 2019, 39, 1–7. [Google Scholar] [CrossRef]
- Faccia, M.; D’Alessandro, A.G.; Summer, A.; Hailu, Y. Milk products from minor dairy species: A review. Animals 2020, 10, 1260. [Google Scholar] [CrossRef]
- Lajnaf, R.; Feki, S.; Ameur, S.B.; Attia, H.; Kammoun, T.; Ayadi, M.A.; Masmoudi, H. Recent advances in selective allergies to mammalian milk proteins not associated with Cow’s Milk Proteins Allergy. Food Chem. Toxicol. 2023, 178, 113929. [Google Scholar] [CrossRef]
- Lajnaf, R.; Feki, S.; Ameur, S.B.; Attia, H.; Kammoun, T.; Ayadi, M.A.; Masmoudi, H. Cow’s milk alternatives for children with cow’s milk protein allergy-Review of health benefits and risks of allergic reaction. Int. Dairy J. 2023, 141, 105624. [Google Scholar] [CrossRef]
- Kazimierska, K.; Kalinowska-Lis, U. Milk proteins—Their biological activities and use in cosmetics and dermatology. Molecules 2021, 26, 3253. [Google Scholar] [CrossRef]
- Shini, V.S.; Udayarajan, C.T.; Nisha, P. A comprehensive review on lactoferrin: A natural multifunctional glycoprotein. Food Funct. 2022, 13, 11954–11972. [Google Scholar] [CrossRef]
- Shaikh, A.; Mehta, B.M.; Jana, A.H. Chemistry, nutritional properties and application of Equine’s milk: A review. Agric. Rev. 2022, 43, 355–361. [Google Scholar] [CrossRef]
- Arain, M.A.; Khaskheli, G.B.; Shah, A.H.; Marghazani, I.B.; Barham, G.S.; Shah, Q.A.; Khand, F.M.; Buzdar, J.A.; Soomro, F.; Fazlani, S.A. Nutritional significance and promising therapeutic/medicinal application of camel milk as a functional food in human and animals: A comprehensive review. Anim. Biotechnol. 2023, 34, 1988–2005. [Google Scholar] [CrossRef] [PubMed]
- Borzenkova, N.V.; Balabushevich, N.G.; Larionova, N.I. Lactoferrin: Physicochemical properties, biological functions, delivery systems, drugs and biologically active additives. Biopharm. J. 2010, 2, 3–19. [Google Scholar]
- Baker, H.M.; Baker, E.N. Lactoferrin and iron: Structural and dynamic aspects of binding and release. BioMetals 2004, 17, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Zarzosa-Moreno, D.; Avalos-Gómez, C.; Ramírez-Texcalco, L.S.; Torres-López, E.; Ramírez-Mondragón, R.; Hernández-Ramírez, J.O.; Serrano-Luna, J.; De La Garza, M. Lactoferrin and its derived peptides: An alternative for combating virulence mechanisms developed by pathogens. Molecules 2020, 25, 5763. [Google Scholar] [CrossRef]
- Sinha, M.; Kaushik, S.; Kaur, P.; Sharma, S.; Singh, T.P. Antimicrobial lactoferrin peptides: The hidden players in the protective function of a multifunctional protein. Int. J. Pept. 2013, 2013, 390230. [Google Scholar] [CrossRef]
- Avalos-Gómez, C.; Ramírez-Rico, G.; Ruiz-Mazón, L.; Sicairos, N.L.; Serrano-Luna, J.; de la Garza, M. Lactoferrin: An effective weapon in the battle against bacterial infections. Curr. Pharm. Des. 2022, 28, 3243–3260. [Google Scholar] [CrossRef]
- Japelj, B.; Pristovsek, P.; Majerle, A.; Jerala, R. Structural origin of endotoxin neutralization and antimicrobial activity of a lactoferrin-based peptide. J. Biol. Chem. 2005, 280, 16955–16961. [Google Scholar] [CrossRef]
- Furlund, C.; Ulleberg, E.; Devold, T.; Flengsrud, R.; Jacobsen, M.; Sekse, C.; Holm, H.; Vegarud, G. Identification of lactoferrin peptides generated by digestion with human gastrointestinal enzymes. J. Dairy Sci. 2013, 96, 75–88. [Google Scholar] [CrossRef]
- Food in 2050 (uniper.energy). Available online: https://www.uniper.energy/news/debateenergy-food-in-2050 (accessed on 5 November 2024).
- Global Milk Protein Isolate Market Size, Trends, Share 2033. Available online: https://www.custommarketinsights.com/report/milk-protein-isolate-market/ (accessed on 5 November 2024).
- Berillo, D. Comparative Toxicity of Interferon Beta-1a Impurities of Heavy Metal Ions. Medicina 2022, 58, 463. [Google Scholar] [CrossRef]
- Owusu-Apenten, R. Food Protein Analysis: Determination of Proteins in the Food and Agriculture System. In Handbook of Food Science, Technology, and Engineering-4 Volume Set; CRC Press: Boca Raton, FL, USA, 2005; Available online: https://www.taylorfrancis.com/chapters/mono/10.1201/b15995-11/food-protein-analysis-determination-proteins-thefood-agriculture-system-hui-frank-sherkat (accessed on 5 November 2024).
- Makhammajanov, Z.; Kabayeva, A.; Auganova, D.; Tarlykov, P.; Bukasov, R.; Turebekov, D.; Kanbay, M.; Molnar, M.Z.; Kovesdy, C.S.; Abidi, S.H.; et al. Candidate protein biomarkers in chronic kidney disease: A proteomics study. Sci. Rep. 2024, 14, 14014. [Google Scholar] [CrossRef]
- Power, O.; Jakeman, P.; FitzGerald, R.J. Antioxidative peptides: Enzymatic production, in vitro and in vivo antioxidant activity and potential applications of milk-derived antioxidative peptides. Amino Acids 2013, 44, 797–820. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Wu, J. Bovine lactoferrin-derived ACE inhibitory tripeptide LRP also shows antioxidative and anti-inflammatory activities in endothelial cells. J. Funct. Foods 2016, 25, 375–384. [Google Scholar] [CrossRef]
- Fernández-Musoles, R.; Salom, J.B.; Castelló-Ruiz, M.; del Mar Contreras, M.; Recio, I.; Manzanares, P. Bioavailability of antihypertensive lactoferricin B-derived peptides: Transepithelial transport and resistance to intestinal and plasma peptidases. Int. Dairy J. 2013, 32, 169–174. [Google Scholar] [CrossRef]
- Reveret, L.; Leclerc, M.; Morin, F.; Émond, V.; Calon, F. Pharmacokinetics, biodistribution and toxicology of novel cell-penetrating peptides. Sci. Rep. 2023, 13, 11081. [Google Scholar] [CrossRef]
- Hsu TC, S.; Steinberg, J.; Le Doux, R.; Sawitsky, A. The low ionic strength reaction of human blood: Relationship between the binding of serum immunoglobulin and complement to red blood cells and surface charge of the cells. Br. J. Haematol. 1979, 42, 403–415. [Google Scholar] [CrossRef] [PubMed]
- Zimecki, M.; Kruzel, M.L. Milk-derived proteins and peptides of potential therapeutic and nutritive value. J. Exp. Ther. Oncol. 2007, 6, 89–106. [Google Scholar] [PubMed]
- Pei, J.; Hua, Y.; Zhou, T.; Gao, X.; Dang, Y.; Wang, Y. Transport, in vivo antihypertensive effect, and pharmacokinetics of an Angiotensin-Converting Enzyme (ACE) inhibitory peptide LVLPGE. J. Agric. Food Chem. 2021, 69, 2149–2156. [Google Scholar] [CrossRef]
- Sánchez-Rivera, L.; Ares, I.; Miralles, B.; Gómez-Ruiz, J.; Recio, I.; Martínez-Larrañaga, M.R.; Anadón, A.; Martínez, M.A. Bioavailability and kinetics of the antihypertensive casein-derived peptide HLPLP in rats. J. Agric. Food Chem. 2014, 62, 11869–11875. [Google Scholar] [CrossRef]
- Sobczak, M.; Zakrzewski, P.K.; Cygankiewicz, A.I.; Mokrowiecka, A.; Chen, C.; Sałaga, M.; Małecka-Panas, E.; Kordek, R.; Krajewska, W.M.; Fichna, J. Anti-inflammatory action of a novel orally available peptide 317 in mouse models of inflammatory bowel diseases. Pharmacol. Rep. 2014, 66, 741–750. [Google Scholar] [CrossRef]
- Tsuda, H.; Fukamachi, K.; Xu, J.; Sekine, K.; Ohkubo, S.; Takasuka, N.; Iigo, M. Prevention of carcinogenesis and cancer metastasis by bovine lactoferrin. Proc. Jpn. Acad. Ser. B 2006, 82, 208–215. [Google Scholar] [CrossRef]
- Marcone, S.; Belton, O.; Fitzgerald, D.J. Milk-derived bioactive peptides and their health promoting effects: A potential role in atherosclerosis. Br. J. Clin. Pharmacol. 2017, 83, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Jrad, Z.; El-Hatmi, H.; Adt, I.; Gouin, S.; Jardin, J.; Oussaief, O.; Dbara, M.; Arroum, S.; Khorchani, T.; Degraeve, P.; et al. Antilisterial activity of dromedary lactoferrin peptic hydrolysates. J. Dairy Sci. 2018, 102, 4844–4856. [Google Scholar] [CrossRef] [PubMed]
- Hong, X.; Liu, X.; Su, B.; Lin, J. Improved antimicrobial activity of bovine lactoferrin peptide (LFcinB) based on rational design. Protein J. 2023, 42, 633–644. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, Z.; Xu, E.; Chen, L.; Feng, H.; Chen, L.; Deng, L.; Guo, D. Determination of lactoferrin in camel milk by ultrahigh-performance liquid chromatography-tandem mass spectrometry using an isotope-labeled winged peptide as internal standard. Molecules 2019, 24, 4199. [Google Scholar] [CrossRef]
- Alzain, M.; Ali, E.M.; Zamzami, M.; Qadri, I.; Choudhry, H.; Chaieb, K.; Kouidhi, B.; Altayb, H.N. Identification of antimicrobial bioactive peptides from the camel milk protein lactoferrin: Molecular docking, molecular dynamic simulation, and in vitro study. Food Humanit. 2024, 3, 100414. [Google Scholar] [CrossRef]
Amino Acid Sequence | Amino Acid Sequence | Isoelectric Point pI/Mw: |
---|---|---|
Cationic peptides | ||
KGSGFQLNQLQGVK | Lys-Gly-Ser-Gly-Phe-Gln-Leu-Asn-Gln-Leu-Gln-Val-Lys | 10.00/1502.82 |
VPSHAVVAR | Val-Pro-Ser-His-Ala-Val-Val-Ala-Arg | 9.73/934.53 |
GSGFQLNQLQGVK | Gly-Ser-Gly-Phe-Gln-Leu-Asn-Gln-Leu-Gln-Gly-Val-Lys | 8.75/1374.73 |
LRPVAAEVYQTR | Leu-Arg-Pro-Val-Ala-Ala-Glu-Val-Tyr-Glu-Thr-Arg | 8.75/1401.77 |
YYAVAVVK | Tyr-Tyr-Ala-Val-Ala-Val-Val-Lys | 8.50/911.51 |
KSDADLTWNSLSGKK | Lys-Ser-Asp-Ala-Asp-Leu-Thr-Trp-Asn-Ser-Leu-Ser-Gly-Lys-Lys | 8.50/1648.84 |
YYGYTGAFR | Tyr-Tyr-Gly-Tyr-Thr-Gly-Ala-Phe-Arg | 8.50/1096.50 |
SSAFQLFK | Ser-Ser-Ala-Phe-Gln-Leu-Phe-Lys | 8.47/926.49 |
GPSVSCIR | Gly-Pro-Ser-Val-Ser-Cys-Ile-Arg | 8.25/817.41 |
QYPNLCR | Gln-Tyr-Pro-Asn-Leu-Cys-Arg | 8.22/892.42 |
FCLFK | Phe-Cys-Leu-Phe-Lys | 8.22/656.34 |
KTSSFECIQAIAANK | Lys-Thr-Ser-Ser-Phe-Glu-Cys-Ile-Gln-Ala-Ile-Ala-Ala-Asn-Lys | 8.20/1609.81 |
RCSSSPLLEACAFLR | Arg-Cys-Ser-Ser-Ser-Pro-Leu-Leu-Glu-Ala-Cys-Ala-Phe-Lys-Arg | 8.07/1651.82 |
Neutral | ||
APNHAVVSQSDR | Ala-Pro-Asn-His-Ala-Val-Val-Ser-Gln-Ser-Asp-Arg | 6.79/1279.63 |
KPVAEAESCHLAR | Lys-Pro-Val-Ala-Glu-Ala-Glu-Ser-Cys-His-Leu-Ala-Arg | 6.75/1409.71 |
SQNSNAPDCVHRPPEGYLAVAVVR | Ser-Gln-Asn-Ser-Asn-Ala-Pro-Asp-Cys-Val-His-Arg-Pro-Pro-Glu-Gly-Tyr-Leu-Ala-Val-Ala-Val-Val-Arg | 6.47/2578.27 |
KVACASASTTEECIALVLK | Lys-Val-Ala-Cys-Ala-Ser-Ala-Ser-Thr-Thr-Glu-Glu-Cys-Ile-Ala-Leu-Val-Leu-Lys | 6.13/1936.00 |
NSEPWAK | Asn-Ser-Glu-Pro-Trp-Ala-Lys | 6.00/830.39 |
WCTISPAEAAK | Trp-Cys-Thr-Ile-Ser-Pro-Ala-Glu-Ala-Ala-Lys | 5.99/1175.56 |
CSSSPLLEACAFLR | Cys-Ser-Ser-Ser-Pro-Leu-Leu-Glu-Ala-Cys-Ala-Phe-Leu-Arg | 5.99/1495.72 |
CGLVPVLAENQK | Cys-Gly-Leu-Val-Pro-Val-Leu-Ala-Glu-Asn-Gln-Lys | 5.99/1269.68 |
CACSSQEPYFGYSGAFK | Cys-Ala-Cys-Ser-Ser-Gln-Glu-Pro-Tyr-Ser-Gly-Ala-Phe-Lys | 5.99/1843.75 |
DLLFKDSALGFVR | Asp-Leu-Leu-Phe-Lys-Asp-Ser-Ala-Leu-Gly-Phe-Val-Arg | 5.96/1479.81 |
KSDADLTWNSLSGK | Lys-Ser-Asp-Ala-Asp-Leu-Thr-Trp-Asn-Ser-Leu-Ser-Gly-Lys | 5.96/1520.75 |
KVLFLQQDQFGGNGPDCPGK | Lys-Val-Leu-Phe-Leu-Gln-Gln-Asp-Gln-Phe-Gly-Gly-Asn-Gly-Pro-Asp-Cys-Pro-Gly-Lys | 5.95/2147.05 |
AGDVAFVK | Ala-Gly-Asp-Val-Ala-Phe-Val-Lys | 5.88/805.43 |
AVANFFSASCVPCADGK | Ala-Val-Ala-Asn-Phe-Phe-Ser-Ala-Ser-Cys-Val-Pro-Cys-Ala-Asp-Gly-Lys | 5.86/1685.75 |
QWSDVSNR | Gln-Trp-Ser-Asp-Val-Ser-Asn-Arg | 5.84/990.45 |
DSALGFVR | Asp-Ser-Ala-Leu-Gly-Phe-Val-Arg | 5.84/863.45 |
IPSQIDSGLYLGANYLTATQNLR | Ile-Pro-Ser-Gln-Ile-Asp-Ser-Gly-Leu-Tyr-Leu-Gly-Ala-Asn-Tyr-Leu-Thr-Ala-Thr-Gln-Asn-Leu-Arg | 5.83/2507.30 |
TTYEQYLGSEYVTSITNLRR | Thr-Thr-Tyr-Glu-Gln-Tyr-Leu-Gly-Ser-Glu-Tyr-Val-Thr-Ser-Ile-Thr-Asn-Leu-Arg-Arg | 5.81/2393.19 |
STPENKDLLFK | Ser-Thr-Pro-Glu-Asn-Lys-Asp-Leu-Leu-Phe-Lys | 5.79/1290.68 |
TSSFECIQAIAANK | Thr-Ser-Ser-Phe-Glu-Cys-Ile-Gln-Ala-Ile-Ala-Ala-Asn-Lys | 5.66/1481.72 |
Anionic peptides | ||
VVWCAVGPEEERK | Val-Val-Trp-Cys-Ala-Val-Gly-Pro-Glu-Glu-Glu-Arg-Lys | 4.79/1500.74 |
LCAGTEADKCACSSQEPYFGYSGAFK | Leu-Cys-Ala-Gly-Thr-Glu-Ala-Asp-Lys-Cys-Ala-Cys-Ser-Ser-Gln-Glu-Pro-Tyr-Phe-Gly-Tyr-Ser-Gly-Ala-Phe-Lys | 4.68/2732.16 |
SVDGREDLIWR | Ser-Val-Asp-Gly-Arg-Glu-Asp-Leu-Ile-Trp-Arg | 4.56/1344.68 |
ADAVTLDGGLVYEAGLHPYK | Ala-Asp-Ala-Val-Thr-Leu-Asp-Gly-Gly-Leu-Val-Tyr-Glu-Ala-Gly-Leu-His-Pro-Tyr-Lys | 4.54/2088.05 |
ETAAEVAAR | Glu-Thr-Ala-Ala-Glu-Val-Ala-Ala-Arg | 4.53/916.46 |
VACASASTTEECIALVLK | Val-Ala-Cys-Ala-Ser-Ala-Ser-Thr-Thr-Glu-Glu-Cys-Ile-Ala-Leu-Val-Leu-Lys | 4.53/1807.91 |
TTYEQYLGSEYVTSITNLR | Thr-Thr-Tyr-Glu-Gln-Tyr-Leu-Gly-Ser-Glu-Tyr-Val-Thr-Ser-Ile-Thr-Asn-Leu-Arg | 4.53/2237.09 |
CLENGAGDVAFVK | Cys-Leu-Glu-Asn-Gly-Ala-Gly-Asp-Val-Ala-Phe-Val-Lys | 4.37/1321.63 |
YELLCPDNTR | Tyr-Glu-Leu-Leu-Cys-Pro-Asp-Asn-Thr-Arg | 4.37/1222.57 |
EDLIWR | Glu-Asp-Leu-Ile-Trp-Arg | 4.37/830.43 |
VVWCAVGPEEER | Val-Val-Trp-Cys-Ala-Val-Gly-Pro-Glu-Glu-Glu-Arg | 4.25/1372.64 |
DVTVLQNTDGK | Asp-Val-Thr-Val-Leu-Gln-Asn-Thr-Asp-Gly-Lys | 4.21/1188.60 |
SDADLTWNSLSGK | Ser-Asp-Ala-Asp-Leu-Thr-Trp-Asn-Ser-Leu-Ser-Gly-Lys | 4.21/1392.65 |
VLFLQQDQFGGNGPDCPGK | Val-Leu-Phe-Leu-Gln-Gln-Asp-Gln-Phe-Gly-Gly-Asn-Gly-Pro-Asp-Cys-Pro-Gly-Lys | 4.21/2018.95 |
VACASASTTEECIALVLKGEADALNLDGGFIYVAGK | Val-Ala-Cys-Ala-Ser-Ala-Ser-Thr-Thr-Glu-Glu-Cys-Ile-Ala-Leu-Val-Leu-Lys-Gly-Glu-Ala-Asp-Ala-Leu-Asp-Gly-Gly-Phe-Ile-Tyr-Val-Ala-Gly-Lys | 4.18/3598.79 |
NLLFNDNTECLAELQGK | Asn-Leu-Leu-Phe-Asn-Asp-Asn-Thr-Glu-Cys-Leu-Ala-Glu-Leu-Gln-Gly-Lys | 4.14/1920.93 |
FFSQSCAPGADPQSSLCALCVGNNENENK | Phe-Phe-Ser-Gln-Ser-Cys-Ala-Pro-Gly-Ala-Asp-Pro-Gln-Ser-Ser-Leu-Cys-Ala-Leu-Cys-Val-Gly-Asn-Asn-Glu-Asn-Glu-Asn-Lys | 4.14/3029.30 |
DLKQEDFELLCLDGTR | Asp-Leu-Lys-Gln-Glu-Asp-Phe-Glu-Leu-Leu-Cys-Leu-Asp-Gly-Thr-Arg | 4.11/1893.91 |
GEADALNLDGGFIYVAGK | Gly-Glu-Ala-Asp-Ala-Leu-Asn-Leu-Asp-Gly-Gly-Phe-Ile-Tyr-Val-Ala-Gly-Lys | 4.03/1808.89 |
DSTVFENLPDEADRDKYELLCPDNTR | Asp-Ser-Thr-Val-Phe-Glu-Asn-Leu-Pro-Asp-Glu-Ala-Asp-Arg-Asp-Lys-Tyr-Glu-Leu-Leu-Cys-Pro-Asp-Asn-Thr-Arg | 4.03/3054.39 |
DSTVFENLPDEADRDK | Asp-Ser-Thr-Val-Phe-Glu-Asn-Leu-Pro-Asp-Glu-Ala-Asp-Arg-Lys | 3.96/1849.83 |
QEDFELLCLDGTR | Gln-Glu-Asp-Phe-Glu-Leu-Leu-Cys-Leu-Asp-Gly-Thr-Arg | 3.92/1537.71 |
DSTVFENLPDEADR | Asp-Ser-Thr-Val-Phe-Glu-Asn-Leu-Pro-Asp-Glu-Ala-Asp-Arg | 3.77/1606.71 |
# | Amino Acid Sequence | Half-Life in Blood Plasma (in Seconds) | Half-Life in Intestine-like Environment (in Seconds) | AHTpin | PreAIP (Anti-Inflammatory Potency) | AntiAngio-Pred | |||
---|---|---|---|---|---|---|---|---|---|
Score | Prediction | Score | Confidence Label | Score | Prediction | ||||
1 | GPSVSCIR | 771 | 1.19 | −1.12 | Non-AHT | 0.41 | Medium | 1.09 | Anti-AAP |
2 | KTSSFECIQAIAANK | 832 | 0.92 | −0.99 | Non-AHT | 0.39 | Medium | −0.11 | Non-anti-AAP |
3 | LRPVAAEVYQTR | 866 | 0.70 | −0.30 | Non-AHT | 0.51 | High | −0.88 | Non-anti-AAP |
4 | YYAVAVVK | 834 | 0.95 | 0.39 | AHT | 0.41 | Medium | 0.14 | Anti-AAP |
5 | KGSGFQLNQLQGVK | 900 | 3.74 | −1.02 | Non-AHT | 0.44 | Medium | 0.50 | Anti-AAP |
6 | GSGFQLNQLQGVK | 855 | 3.8 | −0.79 | Non-AHT | 0.48 | High | 0.25 | Anti-AAP |
7 | QYPNLCR | 698 | 1.74 | 0.49 | AHT | 0.39 | Medium | 2.88 | Anti-AAP |
8 | VPSHAVVAR | 828 | 1.10 | −0.12 | Non-AHT | 0.38 | Low | −0.89 | Non-anti-AAP |
9 | SSAFQLFK | 841 | 1.35 | −0.93 | Non-AHT | 0.33 | Negative | −0.84 | Non-anti-AAP |
10 | KSDADLTWNSLSGKK | 936 | 1.37 | −1.43 | Non-AHT | 0.37 | Low | −0.46 | Non-anti-AAP |
11 | YYGYTGAFR | 788 | 1.47 | 0.29 | AHT | 0.46 | Medium | 0.20 | Anti-AAP |
12 | FCLFK | 834 | 1.24 | 0.11 | AHT | 0.38 | Low | 0.79 | Anti-AAP |
13 | RCSSSPLLEACAFLR | 723 | 0.90 | 0.53 | AHT | 0.47 | High | 1.81 | Anti-AAP |
# | Amino Acid Sequence | Half-Life in Blood Plasma (Seconds) | Half-Life in Intestine-like Environment (Seconds) | AHTpin | PreAIP (Anti-Inflammatory Potency) | AntiAngio-Pred | |||
---|---|---|---|---|---|---|---|---|---|
Score | Prediction | Score | Confidence Label | Score | Prediction | ||||
1. | ADAVTLDGGLVYEAGLHPYK | 884 | 0.548 | −1.22 | Non-AHT | 0.446 | Medium | −2.28 | Non-anti-AAP |
2. | LCAGTEADKCACSSQEPYFGYSGAFK | 2390 | 3.04 | −0.33 | Non-AHT | 0.58 | High | 0.20 | Anti-AAP |
3. | CLENGAGDVAFVK | 589 | 2.714 | −1.80 | Non-AHT | 0.59 | High | 1.81 | Non-anti-AAP |
4. | DSTVFENLPDEADR | 763 | 3.376 | −0.91 | Non-AHT | 0.45 | Medium | −0.49 | Non-anti-AAP |
5. | DSTVFENLPDEADRDK | 795 | 0.268 | −0.93 | Non-AHT | 0.53 | High | −0.86 | Non-anti-AAP |
6. | DSTVFENLPDEADRDKYELLCPDNTR | 669 | 0.385 | −1.10 | Non-AHT | 0.56 | High | 0.04 | Anti-AAP |
7. | YELLCPDNTR | 719 | 1.187 | 0.47 | AHT | 0.57 | High | 1.44 | Anti-AAP |
8. | SVDGREDLIWR | 775 | 0.731 | −1.57 | Non-AHT | 0.56 | High | 0.10 | Anti-AAP |
9. | EDLIWR | 914 | 1.407 | −0.75 | Non-AHT | 0.40 | Medium | −0.56 | Non-anti-AAP |
10. | ETAAEVAAR | 904 | 1.188 | −0.73 | Non-AHT | 0.35 | Low | −0.46 | Non-anti-AAP |
11. | VVWCAVGPEEER | 821 | 2.281 | 0.15 | AHT | 0.60 | High | 0.12 | Anti-AAP |
12. | VVWCAVGPEEERK | 812 | 2.442 | −0.01 | Non-AHT | 0.57 | High | −0.04 | Non-anti-AAP |
13. | VACASASTTEECIALVLK | 863 | 0.679 | −1.17 | Non-AHT | 0.55 | High | 0.01 | Anti-AAP |
14. | VACASASTTEECIALVLKGEADALNLDGGFIYVAGK | 843 | 1.048 | −2.09 | Non-AHT | 0.47 | High | −1.56 | Non-anti-AAP |
15. | GEADALNLDGGFIYVAGK | 1044 | 1.483 | −2.04 | Non-AHT | 0.47 | High | −2.73 | Non-anti-AAP |
16. | SDADLTWNSLSGK | 661 | 1.347 | −0.77 | Non-AHT | 0.46 | Medium | −0.21 | Non-anti-AAP |
17. | FFSQSCAPGADPQSSLCALCVGNNENENK | 683 | 1.936 | −0.29 | Non-AHT | 0.57 | High | 0.20 | Anti-AAP |
18. | DVTVLQNTDGK | 762 | 1.009 | −1.49 | Non-AHT | 0.36 | Low | −0.80 | Non-anti-AAP |
19. | DLKQEDFELLCLDGTR | 802 | 0.8 | −0.52 | Non-AHT | 0.54 | High | −0.28 | Non-anti-AAP |
20. | QEDFELLCLDGTR | 854 | 1.678 | −0.23 | Non-AHT | 0.54 | High | −0.12 | Non-anti-AAP |
21. | VLFLQQDQFGGNGPDCPGK | 956 | 3.601 | 0.05 | AHT | 0.44 | Medium | −0.32 | Non-anti-AAP |
22. | NLLFNDNTECLAELQGK | 851 | 0.418 | −1.00 | Non-AHT | 0.55 | High | −0.73 | Non-anti-AAP |
23. | TTYEQYLGSEYVTSITNLR | 694 | 0.403 | 0.74 | AHT | 0.53 | High | −0.11 | Non-anti-AAP |
# | Amino Acid Sequence | Half-Life in Blood Plasma (in Seconds) | Half-Life in Intestine-like Environment (in Seconds) | Ahtpin | PreAIP (Anti-Inflammatory Potency) | AntiAngio-Pred | |||
---|---|---|---|---|---|---|---|---|---|
Score | Prediction | Score | Confidence Label | Score | Prediction | ||||
1. | WCTISPAEAAK | 865 | 1.304 | −0.57 | Non-AHT | 0.53 | High | 0.92 | Anti-AAP |
2. | TSSFECIQAIAANK | 800 | 0.996 | −0.95 | Non-AHT | 0.51 | High | −0.07 | Non-anti-AAP |
3. | AVANFFSASCVPCADGK | 734 | 0.356 | −1.23 | Non-AHT | 0.55 | High | −0.55 | Non-anti-AAP |
4. | CACSSQEPYFGYSGAFK | 210 | 2.279 | 0.60 | AHT | 0.59 | High | 0.63 | Anti-AAP |
5. | STPENKDLLFK | 988 | 1.701 | −1.20 | Non-AHT | 0.46 | Medium | 0.21 | Anti-AAP |
6. | DLLFKDSALGFVR | 555 | 4.246 | −1.64 | Non-AHT | 0.50 | High | −0.74 | Non-anti-AAP |
7. | DSALGFVR | 440 | 3.828 | −1.47 | Non-AHT | 0.43 | Medium | −0.79 | Non-anti-AAP |
8. | IPSQIDSGLYLGANYLTATQNLR | 375 | 2.446 | −0.83 | Non-AHT | 0.52 | High | −0.28 | Non-anti-AAP |
9. | QWSDVSNR | 904 | 1.748 | −1.94 | Non-AHT | 0.35 | Low | 0.52 | Anti-AAP |
10. | KVACASASTTEECIALVLK | 806 | 1.095 | −1.24 | Non-AHT | 0.57 | High | −0.11 | Non-anti-AAP |
11. | CGLVPVLAENQK | 738 | 2.278 | −0.93 | Non-AHT | 0.45 | Medium | −0.27 | Non-anti-AAP |
12. | SQNSNAPDCVHRPPEGYLAVAVVR | 686 | 1.134 | −0.57 | Non-AHT | 0.48 | High | −0.71 | Non-anti-AAP |
13. | KSDADLTWNSLSGK | 778 | 1.124 | −1.21 | Non-AHT | 0.48 | High | −0.45 | Non-anti-AAP |
14. | AGDVAFVK | 799 | 3.238 | −0.17 | Non-AHT | 0.36 | Low | −1.58 | Non-anti-AAP |
15. | NSEPWAK | 813.81 | 1.373 | −0.65 | Non-AHT | 0.31 | negative AIP | −0.13 | Non-anti-AAP |
16. | KPVAEAESCHLAR | 915 | 3.021 | −0.54 | Non-AHT | 0.47 | High | −0.48 | Non-anti-AAP |
17. | APNHAVVSQSDR | 811 | 1.262 | −1.35 | Non-AHT | 0.49 | High | −0.95 | Non-anti-AAP |
18. | KVLFLQQDQFGGNGPDCPGK | 1098 | 1.272 | −0.09 | Non-AHT | 0.45 | Medium | −0.10 | Non-anti-AAP |
19. | TTYEQYLGSEYVTSITNLRR | 819 | 0.977 | 0.62 | AHT | 0.55 | High | 0.32 | Anti-AAP |
20. | CSSSPLLEACAFLR | 748 | 0.87 | 0.60 | AHT | 0.57 | High | 1.45 | Anti-AAP |
# | Amino Acid Sequence | Half-Life in Blood Plasma (in Seconds) | Half-Life in Intestine-like Environment (in Seconds) | AHTpin | AntiAngio-Pred | |||
---|---|---|---|---|---|---|---|---|
Score | Prediction | Score | Prediction | |||||
1 | QLFGSPAGQKDL | 1256 | 2.11 | 0.24 | AHT | −0.15 | Non-anti-AAP | [52] |
2 | GSPAGQKDLL | 1637 | 1.66 | 0.56 | AHT | 0.45 | Anti-AAP | |
3 | FKDSALGL | 596 | 0.59 | −0.44 | Non-AHT | −1.15 | Non-anti-AAP | |
4 | VLKGEADAL | 877 | 0.59 | −0.97 | Non-AHT | −1.48 | Non-anti-AAP | |
5 | LDCVHRPVKGY | 772 | 0.59 | −0.20 | Non-AHT | −0.50 | Non-anti-AAP | |
6 | WAKDLKL | 839 | 0.59 | −0.29 | Non-AHT | 0.70 | Anti-AAP | |
7 | RIDKVAHL | 761 | 0.594 | 0.36 | AHT | −1.54 | Non-anti-AAP | |
8 | FKDSALGL | 596 | - | −0.44 | Non-AHT | −1.15 | Non-anti-AAP | |
9 | IDKVAHL | 813 | - | 0.34 | AHT | −1.38 | Non-anti-AAP | |
10 | GRRRSVQWCAV | 862 | 1.455 | −1.54 | Non-AHT | 0.23 | Anti-AAP | [53] |
11 | WNLLRQAQEKFGKDKSP | 0.243 | - | −1.07 | Non-AHT | 0.41 | Anti-AAP | |
12 | KCFQWQRNMRKVRGPPVSCIKRDS | 1325 | - | −0.92 | Non-AHT | 1.48 | Anti-AAP | |
camel lactoferrin signature peptide | ||||||||
13 | DVTVLDNTDGK | 815 | 1.228 | −1.17 | Non-AHT | −0.44 | Non-anti-AAP | [54] |
14 | FPALLSLGALGLCLAASKKSVRW | 798 | 0.036 | −0.96 | Non-AHT | 0.68 | Anti-AAP | [55] |
15 | CTTSPAESSKCAQW | 855 | 2.171 | 1.54 | AHT | 1.80 | Anti-AAP | [55] |
16 | QRRMKKVRGPSVTCVKKTSRF | 876 | - | −0.52 | Non-AHT | 0.33 | Anti-AAP | [55] |
17 | VKDVTVLDNTDGKNTEQW | 790 | - | −0.84 | Non-AHT | −1.05 | Non-anti-AAP | [55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Narmuratova, M.; Berillo, D.; Narmuratova, Z.; Tarlykov, P.; Serikbayeva, A.; Kanayat, S. Antihypertensive, Anti-Inflammatory, and Antiangiogenic In Silico Activity of Lactoferrin-Derived Peptides of Equine Milk Hydrolysate. Biomedicines 2024, 12, 2715. https://doi.org/10.3390/biomedicines12122715
Narmuratova M, Berillo D, Narmuratova Z, Tarlykov P, Serikbayeva A, Kanayat S. Antihypertensive, Anti-Inflammatory, and Antiangiogenic In Silico Activity of Lactoferrin-Derived Peptides of Equine Milk Hydrolysate. Biomedicines. 2024; 12(12):2715. https://doi.org/10.3390/biomedicines12122715
Chicago/Turabian StyleNarmuratova, Meiramkul, Dmitriy Berillo, Zhanar Narmuratova, Pavel Tarlykov, Assiya Serikbayeva, and Shattyk Kanayat. 2024. "Antihypertensive, Anti-Inflammatory, and Antiangiogenic In Silico Activity of Lactoferrin-Derived Peptides of Equine Milk Hydrolysate" Biomedicines 12, no. 12: 2715. https://doi.org/10.3390/biomedicines12122715
APA StyleNarmuratova, M., Berillo, D., Narmuratova, Z., Tarlykov, P., Serikbayeva, A., & Kanayat, S. (2024). Antihypertensive, Anti-Inflammatory, and Antiangiogenic In Silico Activity of Lactoferrin-Derived Peptides of Equine Milk Hydrolysate. Biomedicines, 12(12), 2715. https://doi.org/10.3390/biomedicines12122715