Genetic and Neurodevelopmental Markers in Schizophrenia-Spectrum Disorders: Analysis of the Combined Role of the CNR1 Gene and Dermatoglyphics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Genotyping
2.3. Dermatoglyphics Assessment
2.4. Statistical Analyses
3. Results
3.1. Dermatoglyphic Assessment
3.2. Case-Control Genetic Association Analyses
3.3. CNR1 Genotypes Effect on Dermatoglyphic Patterns
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kahn, R.S.; Sommer, I.E. The Neurobiology and Treatment of First-Episode Schizophrenia. Mol. Psychiatry 2015, 20, 84–97. [Google Scholar] [CrossRef] [PubMed]
- Birnbaum, R.; Weinberger, D.R. Genetic Insights into the Neurodevelopmental Origins of Schizophrenia. Nat. Rev. Neurosci. 2017, 18, 727–740. [Google Scholar] [CrossRef] [PubMed]
- Compton, M.T.; Walker, E.F. Physical Manifestations of Neurodevelopmental Disruption: Are Minor Physical Anomalies Part of the Syndrome of Schizophrenia? Schizophr. Bull. 2009, 35, 425. [Google Scholar] [CrossRef] [PubMed]
- Owen, M.J.; O’Donovan, M.C.; Thapar, A.; Craddock, N. Neurodevelopmental Hypothesis of Schizophrenia. Br. J. Psychiatry 2011, 198, 173–175. [Google Scholar] [CrossRef] [PubMed]
- Tsapakis, E.M.; Mitkani, C.A.; Fountoulakis, K.N. Neurological Soft Signs and Schizophrenia. CNS Spectr. 2023, 28, 657–661. [Google Scholar] [CrossRef]
- Duff, B.J.; Macritchie, K.A.N.; Moorhead, T.W.J.; Lawrie, S.M.; Blackwood, D.H.R. Human Brain Imaging Studies of DISC1 in Schizophrenia, Bipolar Disorder and Depression: A Systematic Review. Schizophr. Res. 2013, 147, 1–13. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Y.; Xu, W.; Yao, X.; Xie, X.; Zhang, L.; Sun, J.; Wang, L.; Hua, Q.; He, K.; et al. Heterogeneous Brain Abnormalities in Schizophrenia Converge on a Common Network Associated With Symptom Remission. Schizophr. Bull. 2024, 50, 545–556. [Google Scholar] [CrossRef]
- Voineskos, A.N.; Hawco, C.; Neufeld, N.H.; Turner, J.A.; Ameis, S.H.; Anticevic, A.; Buchanan, R.W.; Cadenhead, K.; Dazzan, P.; Dickie, E.W.; et al. Functional Magnetic Resonance Imaging in Schizophrenia: Current Evidence, Methodological Advances, Limitations and Future Directions. World Psychiatry 2024, 23, 26–51. [Google Scholar] [CrossRef]
- Guardiola-Ripoll, M.; Sotero-Moreno, A.; Almodóvar-Payá, C.; Hostalet, N.; Guerrero-Pedraza, A.; Ramiro, N.; Ortiz-Gil, J.; Arias, B.; Madre, M.; Soler-Vidal, J.; et al. Combining FMRI and DISC1 Gene Haplotypes to Understand Working Memory-Related Brain Activity in Schizophrenia. Sci. Rep. 2022, 12, 7351. [Google Scholar] [CrossRef]
- Okajima, M. Development of Dermal Ridges in the Fetus. J. Med. Genet. 1975, 12, 243–250. [Google Scholar] [CrossRef]
- Babler, W.J. Embryologic Development of Epidermal Ridges and Their Configurations. Birth Defects Orig. Artic. Ser. 1991, 27, 95–112. [Google Scholar] [PubMed]
- Fatjó-Vilas, M.; Gourion, D.; Campanera, S.; Mouaffak, F.; Levy-Rueff, M.; Navarro, M.E.; Chayet, M.; Miret, S.; Krebs, M.O.; Fañanás, L. New Evidences of Gene and Environment Interactions Affecting Prenatal Neurodevelopment in Schizophrenia-Spectrum Disorders: A Family Dermatoglyphic Study. Schizophr. Res. 2008, 103, 209–217. [Google Scholar] [CrossRef]
- Rakic, P. Specification of Cerebral Cortical Areas. Science 1988, 241, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Volpe, J.J. Overview: Normal and Abnormal Human Brain Development. Ment. Retard. Dev. Disabil. Res. Rev. 2000, 6, 1–5. [Google Scholar] [CrossRef]
- Kalmady, S.V.; Shivakumar, V.; Gautham, S.; Arasappa, R.; Jose, D.A.; Venkatasubramanian, G.; Gangadhar, B.N. Dermatoglyphic Correlates of Hippocampus Volume: Evaluation of Aberrant Neurodevelopmental Markers in Antipsychotic-Naïve Schizophrenia. Psychiatry Res. 2015, 234, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Schaumann, B.; Alter, M. Dermatoglyphics in Medical Disorders. In Dermatoglyphics in Medical Disorders; Springer: Berlin/Heidelberg, Germany, 1976. [Google Scholar] [CrossRef]
- Fearon, P.; Lane, A.; Airie, M.; Scannell, J.; McGowan, A.; Byrne, M.; Cannon, M.; Cotter, D.; Murphy, P.; Cassidy, B.; et al. Is Reduced Dermatoglyphic A-b Ridge Count a Reliable Marker of Developmental Impairment in Schizophrenia? Schizophr. Res. 2001, 50, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Fañanas, L.; van Os, J.; Hoyos, C.; McGrath, J.; Mellor, C.S.; Murray, R. Dermatoglyphic A-b Ridge Count as a Possible Marker for Developmental Disturbance in Schizophrenia: Replication in Two Samples. Schizophr. Res. 1996, 20, 307–314. [Google Scholar] [CrossRef]
- Bramon, E.; Walshe, M.; McDonald, C.; Martín, B.; Toulopoulou, T.; Wickham, H.; Van Os, J.; Fearon, P.; Sham, P.C.; Fañanás, L.; et al. Dermatoglyphics and Schizophrenia: A Meta-Analysis and Investigation of the Impact of Obstetric Complications upon a–b Ridge Count. Schizophr. Res. 2005, 75, 399–404. [Google Scholar] [CrossRef]
- Radua, J.; Ramella-Cravaro, V.; Ioannidis, J.P.A.; Reichenberg, A.; Phiphopthatsanee, N.; Amir, T.; Yenn Thoo, H.; Oliver, D.; Davies, C.; Morgan, C.; et al. What Causes Psychosis? An Umbrella Review of Risk and Protective Factors. World Psychiatry 2018, 17, 49–66. [Google Scholar] [CrossRef]
- Machado, J.F.; Fernandes, P.R.; Roquetti, R.W.; Fernandes Filho, J. Digital Dermatoglyphic Heritability Differences as Evidenced by a Female Twin Study. Twin Res. Hum. Genet. 2010, 13, 482–489. [Google Scholar] [CrossRef]
- Karmakar, B.; Malkin, I.; Kobyliansky, E. Inheritance of 18 Quantitative Dermatoglyphic Traits Based on Factors in MZ and DZ Twins. Anthropol. Anz. 2010, 68, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Glover, J.D.; Zhang, H.; Peng, M.; Tan, J.; Mallick, C.B.; Hou, D.; Yang, Y.; Wu, S.; Liu, Y.; et al. Limb Development Genes Underlie Variation in Human Fingerprint Patterns. Cell 2022, 185, 95–112.e18. [Google Scholar] [CrossRef] [PubMed]
- Cannon, M.; Jones, P.B.; Murray, R.M. Obstetric Complications and Schizophrenia: Historical and Meta-Analytic Review. Am. J. Psychiatry 2002, 159, 1080–1092. [Google Scholar] [CrossRef] [PubMed]
- Mittal, V.A.; Ellman, L.M.; Cannon, T.D. Gene-Environment Interaction and Covariation in Schizophrenia: The Role of Obstetric Complications. Schizophr. Bull. 2008, 34, 1083–1094. [Google Scholar] [CrossRef] [PubMed]
- Byrne, M.; Agerbo, E.; Bennedsen, B.; Eaton, W.W.; Mortensen, P.B. Obstetric Conditions and Risk of First Admission with Schizophrenia: A Danish National Register Based Study. Schizophr. Res. 2007, 97, 51–59. [Google Scholar] [CrossRef]
- Davies, C.; Segre, G.; Estradé, A.; Radua, J.; De Micheli, A.; Provenzani, U.; Oliver, D.; de Pablo, G.S.; Ramella-Cravaro, V.; Besozzi, M.; et al. Prenatal and Perinatal Risk and Protective Factors for Psychosis: A Systematic Review and Meta-Analysis. Lancet Psychiatry 2020, 7, 399–410. [Google Scholar] [CrossRef]
- Cejudo-Martin, P.; Johnson, R.S. A New Notch in the HIF Belt: How Hypoxia Impacts Differentiation. Dev. Cell 2005, 9, 574–576. [Google Scholar] [CrossRef]
- Li, R.; Chase, M.; Jung, S.-K.; Smith, P.J.S.; Loeken, M.R. Hypoxic Stress in Diabetic Pregnancy Contributes to Impaired Embryo Gene Expression and Defective Development by Inducing Oxidative Stress. Am. J. Physiol. Endo-Crinol Metab. 2005, 289, 591–599. [Google Scholar] [CrossRef]
- Barateiro, A.; Brites, D.; Fernandes, A. Oligodendrocyte Development and Myelination in Neurodevelopment: Molecular Mechanisms in Health and Disease. Curr. Pharm. Des. 2016, 22, 656–679. [Google Scholar] [CrossRef]
- Kietzmann, T.; Knabe, W.; Schmidt-Kastner, R. Hypoxia and Hypoxia-Inducible Factor Modulated Gene Expression in Brain. Involvement in Neuroprotection and Cell Death. Eur. Arch. Psychiatry Clin. Neurosci. 2001, 251, 170–178. [Google Scholar] [CrossRef]
- Schmidt-Kastner, R.; van Os, J.; Steinbusch, H.W.; Schmitz, C. Gene Regulation by Hypoxia and the Neurodevelopmental Origin of Schizophrenia. Schizophr. Res. 2006, 84, 253–271. [Google Scholar] [CrossRef] [PubMed]
- Schmidt-Kastner, R.; Van Os, J.; Esquivel, G.; Steinbusch, H.W.M.; Rutten, B.P.F. An Environmental Analysis of Genes Associated with Schizophrenia: Hypoxia and Vascular Factors as Interacting Elements in the Neurodevelopmental Model. Mol. Psychiatry 2012, 17, 1194–1205. [Google Scholar] [CrossRef] [PubMed]
- Gouvêa, E.S.; Santos Filho, A.F.; Ota, V.K.; Mrad, V.; Gadelha, A.; Bressan, R.A.; Cordeiro, Q.; Belangero, S.I. The Role of the CNR1 Gene in Schizophrenia: A Systematic Review Including Unpublished Data. Braz. J. Psychiatry 2017, 39, 160. [Google Scholar] [CrossRef] [PubMed]
- Ho, B.C.; Wassink, T.H.; Ziebell, S.; Andreasen, N.C. Cannabinoid Receptor 1 Gene Polymorphisms and Marijuana Misuse Interactions on White Matter and Cognitive Deficits in Schizophrenia. Schizophr. Res. 2011, 128, 66–75. [Google Scholar] [CrossRef]
- Herkenham, M.A.B.L.; Lynn, A.B.; Little, M.D.; Johnson, M.R.; Melvin, L.S.; De Costa, B.R.; Rice, K.C. Cannabinoid Receptor Localization in Brain (Tetrahydrocannabinol/Autoradiography/Basal Ganglla/Hippocampus/Cerebeilum). Proc. Nati. Acad. Sci. USA 1990, 87, 1932–1936. [Google Scholar] [CrossRef]
- Melis, M.; Pistis, M.; Perra, S.; Muntoni, A.L.; Pillolla, G.; Gessa, G.L. Endocannabinoids Mediate Presynaptic Inhibition of Glutamatergic Transmission in Rat Ventral Tegmental Area Dopamine Neurons through Activation of CB1 Receptors. J. Neurosci. 2004, 24, 53–62. [Google Scholar] [CrossRef]
- Eggan, S.M.; Lewis, D.A. Immunocytochemical Distribution of the Cannabinoid CB1 Receptor in the Primate Neocortex: A Regional and Laminar Analysis. Cereb. Cortex 2007, 17, 175–191. [Google Scholar] [CrossRef]
- Fernández-Ruiz, J.; Hernández, M.; Ramos, J.A. Cannabinoid-Dopamine Interaction in the Pathophysiology and Treatment of CNS Disorders. CNS Neurosci. Ther. 2010, 16, e72–e91. [Google Scholar] [CrossRef]
- McCutcheon, R.A.; Abi-Dargham, A.; Howes, O.D. Schizophrenia, Dopamine and the Striatum: From Biology to Symptoms. Trends Neurosci. 2019, 42, 205–220. [Google Scholar] [CrossRef]
- Oleson, E.B.; Hamilton, L.R.; Gomez, D.M. Cannabinoid Modulation of Dopamine Release During Motivation, Periodic Reinforcement, Exploratory Behavior, Habit Formation, and Attention. Front. Synaptic Neurosci. 2021, 13, 660218. [Google Scholar] [CrossRef]
- Maccarrone, M.; Di Rienzo, M.; Battista, N.; Gasperi, V.; Guerrieri, P.; Rossi, A.; Finazzi-Agrò, A. The Endocannabinoid System in Human Keratinocytes: Evidence That Anandamide Inhibits Epidermal Differentiation through CB1 Receptor-Dependent Inhibition of Protein Kinase C, Activating Protein-1, and Transglutaminase. J. Biol. Chem. 2003, 278, 33896–33903. [Google Scholar] [CrossRef]
- Roelandt, T.; Heughebaert, C.; Bredif, S.; Giddelo, C.; Baudouin, C.; Msika, P.; Roseeuw, D.; Uchida, Y.; Elias, P.M.; Hachem, J.P. Cannabinoid Receptors 1 and 2 Oppositely Regulate Epidermal Permeability Barrier Status and Differentiation. Exp. Dermatol. 2012, 21, 688–693. [Google Scholar] [CrossRef] [PubMed]
- Galve-Roperh, I.; Chiurchiù, V.; Díaz-Alonso, J.; Bari, M.; Guzmán, M.; Maccarrone, M. Cannabinoid Receptor Signaling in Progenitor/Stem Cell Proliferation and Differentiation. Prog. Lipid Res. 2013, 52, 633–650. [Google Scholar] [CrossRef] [PubMed]
- Gomes, T.M.; da Silva, D.D.; Carmo, H.; Carvalho, F.; Silva, J.P. Epigenetics and the Endocannabinoid System Signaling: An Intricate Interplay Modulating Neurodevelopment. Pharmacol. Res. 2020, 162, 105237. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.C.; Mackie, K. Review of the Endocannabinoid System. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2021, 6, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Mato, S.; Del Olmo, E.; Pazos, A. Ontogenetic Development of Cannabinoid Receptor Expression and Signal Transduction Functionality in the Human Brain. Eur. J. Neurosci. 2003, 17, 1747–1754. [Google Scholar] [CrossRef]
- Wang, X.; Dow-Edwards, D.; Keller, E.; Hurd, Y.L. Preferential Limbic Expression of the Cannabinoid Receptor MRNA in the Human Fetal Brain. Neuroscience 2003, 118, 681–694. [Google Scholar] [CrossRef]
- Tao, R.; Li, C.; Jaffe, A.E.; Shin, J.H.; Deep-Soboslay, A.; Yamin, R.; Weinberger, D.R.; Hyde, T.M.; Kleinman, J.E. Cannabinoid Receptor CNR1 Expression and DNA Methylation in Human Prefrontal Cortex, Hippocampus and Caudate in Brain Development and Schizophrenia. Transl. Psychiatry 2020, 10, 158. [Google Scholar] [CrossRef]
- Jin, K.L.; Mao, X.O.; Goldsmith, P.C.; Greenberg, D.A. CB1 Cannabinoid Receptor Induction in Experimental Stroke. Ann. Neurol. 2000, 48, 257–261. [Google Scholar] [CrossRef]
- Nurnberger, J.I., Jr.; Blehar, M.C.; Kaufmann, C.A.; York-Cooler, C.; Simpson, S.G.; Harkavy-Friedman, J.; Severe, J.B.; Malaspina, D.; Reich, T. Diagnostic interview for genetic studies. Rationale, unique features, and training. Arch. Gen. Psychiatry 1994, 51, 849–859, discussion 863–864. [Google Scholar] [CrossRef] [PubMed]
- Ketcherside, A.; Noble, L.J.; McIntyre, C.K.; Filbey, F.M. Cannabinoid Receptor 1 Gene by Cannabis Use Interaction on CB1 Receptor Density. Cannabis Cannabinoid Res. 2017, 2, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.W.; Ishiguro, H.; Ohtsuki, T.; Hess, J.; Carillo, F.; Walther, D.; Onaivi, E.S.; Arinami, T.; Uhl, G.R. Human Cannabinoid Receptor 1: 5′ Exons, Candidate Regulatory Regions, Polymorphisms, Haplotypes and Association with Polysubstance Abuse. Mol. Psychiatry 2004, 9, 916–931. [Google Scholar] [CrossRef] [PubMed]
- Cummins, H.; Midlo, C. Finger Prints, Palms and Soles: An Introduction to Dermatoglyphics; Dover Publications: New York, NY, USA, 1961. [Google Scholar]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; De Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed]
- Gauderman, W.; Morrison, J.; Morrison, W. QUANTO 1.1: A Computer Program for Power and Sample Size Calculations for Genetic-Epidemiology Studies. 2006. Available online: https://keck.usc.edu/biostatistics/software/ (accessed on 1 April 2024).
- Erdfelder, E.; FAul, F.; Buchner, A.; Lang, A.G. Statistical Power Analyses Using G*Power 3.1: Tests for Correlation and Regression Analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef]
- Suárez-Pinilla, P.; Roiz-Santiañez, R.; de la Foz, V.O.-G.; Guest, P.C.; Ayesa-Arriola, R.; Córdova-Palomera, A.; Tordesillas-Gutierrez, D.; Crespo-Facorro, B. Brain Structural and Clinical Changes after First Episode Psychosis: Focus on Cannabinoid Receptor 1 Polymorphisms. Psychiatry Res. Neuroimaging 2015, 233, 112–119. [Google Scholar] [CrossRef]
- Yu, W.M.; De Hert, M.; Moons, T.; Claes, S.J.; Correll, C.U.; van Winkel, R. CNR1 Gene and Risk of the Metabolic Syndrome in Patients with Schizophrenia. J. Clin. Psychopharmacol. 2013, 33, 186–192. [Google Scholar] [CrossRef]
- Buchmann, A.F.; Hohm, E.; Witt, S.H.; Blomeyer, D.; Jennen-Steinmetz, C.; Schmidt, M.H.; Esser, G.; Banaschewski, T.; Brandeis, D.; Laucht, M. Role of CNR1 Polymorphisms in Moderating the Effects of Psychosocial Adversity on Impulsivity in Adolescents. J. Neural Transm. 2015, 122, 455–463. [Google Scholar] [CrossRef]
- Dean, B.; Sundram, S.; Bradbury, R.; Scarr, E.; Copolov, D. Studies on [3H]CP-55940 Binding in the Human Central Nervous System: Regional Specific Changes in Density of Cannabinoid-1 Receptors Associated with Schizophrenia and Cannabis Use. Neuroscience 2001, 103, 9–15. [Google Scholar] [CrossRef]
- Zavitsanou, K.; Garrick, T.; Huang, X.F. Selective Antagonist [3H]SR141716A Binding to Cannabinoid CB1 Receptors Is Increased in the Anterior Cingulate Cortex in Schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 2004, 28, 355–360. [Google Scholar] [CrossRef]
- Newell, K.A.; Deng, C.; Huang, X.F. Increased Cannabinoid Receptor Density in the Posterior Cingulate Cortex in Schizophrenia. Exp. Brain Res. 2006, 172, 556–560. [Google Scholar] [CrossRef]
- Chok, J.T.; Kwapil, T.R.; Scheuermann, A. Dermatoglyphic Anomalies in Psychometrically Identified Schizotypic Young Adults. Schizophr. Res. 2005, 72, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Arunpongpaisal, S.; Phd, S.N.; Msc, P.M.; Virasiri, S.; Bsc, S.M.; Msc, K.T. Dermatoglyphic Traits in Thai Schizophrenia Patients: A Matching Case-Control Study. J. Med. Assoc. Thai 2011, 94, 386. [Google Scholar]
- Norovsambuu, O.; Tsend-Ayush, A.; Lkhagvasuren, N.; Jav, S. Main Characteristics of Dermatoglypics Associated with Schizophrenia and Its Clinical Subtypes. PLoS ONE 2021, 16, e0252831. [Google Scholar] [CrossRef] [PubMed]
- van Os, J.; Rutten, B.P.; Poulton, R. Gene-Environment Interactions in Schizophrenia: Review of Epidemiological Findings and Future Directions. Schizophr. Bull. 2008, 34, 1066–1082. [Google Scholar] [CrossRef] [PubMed]
- Walder, D.J.; Faraone, S.V.; Glatt, S.J.; Tsuang, M.T.; Seidman, L.J. Genetic Liability, Prenatal Health, Stress and Family Environment: Risk Factors in the Harvard Adolescent Family High Risk for Schizophrenia Study. Schizophr. Res. 2014, 157, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Juhasz, G.; Chase, D.; Pegg, E.; Downey, D.; Toth, Z.G.; Stones, K.; Platt, H.; Mekli, K.; Payton, A.; Elliott, R.; et al. CNR1 Gene Is Associated with High Neuroticism and Low Agreeableness and Interacts with Recent Negative Life Events to Predict Current Depressive Symptoms. Neuropsychopharmacology 2009, 34, 2019–2027. [Google Scholar] [CrossRef]
- Misiak, B.; Stramecki, F.; Gawęda, Ł.; Prochwicz, K.; Sąsiadek, M.M.; Moustafa, A.A.; Frydecka, D. Interactions Between Variation in Candidate Genes and Environmental Factors in the Etiology of Schizophrenia and Bipolar Disorder: A Systematic Review. Mol. Neurobiol. 2018, 55, 5075–5100. [Google Scholar] [CrossRef]
- Salvador, R.; García-León, M.Á.; Feria-Raposo, I.; Botillo-Martín, C.; Martín-Lorenzo, C.; Corte-Souto, C.; Aguilar-Valero, T.; Gil-Sanz, D.; Porta-Pelayo, D.; Martín-Carrasco, M.; et al. Fingerprints as Predictors of Schizophrenia: A Deep Learning Study. Schizophr. Bull. 2023, 49, 738–745. [Google Scholar] [CrossRef]
Dermatoglyphic Variables | Whole Sample | HC | SSD | ||
---|---|---|---|---|---|
Diagnosis | Sex | ||||
TABRC | Mean (SD) | HC: 84.61 (10.41) SSD: 82.85 (10.86) | M: 86.22 (9.24) F: 83.68 (11.56) | M: 85.04 (9.33) F: 80.22 (11.76) | M: 87.78 (9.01) F: 84.62 (11.41) |
Statistics | β = −0.033=, se = 3.841, W = 3.841, pnom = 0.050 | T = 1.582 pnom = 0.116 | T = 1.744 pnom = 0.086 | T = 1.450 pnom = 0.150 | |
ABRC-FA | Mean (SD) | HC: 2.7 (1.96) SSD: 3.5 (3.53) | M: 3.24 (2.64) F: 3.70 (3.10) | M: 3.00 (2.81) F: 3.56 (3.19) | M: 3.57 (2.40) F: 3.74 (3.11) |
Statistics | β = −0.054, se = 0.062, W = 0.754, pnom = 0.385 | T = −1.038 pnom = 0.301 | T = −0.693 pnom = 0.491 | T = −0.296 pnom = 0.768 | |
PII | Mean (SD) | HC: 1.22 (0.32) SSD: 1.12 (0.32) | M: 1.19 (0.33) F: 1.10 (0.35) | M: 1.17 (0.03) F: 1.15 (0.29) | M: 1.26 (0.30) F: 1.03 (0.42) |
Statistics | β = 0.050, se = 0.652, W = 0.006, pnom = 0.938 | T = 1.339, pnom = 0.184 | T = 0.219 pnom = 0.828 | T = 1.752 pnom = 0.090 |
Dermatoglyphic Variables | Whole Sample | HC | SSD | |
---|---|---|---|---|
ABRC | Mean (SD) | R: 41.70 (5.55) L: 44.14 (5.78) | R: 41.77 (5.86) L:43.29 (5.60) | R: 41.87 (6.33) L: 42.01 (5.10) |
Statistics | T= −3.186 pnom = 0.002 | T = −2.540 pnom = 0.012 | T = −0.154 pnom = 0.878 | |
PII | Mean (SD) | R: 1.16 (0.38) L: 1.11 (0.42) | R: 1.19 (0.35) L: 1.12 (0.37) | R: 1.20 (0.33) L: 1.13 (0.35) |
Statistics | T = 0.544 pnom = 0.588 | T = 1.294 pnom = 0.197 | T = 1.216 pnom = 0.226 |
Alleles | HC | SSD | Statistics | Significance |
rs2023239 (T/C) | 121/103 (0.54/0.46) | 147/47 (0.76/0.24) | χ2 = 21.39 OR [95%CI] = 0.376 [0.245–0.572] | pnom = 3.76 × 10−6 pemp = 1.00 × 10−4 |
rs806379 (T/A) | 167/57 (0.75/0.25) | 104/90 (0.54/0.46) | χ2 = 20.00 OR [95%CI] = 2.535 [1.679–3.829] | pnom = 7.73 × 10−6 pemp = 1.00 × 10−4 |
Genotypes | HC | SSD | Statistics | Significance |
Additive model rs2023239 (TT/TC/CC) | 34/53/25 (0.31/0.47/0.22) | 57/33/7 (0.59/0.34/0.07) | W = −4.182 OR [95%CI] = 0.377 [0.239–0.596] | pnom = 2.89 × 10−5 pemp = 1.00 × 10−4 |
Dominant model rs2023239 (TT vs. Ccar) | 34/78 (0.31/0.69) | 57/40 (0.59/0.41) | W = −3.995 OR [95%CI] = 0.285 [0.154–0.528] | pnom = 6.46 × 10−5 pemp = 2.00 × 10−4 |
Additive model rs806379 (AA/AT/TT) | 64/39/9 (0.57/0.34/0.1) | 28/48/21 (0.29/0.49/0.22) | W = 3.909 OR [95%CI] = 2.434 [1.558–3.803] | pnom = 9.28 × 10−5 pemp = 1.00 × 10−4 |
Dominant model rs806379 (AA vs. Tcar) | 64/48 (0.57/0.35) | 28/69 (0.29/0.71) | W = 3.768 OR [95%CI] = 3.249 [1.760–5.996] | pnom = 1.65 × 10−4 pemp = 4.00 × 10−4 |
SNP | Diagnosis | Genotype | TABRC | ABRC-FA | PII |
---|---|---|---|---|---|
rs2023239 | HC | TT | 82.86 (13.56) | 3.14 (2.40) | 1.03 (0.41) |
Ccar | 86.84 (9.25) | 3.88 (3.00) | 1.29 (0.28) | ||
SSD | TT Ccar | 83.70 (11.15) | 2.97 (3.05) | 1.19 (0.36) | |
83.86 (8.93) | 3.38 (2.72) | 1.11 (0.33) | |||
rs806379 | HC | AA | 87.49 (9.53) | 3.90 (3.12) | 1.18 (0.28) |
Tcar | 83.43 (11.75) | 3.39 (2.47) | 1.12 (0.43) | ||
SSD | AA | 85.94 (7.69) | 3.06 (3.04) | 1.23 (0.34) | |
Tcar | 82.94 (10.91) | 3.18 (2.88) | 1.14 (0.31) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guardiola-Ripoll, M.; Sotero-Moreno, A.; Chaumette, B.; Kebir, O.; Hostalet, N.; Almodóvar-Payá, C.; Moreira, M.; Giralt-López, M.; Krebs, M.-O.; Fatjó-Vilas, M. Genetic and Neurodevelopmental Markers in Schizophrenia-Spectrum Disorders: Analysis of the Combined Role of the CNR1 Gene and Dermatoglyphics. Biomedicines 2024, 12, 2270. https://doi.org/10.3390/biomedicines12102270
Guardiola-Ripoll M, Sotero-Moreno A, Chaumette B, Kebir O, Hostalet N, Almodóvar-Payá C, Moreira M, Giralt-López M, Krebs M-O, Fatjó-Vilas M. Genetic and Neurodevelopmental Markers in Schizophrenia-Spectrum Disorders: Analysis of the Combined Role of the CNR1 Gene and Dermatoglyphics. Biomedicines. 2024; 12(10):2270. https://doi.org/10.3390/biomedicines12102270
Chicago/Turabian StyleGuardiola-Ripoll, Maria, Alejandro Sotero-Moreno, Boris Chaumette, Oussama Kebir, Noemí Hostalet, Carmen Almodóvar-Payá, Mónica Moreira, Maria Giralt-López, Marie-Odile Krebs, and Mar Fatjó-Vilas. 2024. "Genetic and Neurodevelopmental Markers in Schizophrenia-Spectrum Disorders: Analysis of the Combined Role of the CNR1 Gene and Dermatoglyphics" Biomedicines 12, no. 10: 2270. https://doi.org/10.3390/biomedicines12102270
APA StyleGuardiola-Ripoll, M., Sotero-Moreno, A., Chaumette, B., Kebir, O., Hostalet, N., Almodóvar-Payá, C., Moreira, M., Giralt-López, M., Krebs, M.-O., & Fatjó-Vilas, M. (2024). Genetic and Neurodevelopmental Markers in Schizophrenia-Spectrum Disorders: Analysis of the Combined Role of the CNR1 Gene and Dermatoglyphics. Biomedicines, 12(10), 2270. https://doi.org/10.3390/biomedicines12102270