Observational Study of Trans-Septal Endocardial Left Ventricle Lead Implant for Effective Cardiac Resynchronization Therapy in Patients with Heart Failure and Challenging Coronary Sinus Anatomy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.1.1. Pacemaker Interrogation
2.1.2. Echocardiography
2.1.3. Patient Characteristics
2.1.4. Patient Selection
2.2. Statistical Analysis
2.3. Schematic Presentation of the Procedure
2.4. Trans-Septal Puncture
2.5. Trans-Septal LV Lead Placement
3. Results
3.1. Analysis of Trans-Septal Endocardial LV Lead
3.2. Analysis of TSLV Compared to Trans-Venous CRT Upgrade
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Linde, C.; Abraham, W.T.; Gold, M.R.; St John Sutton, M.; Ghio, S.; Daubert, C.; REVERSE (REsynchronization reVErses Remodeling in Systolic left vEntricular dysfunction) Study Group. Randomized trial of cardiac resynchronization in mildly symptomatic heart failure patients and in asymptomatic patients with left ventricular dysfunction and previous heart failure symptoms. J. Am. Coll. Cardiol. 2008, 52, 1834–1843. [Google Scholar] [CrossRef] [PubMed]
- Anand, I.S.; Carson, P.; Galle, E.; Song, R.; Boehmer, J.; Ghali, J.K.; Jaski, B.; Lindenfeld, J.; O’Connor, C.; Steinberg, J.S.; et al. Cardiac resynchronization therapy reduces the risk of hospitalizations in patients with advanced heart failure: Results from the Comparison of Medical Therapy, Pacing and Defibrillation in Heart Failure (COMPANION) trial. Circulation 2009, 119, 969–977. [Google Scholar] [CrossRef] [PubMed]
- Kutyifa, V.; Kloppe, A.; Zareba, W.; Solomon, S.D.; McNitt, S.; Polonsky, S.; Barsheshet, A.; Merkely, B.; Lemke, B.; Nagy, V.K.; et al. The influence of left ventricular ejection fraction on the effectiveness of cardiac resynchronization therapy: MADIT-CRT (Multicenter Automatic Defibrillator Implantation Trial With Cardiac Resynchronization Therapy). J. Am. Coll. Cardiol. 2013, 61, 936–944. [Google Scholar] [CrossRef] [PubMed]
- Cleland, J.G.; Daubert, J.C.; Erdmann, E.; Freemantle, N.; Gras, D.; Kappenberger, L.; Klein, W.; Tavazzi, L.; CARE-HF study Steering Committee and Investigators. The CARE-HF study (CArdiac REsynchronisation in Heart Failure study): Rationale, design and end-points. Eur. J. Heart Fail. 2001, 3, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Curtis, A.B.; Worley, S.J.; Chung, E.S.; Li, P.; Christman, S.A.; St John Sutton, M. Improvement in Clinical Outcomes With Biventricular Versus Right Ventricular Pacing: The BLOCK HF Study. J. Am. Coll. Cardiol. 2016, 67, 2148–2157. [Google Scholar] [CrossRef] [PubMed]
- Merkely, B.; Kosztin, A.; Roka, A.; Geller, L.; Zima, E.; Kovacs, A.; Boros, A.M.; Klein, H.; Wranicz, J.K.; Hindricks, G.; et al. Rationale and design of the BUDAPEST-CRT Upgrade Study: A prospective, randomized, multicentre clinical trial. Europace 2017, 19, 1549–1555. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pujol-Lopez, M.; Jiménez-Arjona, R.; Garre, P.; Guasch, E.; Borràs, R.; Doltra, A.; Ferró, E.; García-Ribas, C.; Niebla, M.; Carro, E.; et al. Conduction System Pacing vs Biventricular Pacing in Heart Failure and Wide QRS Patients: LEVEL-AT Trial. JACC Clin. Electrophysiol. 2022, 8, 1431–1445. [Google Scholar] [CrossRef] [PubMed]
- Whinnett, Z.I.; Shun-Shin, M.J.; Tanner, M.; Foley, P.; Chandrasekaran, B.; Moore, P.; Adhya, S.; Qureshi, N.; Muthumala, A.; Lane, R.; et al. Effects of haemodynamically atrio-ventricular optimized His bundle pacing on heart failure symptoms and exercise capacity: The His Optimized Pacing Evaluated for Heart Failure (HOPE-HF) randomized, double-blind, cross-over trial. Eur. J. Heart Fail. 2023, 25, 274–283. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- León, A.R.; Abraham, W.T.; Curtis, A.B.; Daubert, J.P.; Fisher, W.G.; Gurley, J.; Hayes, D.L.; Lieberman, R.; Petersen-Stejskal, S.; Wheelan, K.; et al. Safety of transvenous cardiac resynchronization system implantation in patients with chronic heart failure: Combined results of over 2000 patients from a multicenter study program. J. Am. Coll. Cardiol. 2005, 46, 2348–2356. [Google Scholar] [CrossRef] [PubMed]
- Gamble, J.H.P.; Herring, N.; Ginks, M.; Rajappan, K.; Bashir, Y.; Betts, T.R. Procedural success of left ventricular lead placement for cardiac resynchronization therapy: A meta-analysis. JACC Clin. Electrophysiol. 2016, 2, 69–77. [Google Scholar] [CrossRef]
- Ypenburg, C.; Schalij, M.J.; Bleeker, G.B.; Steendijk, P.; Boersma, E.; Dibbets-Schneider, P.; Stokkel, M.P.; van der Wall, E.E.; Bax, J.J. Impact of viability and scar tissue on response to cardiac resynchronization therapy in ischaemic heart failure patients. Eur. Heart J. 2007, 28, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Gellér, L.; Salló, Z.; Molnár, L.; Tahin, T.; Özcan, E.E.; Kutyifa, V.; Osztheimer, I.; Szilágyi, S.; Szegedi, N.; Ábrahám, P.; et al. Long-term single-centre large volume experience with transseptal endocardial left ventricular lead implantation. Europace 2019, 21, 1237–1245. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- van Gelder, B.M.; Scheffer, M.G.; Meijer, A.; Bracke, F.A. Transseptal endocardial left ventricular pacing: An alternative technique for coronary sinus lead placement in cardiac resynchronization therapy. Heart Rhythm. 2007, 4, 454–460. [Google Scholar] [CrossRef] [PubMed]
- Neuhoff, I.; Szilágyi, S.; Molnár, L.; Osztheimer, I.; Zima, E.; Dan, G.A.; Merkely, B.; Gellér, L. Transseptal Leftventricular Endocardial Pacing is an Alternative Technique in Cardiac Resynchronization Therapy. One year experience in a high volume center. Rom. J. Intern. Med. 2016, 54, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Wijesuriya, N.; Elliott, M.K.; Mehta, V.; Sidhu, B.S.; Strocchi, M.; Behar, J.M.; Niederer, S.; Rinaldi, C.A. Leadless Left Bundle Branch Area Pacing in Cardiac Resynchronisation Therapy: Advances, Challenges and Future Directions. Front. Physiol. 2022, 13, 898866. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Okabe, T.; Hummel, J.D.; Bank, A.J.; Niazi, I.K.; McGrew, F.A.; Kindsvater, S.; Oza, S.R.; Scherschel, J.A.; Walsh, M.N.; Singh, J.P. Leadless left ventricular stimulation with WiSE-CRT System—Initial experience and results from phase I of SOLVE-CRT Study (nonrandomized, roll-in phase). Heart Rhythm. 2022, 19, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Chung, M.K.; Patton, K.K.; Lau, C.P.; Dal Forno, A.R.J.; Al-Khatib, S.M.; Arora, V.; Birgersdotter-Green, U.M.; Cha, Y.M.; Chung, E.H.; Cronin, E.M.; et al. 2023 HRS/APHRS/LAHRS guideline on cardiac physiologic pacing for the avoidance and mitigation of heart failure. Heart Rhythm. 2023; Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Jiang, L.; Wu, H.; Li, H.; Zhong, J.; Pan, L. Case report: Left bundle branch pacing guided by real-time monitoring of current of injury and electrocardiography. Front. Cardiovasc. Med. 2022, 9, 1025620. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Morgan, J.M.; Biffi, M.; Gellér, L.; Leclercq, C.; Ruffa, F.; Tung, S.; Defaye, P.; Yang, Z.; Gerritse, B.; Van Ginneken, M.; et al. ALternate Site Cardiac ResYNChronization (ALSYNC): A prospective and 355 multicentre study of left ventricular endocardial pacing for cardiac resynchronization therapy. Eur. Heart J. 2016, 37, 2118–2127. [Google Scholar] [CrossRef]
- Moriña-Vázquez, P.; Roa-Garrido, J.; Fernández-Gómez, J.M.; Venegas-Gamero, J.; Pichardo, R.B.; Carranza, M.H. Direct left ventricular endocardial pacing: An alternative when traditional resynchronization via coronary sinus is not feasible or effective. PACE-Pacing Clin. Electrophysiol. 2013, 36, 699–706. [Google Scholar] [CrossRef]
- Scott, P.A.; Yue, A.M.; Watts, E.; Zeb, M.; Roberts, P.R.; Morgan, J.M. Transseptal left ventricular endocardial pacing reduces dispersion of ventricular repolarization. PACE-Pacing Clin. Electrophysiol. 2011, 34, 1258–1266. [Google Scholar] [CrossRef]
- Patel, M.B.; Worley, S.J. Snare coupling of the pre-pectoral pacing lead delivery catheter to the femoral transseptal apparatus for endocardial cardiac resynchronization therapy: Mid-term results. J. Interv. Card. Electrophysiol. 2013, 36, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Geller, L.; Merkely, B.; Molnar, L.; Szilagyi, S.Z.; Zima, E.; Szeplaki, G.; Osztheimer, I.; Tahin, T.; Ozcan, E.E.; Apor, A. Long term efficacy and safety of transseptal endocardial left ventricular lead implantation after left ventricular lead implantations. Eur. Heart J. 2014, 35, P525. [Google Scholar]
- Gamble, J.H.; Herring, N.; Ginks, M.; Rajappan, K.; Bashir, Y.; Betts, T.R. Endocardial left ventricular pacing for cardiac resynchronization: Systematic review and meta-analysis. Europace 2018, 20, 73–81. [Google Scholar] [CrossRef]
- Kim, H.R.; Lim, K.; Park, S.J.; Park, J.S.; Kim, J.Y.; Chung, S.; Jung, D.S.; Park, K.M.; On, Y.K.; Kim, J.S. Thoracoscopic Implantation of Epicardial Left Ventricular Lead for Cardiac Resynchronization Therapy. J. Cardiovasc. Dev. Dis. 2022, 9, 160. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Navia, J.L.; Atik, F.A.; Grimm, R.A.; Garcia, M.; Vega, P.R.; Myhre, U.; Starling, R.C.; Wilkoff, B.L.; Martin, D.; Houghtaling, P.L.; et al. Minimally invasive left ventricular epicardial lead placement: Surgical techniques for heart failure resynchronization therapy. Ann. Thorac. Surg. 2005, 79, 1536–1544; discussion 1536–1544. [Google Scholar] [CrossRef] [PubMed]
- Nelson, K.E.; Bates, M.G.; Turley, A.J.; Linker, N.J.; Owens, W.A. Video-assisted thoracoscopic left ventricular pacing in patients with and without previous sternotomy. Ann. Thorac. Surg. 2013, 95, 907–913. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.L.; Kramer, D.B.; Lewis, E.F.; Koplan, B.; Epstein, L.M.; Tedrow, U. Event-free survival following CRT with surgically implanted LV leads versus standard transvenous approach. Pacing Clin. Electrophysiol. 2011, 34, 490–500. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Su, L.; Wang, S.; Wu, S.; Xu, L.; Huang, Z.; Chen, X.; Zheng, R.; Jiang, L.; Ellenbogen, K.A.; Whinnett, Z.I.; et al. Long-Term Safety and Feasibility of Left Bundle Branch Pacing in a Large Single-Center Study. Circ. Arrhythm. Electrophysiol. 2021, 14, e009261. [Google Scholar] [CrossRef] [PubMed]
- Jastrzębski, M.; Kiełbasa, G.; Cano, O.; Curila, K.; Heckman, L.; De Pooter, J.; Chovanec, M.; Rademakers, L.; Huybrechts, W.; Grieco, D.; et al. Left bundle branch area pacing outcomes: The multicentre European MELOS study. Eur. Heart J. 2022, 43, 4161–4173. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sieniewicz, B.J.; Gould, J.; Porter, B.; Sidhu, B.S.; Teall, T.; Webb, J.; Carr-White, G.; Rinaldi, C.A. Understanding non-response to cardiac resynchronisation therapy: Common problems and potential solutions. Heart Fail. Rev. 2019, 24, 41–54. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Larsen, C.K.; Duchenne, J.; Galli, E.; Aalen, J.M.; Bogaert, J.; Lederlin, M.; Kongsgaard, E.; Linde, C.; Penicka, M.; Donal, E.; et al. Septal scar predicts non-response to cardiac resynchronization therapy. Eur. Heart J. Cardiovasc. Imaging 2021, 22, jeaa356.301. [Google Scholar] [CrossRef]
- Strocchi, M.; Gillette, K.; Neic, A.; Elliott, M.K.; Wijesuriya, N.; Mehta, V.; Vigmond, E.J.; Plank, G.; Rinaldi, C.A.; Niederer, S.A. Effect of scar and His-Purkinje and myocardium conduction on response to conduction system pacing. J. Cardiovasc. Electrophysiol. 2023, 34, 984–993. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Elliott, M.K.; Mehta, V.S.; Sidhu, B.S.; Niederer, S.; Rinaldi, C.A. Endocardial left ventricular pacing. Herz 2021, 46, 526–532. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
All Patients | Patients with Conventional Upgrade to CRT | TSLV Lead | p Chi Square | |
---|---|---|---|---|
Age | 79 ± 9 (162) | 82 ± 10 (151) | 76 ± 9 (11) | 0.317 |
Sex | 0.412 | |||
Female | 47 (25%) | 45 (31%) | 2 (19%) | |
Male | 115 (75%) | 106 (69%) | 9 (81%) | |
Rhythm | 0.789 | |||
Sinus Rhythm | 112 (70%) | 104 (69%) | 8 (72.7%) | |
Atrial Arrythmia | 50 (30%) | 47 (31%) | 3 (27.3%) | |
Etiology | ||||
IHD | 85 (61%) | 77 (50%) | 8 (72.7%) | 0.163 |
Non-IHD | 80 (43%) | 77 (40%) | 3 (27.7%) | 0.605 |
ICCs | 15 (11.5%) | 14 (10.38%) | 1 (9%) | 0.984 |
VHD | 19 (14%) | 17 (10%) | 2 (18%) | 0.491 |
HF Medications | ||||
Beta-Blockers | 162 (100%) | 151 (100%) | 11 (100%) | 0.43 |
MRAs | 133 (85%) | 123 (80%) | 10 (90.9%) | 0.43 |
ARNi | 89 (59%) | 82 (55%) | 7 (63.4%) | 0.548 |
SGLT-2 | 84 (54.5%) | 77 (51.5%) | 7 (63.4%) | 0.394 |
Comorbidities | ||||
Diabetes | 67 (45.5%) | 62 (24.7%) | 5 (45.4%) | 0.775 |
Hypertension | 143 (92.5%) | 132 (85%) | 11 (100%) | 0.21 |
CKD | 67 (45.5%) | 65 (42.5%) | 2 (27.7%) | 0.44 |
57 (35.7%) | 53 (34.7%) | 4 (36.36%) | ||
14 (13.5%) | 12 (8.5%) | 2 (18.18%) | ||
14 (13.5) | 12 (8.5%) | 2 (18.18%) |
Median (IQR) | NTproBNP | LVESV | LVEDV | LVIDd | |
---|---|---|---|---|---|
Pre-upgrade | TV CRTP | 142.5 (123.5–157) | 209 (175.5–262.75) | 6.2 (5.8–6.6) | |
TV CRTD | 123 (94–145) | 160 (131–195) | 5.6 (5.2–6) | ||
TSLV Lead | 1606 (1059–3098.5) | 156 (137–174.5) | 210 (189–251.5) | 6 (5.75–6.55) | |
Post-upgrade | TV CRTP | 117 (76.5–160.75) | 157 (127.75–221) | 5.95 (5–6.575) | |
TV CRTD | 77 (63–102) | 112 (98–152) | 5 (4.7–5.7) | ||
TSLV Lead | 1058 (557.5–2552.5) | 110 (82–178) | 176 (125.5–238) | 5.4 (4.95–6.25) | |
Reduction | TV CRTP | 27 (8–46) | 32.5 (18.25–59) | 0.3 (0–0.9) | |
TV CRTD | 35 (20–53) | 42 (23–53) | 0.6 (0.3–0.7) | ||
TSLV Lead | −412 (−958.5–168) | 45 (16.5–58) | 43 (34.5–55.5) | 0.5 (0.3–0.8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farhangee, A.; Davies, M.J.; Gaughan, K.; Mesina, M.; Mîndrilă, I. Observational Study of Trans-Septal Endocardial Left Ventricle Lead Implant for Effective Cardiac Resynchronization Therapy in Patients with Heart Failure and Challenging Coronary Sinus Anatomy. Biomedicines 2024, 12, 2693. https://doi.org/10.3390/biomedicines12122693
Farhangee A, Davies MJ, Gaughan K, Mesina M, Mîndrilă I. Observational Study of Trans-Septal Endocardial Left Ventricle Lead Implant for Effective Cardiac Resynchronization Therapy in Patients with Heart Failure and Challenging Coronary Sinus Anatomy. Biomedicines. 2024; 12(12):2693. https://doi.org/10.3390/biomedicines12122693
Chicago/Turabian StyleFarhangee, Arsalan, Mark J. Davies, Katie Gaughan, Mihai Mesina, and Ion Mîndrilă. 2024. "Observational Study of Trans-Septal Endocardial Left Ventricle Lead Implant for Effective Cardiac Resynchronization Therapy in Patients with Heart Failure and Challenging Coronary Sinus Anatomy" Biomedicines 12, no. 12: 2693. https://doi.org/10.3390/biomedicines12122693
APA StyleFarhangee, A., Davies, M. J., Gaughan, K., Mesina, M., & Mîndrilă, I. (2024). Observational Study of Trans-Septal Endocardial Left Ventricle Lead Implant for Effective Cardiac Resynchronization Therapy in Patients with Heart Failure and Challenging Coronary Sinus Anatomy. Biomedicines, 12(12), 2693. https://doi.org/10.3390/biomedicines12122693