Diagnostic Value of Endotoxin Activity for Acute Postoperative Complications: A Study in Major Abdominal Surgery Patients
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. EA Measurement
2.3. Data Collection and Study Outcomes
2.4. Statistical Analysis
3. Results
3.1. Study Population Selection and Group Classification
3.2. Demographic and Clinical Data
3.3. Clinical Outcome and Risk Factor Analysis
3.4. Subgroup Analysis of Elevated TB Group
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kramarow, E.A. Sepsis-Related Mortality Among Adults Aged 65 and Over: United States, 2019; NCHS Data Brief, No. 422; National Center for Health Statistics: Hyattsville, MD, USA, 2021.
- Leong, K.; Gaglani, B.; Khanna, A.K.; McCurdy, M.T. Novel diagnostics and therapeutics in sepsis. Biomedicines 2021, 9, 311. [Google Scholar] [CrossRef] [PubMed]
- Virzì, G.M.; Mattiotti, M.; de Cal, M.; Ronco, C.; Zanella, M.; De Rosa, S. Endotoxin in sepsis: Methods for LPS detection and the use of omics techniques. Diagnostics 2022, 13, 79. [Google Scholar] [CrossRef] [PubMed]
- Alexander, C.; Rietschel, E.T. Bacterial lipopolysaccharides and innate immunity. J. Endotoxin Res. 2012, 7, 167–202. [Google Scholar] [CrossRef]
- Raetz, C.R.; Whitfield, C. Lipopolysaccharide Endotoxins. Annu. Rev. Biochem. 2002, 71, 635–700. [Google Scholar] [CrossRef]
- Pinciroli, R.; Checchi, S.; Bottiroli, M.; Monti, G.; Casella, G.; Fumagalli, R. Endotoxin activity assay for the detection of whole blood endotoxemia in critically ill patients. J. Vis. Exp. 2019, 148, e58507. [Google Scholar] [CrossRef]
- Romaschin, A.D.; Harris, D.M.; Ribeiro, M.B.; Paice, J.; Foster, D.M.; Walker, P.M.; Marshall, J.C. A rapid assay of endotoxin in whole blood using autologous neutrophil dependent chemiluminescence. J. Immunol. Methods 1998, 212, 169–185. [Google Scholar] [CrossRef]
- Tamura, H.; Reich, J.; Nagaoka, I. Outstanding contributions of LAL technology to pharmaceutical and medical science: Review of methods, progress, challenges, and future perspectives in early detection and management of bacterial infections and invasive fungal diseases. Biomedicines 2021, 9, 536. [Google Scholar] [CrossRef]
- Sanada, Y.; Mizuta, K.; Urahashi, T.; Ihara, Y.; Wakiya, T.; Okada, N.; Yamada, N.; Ushijima, K.; Otomo, S.; Sakamoto, K.; et al. Impact of endotoxin measured by an endotoxin activity assay during liver transplantation. J. Surg. Res. 2013, 180, 349–355. [Google Scholar] [CrossRef]
- Marshall, J.C.; Foster, D.; Vincent, J.; Cook, D.J.; Cohen, J.; Dellinger, R.P.; Opal, S.; Abraham, E.; Brett, S.J.; Smith, T.; et al. Diagnostic and prognostic implications of endotoxemia in critical illness: Results of the MEDIC study. J. Infect. Dis. 2004, 190, 527–534. [Google Scholar] [CrossRef]
- Lee, W.Y.; Kim, H.J.; Kim, E.Y. Impact of polymyxin B hemoperfusion therapy on high endotoxin activity level patients after successful infection source control: A prospective cohort study. Sci. Rep. 2021, 11, 24132. [Google Scholar] [CrossRef]
- Paruk, F.; Chausse, J.M. Monitoring the post surgery inflammatory host response. J. Emerg. Crit. Care Med. 2019, 3, 47. [Google Scholar] [CrossRef]
- Chan, C.; Hwang, S.J.; Lee, F.Y.; Wang, S.S.; Chang, F.Y.; Li, C.P.; Chu, C.J.; Lu, R.H.; Lee, S.D. Prognostic value of plasma endotoxin levels in patients with cirrhosis. Scand. J. Gastroenterol. 1997, 32, 942–945. [Google Scholar] [CrossRef] [PubMed]
- Courtney, A.; Clymo, J.; Dorudi, Y.; Moonesinghe, S.R.; Dorudi, S. Scoping review: The terminology used to describe major abdominal surgical procedures. World J. Surg. 2024, 48, 574–584. [Google Scholar] [CrossRef]
- Nakatani, Y.; Fukui, H.; Kitano, H.; Nagamoto, I.; Tsujimoto, T.; Kuriyama, S.; Kikuchi, E.; Hoppou, K.; Tsujii, T. Endotoxin clearance and its relation to hepatic and renal disturbances in rats with liver cirrhosis. Liver 2001, 21, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Villani, R.; Loizzi, D.; Sacco, A.F.; Mirabella, L.; Santoliquido, M.; Mongiello, D.; Sollitto, F.; Serviddio, G. Prevalence and clinical relevance of liver dysfunction after thoracic surgery: A retrospective study. Sci. Rep. 2023, 13, 23045. [Google Scholar] [CrossRef]
- Faust, T.W.; Reddy, K.R. Postoperative jaundice. Clin. Liver Dis. 2004, 8, 151–166. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Levy, M.M.; Evans, L.E.; Rhodes, A. The surviving sepsis campaign bundle: 2018 update. Intensive Care Med. 2018, 44, 925–928. [Google Scholar] [CrossRef]
- Dindo, D.; Demartines, N.; Clavien, P.-A. Classification of surgical complications: A new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann. Surg. 2004, 240, 205–213. [Google Scholar] [CrossRef]
- Jarczak, D.; Kluge, S.; Nierhaus, A. Sepsis—Pathophysiology and therapeutic concepts. Front. Med. 2021, 8, 628302. [Google Scholar] [CrossRef]
- Sekine, S.; Imaizumi, H.; Masumoto, K.; Uchino, H. Usefulness of endotoxin activity assay for early diagnosis of sepsis. Crit. Care 2015, 19, 49. [Google Scholar] [CrossRef]
- Esposito, S.; de Simone, G.; Boccia, G.; de Caro, F.; Pagliano, P. Sepsis and septic shock: New definitions, new diagnostic and therapeutic approaches. J. Glob. Antimicrob. Resist. 2017, 10, 204–212. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho, F.T.; Rabello Filho, R.; Bulgarelli, L.; Serpa Neto, A.; Deliberato, R.O. Procalcitonin as a Diagnostic, Therapeutic, and Prognostic Tool: A Critical Review. Curr. Treat. Options Infect. Dis. 2019, 11, 1–11. [Google Scholar] [CrossRef]
- Hung, S.-K.; Lan, H.-M.; Han, S.-T.; Wu, C.-C.; Chen, K.-F. Current evidence and limitation of biomarkers for detecting sepsis and systemic infection. Biomedicines 2020, 8, 494. [Google Scholar] [CrossRef] [PubMed]
- Habib, S.H.; Ansar, W. Role of C-Reactive Protein (CRP) in Sepsis: Severity and Outcome. In Clinical Significance of C-Reactive Protein; Springer: Singapore, 2020; pp. 249–290. [Google Scholar]
- Gilbert-Kawai, N.; Hogan, B.; Milan, Z. Perioperative management of patients with liver disease. BJA Educ. 2022, 22, 111–117. [Google Scholar] [CrossRef]
- Dong, R.; Wan, B.; Lin, S.; Wang, M.; Huang, J.; Wu, Y.; Wu, Y.; Zhang, N.; Zhu, Y. Procalcitonin and liver disease: A literature review. J. Clin. Transl. Hepatol. 2018, 7, 51. [Google Scholar]
- Andersen, L.W.; Mackenhauer, J.; Roberts, J.C.; Berg, K.M.; Cocchi, M.N.; Donnino, M.W. Etiology and therapeutic approach to elevated lactate levels. In Mayo Clinic Proceedings; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Tongyoo, S.; Sutthipool, K.; Viarasilpa, T.; Permpikul, C. Serum lactate levels in cirrhosis and non-cirrhosis patients with septic shock. Acute Crit. Care 2021, 37, 108. [Google Scholar] [CrossRef]
All Patients | Low EA (EA < 0.485) | High EA (EA ≥ 0.485) | p-Value | |
---|---|---|---|---|
n = 86 | n = 49 (57%) | n = 37 (43%) | ||
Demographic characteristics | ||||
Age, years (mean ± SD) | 62.4 ± 15.4 | 59.7 ± 16.1 | 66 ± 13.9 | 0.062 |
Sex, Male, n (%) | 52 (60.5) | 30 (61.2) | 22 (59.5) | 1 |
Body mass index, kg/m2 (mean ± SD) | 23.46 ± 3.86 | 23.88 ± 3.91 | 22.91 ± 3.77 | 0.25 |
SOFA score at ICU admission (mean ± SD) | 4.7 ± 4.7 | 2.7 ± 2.9 | 7.4 ± 5.3 | <0.001 |
Respiratory | 1.2 ± 1.4 | 0.7 ± 1.1 | 1.9 ± 1.4 | <0.001 |
Cardiovascular | 1.3 ± 1.9 | 0.4 ± 1.2 | 2.4 ± 2 | <0.001 |
CNS | 1.4 ± 1.9 | 0.2 ± 0.7 | 0.7 ± 1.1 | 0.015 |
Liver | 0.9 ± 1 | 1 ± 1 | 0.7 ± 0.9 | 0.17 |
Renal | 0.5 ± 1 | 0.2 ± 0.5 | 0.9 ± 1.2 | 0.002 |
Coagulative | 0.4 ± 0.9 | 0.2 ± 0.6 | 0.8 ± 1.2 | 0.005 |
APACHE II score at ICU admission (mean ± SD) | 15.8 ± 8.6 | 11.8 ± 5.7 | 19 ± 9.3 | 0.001 |
Underlying disease, n (%) | ||||
Hypertension | 41 (47.7) | 21 (42.9) | 20 (54.1) | 0.384 |
Diabetes | 21 (24.4) | 14 (28.6) | 7 (18.9) | 0.325 |
Cerebrovascular accident | 11 (12.8) | 4 (8.2) | 7 (18.9) | 0.195 |
Heart failure | 1 (1.2) | 0 | 1 (2.7) | 0.43 |
Chronic kidney disease | 10 (11.6) | 5 (10.2) | 5 (13.5) | 0.739 |
End stage renal disease | 5 (5.8) | 2 (4.1) | 3 (8.1) | 0.648 |
Operation record | ||||
Operation time, min (mean ± SD) | 241 ± 108.2 | 272.7 ± 105.4 | 199.7 ± 98.4 | 0.002 |
Estimated blood loss, mL (mean ± SD) | 372.8 ± 343.3 | 393.6 ± 293.8 | 345.1 ± 402.3 | 0.52 |
Emergent operation | 33 (38.4) | 9 (18.4) | 24 (64.9) | <0.001 |
Baseline laboratory findings | ||||
WBC, ×109 counts/L (mean ± SD) | 11.91 ± 6.94 | 13.3 ± 6.49 | 10.07 ± 7.18 | 0.032 |
Hemoglobin, g/dL (mean ± SD) | 11.63 ± 3.34 | 12.39 ± 3.88 | 10.63 ± 2.12 | 0.014 |
Platelet, ×109 counts/L (mean ± SD) | 166.7 ± 103.2 | 206.3 ± 85.6 | 114.3 ± 102.1 | <0.001 |
Prothrombin time, % (mean ± SD) | 72 ± 26.28 | 80.85 ± 21.71 | 60.27 ± 27.46 | <0.001 |
BUN, mg/dL (mean ± SD) | 20.06 ± 16.52 | 13.87 ± 6.3 | 28.25 ± 21.69 | <0.001 |
Creatinine, mg/dL (mean ± SD) | 1.35 ± 1.4 | 0.93 ± 0.5 | 1.9 ± 1.94 | 0.005 |
C-reactive protein, mg/dL (mean ± SD) | 4.8 ± 7.95 | 1.6 ± 4.52 | 9.04 ± 9.47 | <0.001 |
Procalcitonin, ng/mL (mean ± SD) | 22.29 ± 38.94 | 12.07 ± 35.87 | 35.27 ± 39.46 | 0.024 |
Lactate, mmol/L (mean ± SD) | 3.5 ± 3 | 2.39 ± 1.98 | 4.77 ± 3.46 | 0.001 |
All Patients | Low EA (EA < 0.485) | High EA (EA ≥ 0.485) | p-Value | |
---|---|---|---|---|
n = 86 | n = 49 (57%) | n = 37 (43%) | ||
Postoperative complications | ||||
Anastomosis leakage | 3 (3.5) | 1 (2) | 2 (5.4) | 0.575 |
Bile leakage | 2 (2.3) | 0 | 2 (5.4) | 0.182 |
Intraabdominal fluid collection | 22 (25.6) | 13 (26.5) | 9 (24.3) | 1 |
Pneumonia | 10 (11.6) | 3 (6.1) | 7 (18.9) | 0.092 |
Postop bleeding | 3 (3.5) | 1 (2) | 2 (5.4) | 0.575 |
Wound infection | 0 | |||
Arrhythmia | 12 (18.2) | 1 (2.8) | 11 (36.7) | 0.001 |
Clinical outcomes | ||||
Sepsis | 44 (51.2) | 17 (34.7) | 27 (73) | 0.001 |
Septic shock | 25 (29.1) | 5(10.2) | 20 (54.1) | <0.001 |
Length of ICU stay, day (mean ± SD) | 5.5 ± 7 | 3.9 ± 5.6 | 7.6 ± 8 | 0.021 |
Length of hospital stay, day (mean ± SD) | 26.4 ± 31.4 | 18.2 ± 9.7 | 37.1 ± 44.7 | 0.016 |
Postoperative complications (C-D * ≥ 3) | 24 (27.9) | 5 (10.2) | 19 (51.4) | <0.001 |
ICU mortality | 9 (10.5) | 2 (4.1) | 7 (18.9) | 0.035 |
7-day mortality | 5 (5.8) | 0 | 5 (13.5) | 0.013 |
28-day mortality | 8 (9.3) | 1 (2) | 7 (18.9) | 0.019 |
In-hospital mortality | 8 (9.3) | 1 (2) | 7 (18.9) | 0.019 |
Overall mortality | 9 (10.5) | 2 (4.1) | 7 (18.9) | 0.035 |
(A) Postoperative complications | ||||
Univariate analysis | Multivariate analysis | |||
OR (95% CI) | p-value | OR (95% CI) | p-value | |
Age | 1.021 (0.988–1.056) | 0.219 | - | - |
EA level * | 300.516 (16.149–5592.344) | <0.001 | 46.333 (1.001–847.027) | 0.046 |
SOFA score * | 1.522 (1.287–1.8) | <0.001 | 1.354 (1.065–1.72) | 0.013 |
C-reactive protein * | 1.258 (1.129–1.401) | <0.001 | 1.046 (0.946–1.157) | 0.379 |
Lactate * | 1.534 (1.234–1.908) | <0.001 | 1.006 (0.748–1.353) | 0.968 |
(B) 28-day mortality | ||||
Univariate analysis | Multivariate analysis | |||
OR (95% CI) | p-value | OR (95% CI) | p-value | |
Age | 1.023 (0.97–1.079) | 0.405 | - | - |
EA level * | 30 (0.916–982.601) | 0.05 | 1.673 (0.009–319.177) | 0.848 |
SOFA score * | 1.36 (1.135–1.63) | 0.001 | 1.288 (1.028–1.613) | 0.028 |
C-reactive protein * | 1.066 (0.993–1.143) | 0.078 | - | - |
Lactate * | 1.367 (1.095–1.707) | 0.006 | 1.103 (0.827–1.471) | 0.503 |
Low EA (EA < 0.515) | High EA (EA ≥ 0.515) | p-Value | |
---|---|---|---|
n = 31 (66%) | n = 16 (34%) | ||
Clinical outcomes | |||
Sepsis | 12 (38.7) | 11 (68.8) | 0.069 |
Septic shock | 2 (6.5) | 9 (56.3) | <0.001 |
Length of ICU stay, day (mean ± SD) | 3.6 ± 6.1 | 9.8 ± 10.3 | 0.038 |
Length of hospital stay, day (mean ± SD) | 18.6 ± 9.6 | 50 ± 61.6 | 0.06 |
Postoperative complications (C-D * ≥ 3) | 2 (6.5) | 10 (62.5) | <0.001 |
28-day mortality | 1 (3.2) | 4 (25) | 0.04 |
(A) Postoperative complications | ||||
Univariate analysis | Multivariate analysis | |||
OR (95% CI) | p-value | OR (95% CI) | p-value | |
Age | 1.032 (0.986–1.08) | 0.176 | - | - |
EA level * | 10,286.214 (43.683–2,422,130.566) | 0.001 | 613.85 (1.13–333,512.315) | 0.046 |
SOFA score * | 1.57 (1.239–1.99) | <0.001 | 1.328 (0.944–1.868) | 0.013 |
C-reactive protein * | 1.436 (1.156–1.783) | 0.001 | 1.081 (0.895–1.307) | 0.379 |
Lactate * | 2.174 (1.372–3.445) | 0.001 | 2.257 (0.842–6.051) | 0.968 |
(B) 28-day mortality | ||||
Univariate analysis | Multivariate analysis | |||
OR (95% CI) | p-value | OR (95% CI) | p-value | |
Age | 1.023 (0.97–1.079) | 0.405 | - | - |
EA level * | 30 (0.916–982.601) | 0.05 | 1.673 (0.009–319.177) | 0.848 |
SOFA score * | 1.36 (1.135–1.63) | 0.001 | 1.288 (1.028–1.613) | 0.028 |
C-reactive protein * | 1.066 (0.993–1.143) | 0.078 | - | - |
Lactate * | 1.367 (1.095–1.707) | 0.006 | 1.103 (0.827–1.471) | 0.503 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.S.; Lee, G.R.; Kim, E.Y. Diagnostic Value of Endotoxin Activity for Acute Postoperative Complications: A Study in Major Abdominal Surgery Patients. Biomedicines 2024, 12, 2701. https://doi.org/10.3390/biomedicines12122701
Kim HS, Lee GR, Kim EY. Diagnostic Value of Endotoxin Activity for Acute Postoperative Complications: A Study in Major Abdominal Surgery Patients. Biomedicines. 2024; 12(12):2701. https://doi.org/10.3390/biomedicines12122701
Chicago/Turabian StyleKim, Hye Sung, Gyeo Ra Lee, and Eun Young Kim. 2024. "Diagnostic Value of Endotoxin Activity for Acute Postoperative Complications: A Study in Major Abdominal Surgery Patients" Biomedicines 12, no. 12: 2701. https://doi.org/10.3390/biomedicines12122701
APA StyleKim, H. S., Lee, G. R., & Kim, E. Y. (2024). Diagnostic Value of Endotoxin Activity for Acute Postoperative Complications: A Study in Major Abdominal Surgery Patients. Biomedicines, 12(12), 2701. https://doi.org/10.3390/biomedicines12122701