Next Article in Journal
Cell-Free Genic Extrachromosomal Circular DNA Profiles of DNase Knockouts Associated with Systemic Lupus Erythematosus and Relation with Common Fragile Sites
Next Article in Special Issue
Current and Emerging Diagnostic, Prognostic, and Predictive Biomarkers in Head and Neck Cancer
Previous Article in Journal
Club Cells—A Guardian against Occupational Hazards
Previous Article in Special Issue
Diagnosis of Carcinogenic Pathologies through Breath Biomarkers: Present and Future Trends
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

The Potential of Extracellular Matrix- and Integrin Adhesion Complex-Related Molecules for Prostate Cancer Biomarker Discovery

Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
Biomedicines 2024, 12(1), 79; https://doi.org/10.3390/biomedicines12010079
Submission received: 18 November 2023 / Revised: 16 December 2023 / Accepted: 26 December 2023 / Published: 28 December 2023
(This article belongs to the Special Issue Feature Reviews in Cancer Biomarkers)

Abstract

:
Prostate cancer is among the top five cancer types according to incidence and mortality. One of the main obstacles in prostate cancer management is the inability to foresee its course, which ranges from slow growth throughout years that requires minimum or no intervention to highly aggressive disease that spreads quickly and resists treatment. Therefore, it is not surprising that numerous studies have attempted to find biomarkers of prostate cancer occurrence, risk stratification, therapy response, and patient outcome. However, only a few prostate cancer biomarkers are used in clinics, which shows how difficult it is to find a novel biomarker. Cell adhesion to the extracellular matrix (ECM) through integrins is among the essential processes that govern its fate. Upon activation and ligation, integrins form multi-protein intracellular structures called integrin adhesion complexes (IACs). In this review article, the focus is put on the biomarker potential of the ECM- and IAC-related molecules stemming from both body fluids and prostate cancer tissue. The processes that they are involved in, such as tumor stiffening, bone turnover, and communication via exosomes, and their biomarker potential are also reviewed.

1. Introduction

Prostate cancer is among the leading cancers according to incidence and mortality. In 2020, there were more than 1.4 million new cases of prostate cancer diagnosed worldwide and more than 375,000 deaths from this disease [1]. Prostate cancer is a heterogeneous disease in regard to molecular, morphological, and clinical features. Its course ranges from slow growth throughout the years that requires minimum or no intervention to an aggressive and fatal disease that spreads quickly and resists treatment. Currently, the course and outcome of prostate cancer are unforeseeable, and, therefore, novel biomarkers that will guide prostate cancer diagnosis and treatment are urgently needed. Body fluids are easily accessible compartments that are widely explored in prostate cancer biomarker discovery. However, prostate cancer tissue specimens hold information on the main molecular events and processes that orchestrate tumor growth, progression, and evolution. This information is usually out of reach when other compartments are used. Therefore, the gene and protein expression analyzed from prostate cancer tissue contains an additional wealth of information that could be potentially used for biomarker discovery.
Since the inability to foresee prostate cancer course is one of the main obstacles in its management, it is not surprising that there are numerous attempts in prostate cancer research to deliver the biomarkers of prostate cancer risk, occurrence, risk stratification, therapy response, and patient outcome. Currently, there are more than 46,500 scientific papers on PubMed with the search term ‘prostate AND cancer AND biomarker’ (accessed on 18 November 2023). However, there are only a few biomarkers of prostate cancer, including those stemming from blood, tissue, and clinical characteristics used in clinics. This discrepancy between the number of research items on prostate cancer biomarkers and the number of potential biomarkers that are closely considered to be used in clinics shows how difficult it is to find a suitable biomarker. With such a wealth of information on potential biomarkers, it is hard to review, systematize, and single out those with high potential. Therefore, in this review, the focus is put on the biomarker potential of extracellular matrix (ECM)- and integrin adhesion complexes (IACs)-related genes and proteins stemming from both body fluids and cancer tissue. Given the importance of cell-ECM adhesion for the fate of each cell, ECM and IACs are relevant determinants that potentially hold information content important for prostate cancer initiation and progression.
The ECM is a vital part of the tumor microenvironment that consists of extracellular macromolecules and minerals. The most abundant components of the ECM are collagens, which make up to 90% of the ECM protein. Other common components include fibronectins, laminins, and elastins [2]. ECM was initially considered to be only a structural scaffold without much impact on diverse cellular processes. However, its role in determining almost every characteristic of cell behavior, especially in cancer, is emerging [3,4,5]. ECM proteins are ligands for integrin receptors, and cellular adhesion to the ECM is achieved through their interaction. Integrins are heterodimers that are dynamically expressed on the cell surface [6]. Eighteen known α and eight β integrin subunits exist in humans, and they form twenty-four known heterodimers [7,8]. An important feature of integrin signaling is that upon its activation and ligation, integrin adhesion complexes (IACs) are formed intracellularly [9]. IACs are composed of hundreds of proteins that are collectively named the adhesome [10,11]. Among them, the consensus adhesome has been recognized, which consists of the sixty most common fibronectin-initiated adhesome proteins [12]. Currently, we are witnessing an increasing interest in the role of integrins that encouraged the quest for IACs’ composition (e.g., [13,14,15,16]) and the hierarchy among its components (e.g., [17,18,19]).
Understanding the mechanisms that link the biomarker with the disease increases substantially the informative value of the biomarker and the knowledge of potential obstacles to its use [20]. Therefore, in further sections, the data on the role of ECM-related proteins and integrins in prostate cancer are first presented, followed by the exploration of their biomarker potential in subsequent sections.

2. Extracellular Matrix (ECM) and Integrins Influence Prostate Cancer Cell Fate

2.1. The Role of ECM Proteins in Prostate Cancer

Matrisome is the collective name for the ECM genes; more precisely, it is the ensemble of genes encoding ECM proteins identified through bioinformatics and the characteristic domain-based organization of the ECM proteins. The matrisome genes are relatively numerous, and the seminal work by Richard Hynes, Alexandra Naba, and colleagues [21,22] recognized more than a thousand such proteins in the human genome, divided into six categories (ECM glycoproteins, collagens, proteoglycans, ECM-affiliated proteins, ECM regulators, and secreted factors). The ECM and the matrisome proteins are involved in almost every feature and process in cancer cells and tissues [23], including proliferation, survival, motility, migration, invasion, epithelial-to-mesenchymal transition (EMT) [24,25], metastasis formation [26], gene expression, response to therapies [2,27,28,29,30], metabolism [31,32], angiogenesis [33,34], and immune system escape [35]. Given that the ECM is the first frontier of the cell towards its surroundings, its involvement in the mentioned processes and the fact that the cells actively respond to their environment are not surprising. Among the most prominent matrisome proteins, the roles of collagens, laminins, matrix metalloproteinases (MMPs), a disintegrin and metalloproteinases (ADAMs), lysyl oxidases (LOXs), cathepsins (CTS), and other diverse glycoproteins and proteoglycans in prostate cancer have been shown. Briefly, collagens, which account for about 30% of the total protein present in the body, are the main structural proteins of the ECM and provide tensile strength to the ECM. The collagen superfamily comprises 28 members numbered with Roman numerals in vertebrates (I–XXVIII) [36]. Generally, collagens are considered to promote tumor growth and create a permissive tumor microenvironment for metastatic dissemination [37]. In prostate cancer, intermediates involved in the biosynthesis and degradation of collagen are widely studied for their potential roles of bone turnover biomarkers linked to prostate cancer bone metastasis (see further text). Along with collagens, laminins are another group of basic ECM and basement membrane glycoproteins that mediate interaction between cells via binding to cell surface receptors (e.g., integrins and dystroglycan) and other components of the ECM. Laminins consist of α, β, and γ chains. There are five α, three β, and three γ chains identified in humans, and they form 16 known different combinations of laminin molecules, named according to their chain composition [38,39]. Changes in the expression levels of some laminins during the progression of prostate cancer have been shown, most notably laminin-332, whose levels were down-regulated [40] in contrast to the unaltered expression of laminin-511 [41]. Laminins are substrates for invading tumor cells; therefore, it is not surprising that, among other roles, they influence the metastatic potential of cancer cells [42]. For example, it was shown that laminin 421, along with type I collagen, type III collagen, and fibronectin, stimulated the migration of prostate cancer cells [43].
The ECM composition is dynamic, and its constant degradation, deposition, and remodeling is an essential part of the processes that include branching morphogenesis, the establishment and maintenance of stem cell niches, wound repair or tissue regeneration, angiogenesis, bone remodeling, etc. Moreover, it is also important for some pathological processes like fibrosis and cancer cell invasion, where it sets the stage for cancer cell dissemination by preparing the trails for their migration. These routes are enriched with released bioactive peptides, growth factors, and cytokines that are otherwise retained within the ECM [44,45,46]. ECM remodeling is highly influenced by specialized proteases with the ability to cleave and degrade the ECM components. They are either expressed on the cell surface or secreted in the extracellular space. It is estimated that approximately half of the 473 active human proteases are expressed in the prostate, of which many are regulated by androgens [47]. To emphasize their importance, the prostate-specific antigen (PSA), which has already been among the most used prostate cancer biomarkers for several decades, also belongs to the kallikrein-related peptidase family (KLK3). Some of the KLKs, including PSA, degrade ECM proteins and activate other ECM-degrading proteases [47,48]. The other most prominent proteases in prostate cancer include MMPs, ADAMs, ADAMs with thrombospondin-1 motifs (ADAMTS), and CTSs. Among them, MMPs are the main enzymes involved in ECM degradation and tissue remodeling, which have been shown in many cases to promote cancer proliferation, invasion, EMT, metastasis, and angiogenesis [49,50]. In prostate cancer, their roles have been discussed in a recent systematic-like review [51], where special emphasis is placed on MMP2, MMP7, and MMP9 since they are the most studied and most often positively correlated with prostate cancer tumorigenicity. Among other roles, MMPs are involved in prostate cancer cell invasiveness (e.g., [52,53,54]), their adhesion and spreading [55], dyscohesion and migration [56], prostate cancer growth in the bone [57], prostate tumor burden, lung metastasis, and blood vessel density [58]. Moreover, recent findings revealed that the androgen receptor (AR), which is among the main drivers of prostate cancer progression, is involved in cross-talk with proteins belonging to the MMP family. Namely, the AR, in interaction with ITGB1 and membrane type-matrix metalloproteinase 1 (MT-MMP-1 or MMP14), activates a protease cascade triggering ECM remodeling, which facilitates the cancer-associated fibroblast invasion through the ECM and a subsequent interaction with prostate cancer cells [59]. ADAMs are another frequent type of proteases involved in ECM remodeling that are also often positively linked to prostate cancer progression. Examples of those are ADAM15, -17, and -28, with mainly consistent literature, and ADAM9, with more complex involvement in prostate cancer (reviewed in [51]). Another group of proteins that increase ECM remodeling and stiffness are the lysyl oxidases (LOX), which influence the alignment of fibrillar collagens and elastins through their crosslinking. Crosslinking transforms soluble collagen and elastin into insoluble, mature fibers. The role of LOX in prostate cancer is controversial [60] since some studies suggest that downregulation of LOX promotes the progression of prostate cancer (e.g., [61]), while other studies have shown that inhibition of LOX enzymes initiated before implantation of AT-1 cells reduces prostate tumor growth. However, the treatment that was started after the tumors were established resulted in unaffected or increased tumor growth [62]. Finally, cathepsins (CTS) are soluble lysosomal or secreted protease enzymes that are also involved in ECM remodeling and shaping the microenvironment [63,64]. In prostate cancer, roles for CTSA [65], -B [66], -D [67], -E [68], -H [69], -K [70,71,72,73], and -L [74,75] have been suggested.
In addition to collagens, laminins, and ECM remodeling proteins, the roles of many other ECM glycoproteins and proteoglycans were implicated in prostate cancer biology. For example, thrombospondins (THBS) are ECM glycoproteins involved in the inhibition of angiogenesis that were shown to regulate the normal prostate in vivo [76], but also to potentiate the cell migration and development of advanced prostate tumors (THBS1) [77] and prostate cancer bone metastasis (THBS2) [78]. Moreover, THBS4 was shown to regulate cancer stem cell-like properties [79].
In conclusion, this brief overview suggests that the ECM and the matrisome proteins largely govern the fate of prostate cancer cells and tissues.

2.2. The Role of Integrins in Prostate Cancer

Just like the ECM and the matrisome proteins, integrins are also versatile proteins involved in many cellular and tissue processes. The role of integrins has been excessively documented in prostate cancer. Namely, an early study on the TRAMP (transgenic adenocarcinoma of the mouse prostate) mouse model has shown that integrin β1 deletion enhances the progression of prostate cancer [80]. However, further in vitro studies suggested that integrin β1 in prostate cancer cells switches TGFβ signaling from tumor-suppressive to oncogenic roles [81]. Of the β1 integrin heterodimers, RM11 prostate tumor growth was reduced in the integrin α11-, that is, α11β1-deficient mice [82]. Additionally, integrin α2β1 was shown to decrease proliferation but induce survival and invasion of prostate cancer cells [83]. Further mechanistic insights into this topic revealed that integrin α2β1 inhibition in prostate cancer cells reduces EMT [84]. Importantly, integrin αVβ8 on T cells suppresses anti-tumor immunity in, among others, the TRAMPC2 mouse prostate carcinoma model [85]. This would imply that integrin αVβ8 is a promising target for tumor immunotherapy. However, integrin αV subunit expression was demonstrated to be involved in the acquisition of a metastatic stem/progenitor cell phenotype in prostate cancer [86], confirming the diversity of processes that integrins are involved in. In line with that, integrin β4 was shown to promote the expansion of prostate tumor progenitors [87]. Finally, a recent study suggested that hemidesmosomal α6β4 integrins and plectin are tumor suppressors in prostate cancer but become oncogenic upon hemidesmosome disassembly [88,89].
The role of integrins in prostate cancer metastasis formation has also been documented. Namely, it was shown that prostate cancer metastases from different sites (bone, lymph nodes, and liver) differ in their integrin repertoire [90]. Since the bone is the most common prostate cancer metastatic site, the majority of studies deal with prostate cancer cell communication within the bone. For example, co-expression and enrichment of integrins αV and α5 in osseous metastases were detected [91]. Furthermore, integrins α4 [92] and α4β1 [93] have been implicated in the adherence of prostate cancer cells to the bone marrow endothelium, while integrins α5β1 [94] and α9 [95] were shown to be involved in the interactions of prostate cancer cells with the bone microenvironment. Integrins αVβ6 [96] and αVβ3 [97] were shown to stimulate osteolytic programs and osteoclastogenesis in prostate cancer cells, respectively. Moreover, the roles of integrins α6 [98], α2β1 [99], and β1 [100] have been documented. Finally, an in vitro study on patient-derived xenograft lines suggested that cell-cell adhesion downstream of integrin β1 promoted prostate cancer cells to escape from dormancy when cultured on bone marrow stroma [101].

Extracellular Vesicles (EVs)-Derived Integrins Contribute to Prostate Cancer Cell Communication within Its Own Surroundings but also with Other Cells and Tissues within the Body

The role of integrins seems to be important in the process of cellular crosstalk by exosomes and other extracellular vesicles (EVs). EVs are lipid bilayer-encircled particles of nano- to micrometer-scale size that are released into the extracellular environment from almost all types of cells. Exosomes and oncosomes are subsets of EVs. EVs contain nucleic acids, proteins, lipids, and metabolites, and they mediate near- and long-distance intercellular communication [102]. The tumor-derived exosomes from mouse and human lung-, liver-, and brain-tropic tumor cells were shown to have the potential to prepare the pre-metastatic niche when uptaken by organ-specific cells [103]. Treatment with exosomes from lung-tropic models was even able to redirect the metastasis of bone-tropic tumor cells. In the same work, the proteomics analysis of exosomes revealed different integrin expression patterns and their involvement in the process. Namely, the exosomal integrins α6β4 and α6β1 were linked to lung metastasis, and the exosomal integrin αvβ5 was related to liver metastasis. The subsequent work from the Lucia Languino laboratory added substantially to our knowledge of integrins from prostate cancer exosomes and other EVs. Namely, the authors showed that αVβ6 integrin is packaged into exosomes isolated from PC3 and RWPE prostate cancer cell lines and transferred to and internalized by DU145 αVβ6 negative cells, which enhances their ability to adhere and migrate [104]. M2 polarization and angiogenesis were also shown to be affected by the EV transfer of αVβ6 from prostate cancer cells to monocytes and endothelial cells, respectively [105,106]. Furthermore, the αVβ3 integrin is also expressed in exosomes released from PC3 and CWR22Pc prostate cancer cells, and its exosome-mediated transfer from tumorigenic to nontumorigenic BPH-1 cells promoted their migration [107]. A single treatment with small EVs released from prostate cancer C4-2B cells that express αVβ3 stimulated tumor growth and induced differentiation of prostate cancer cells towards a more aggressive neuroendocrine phenotype [108]. To add to the importance of these events, the same authors have shown that prostate cancer sheds the αVβ3 integrin in vivo through exosomes [109]. The role of β1 integrins was also demonstrated; namely, small EVs from either cancer cells or blood from tumor-bearing TRAMP mice transfer β1 integrins, which stimulate anchorage-independent growth of recipient cells [110]. Other authors have also demonstrated the involvement of integrins from EVs in prostate cancer. Specifically, it was shown that a subline of prostate cancer DU145 cells that is resistant to inhibitors of the mevalonate pathway releases large oncosomes, which are atypically large EVs. Large oncosomes from these cells overexpress integrin αV and promote adhesion and invasion in recipient DU145 parental cells [111]. Finally, exosome-mediated transfer of integrin α2 derived from castration-resistant prostate cancer cells promotes migration and invasion of androgen receptor-positive prostate cancer cells by inducing EMT [112]. Taken together, these results suggest that EV-derived integrins have important roles in the communication of prostate cancer cells with their near and distant environment.
The main drivers of prostate cancer progression from the repertoire of ECM and IAC-related proteins and their interactions are shown in Figure 1. Given the essential roles of ECM and IACs in prostate cancer biology, it is to be expected that their genes, proteins, and the processes they are involved in would show high potential for biomarker discovery. Those possibilities are explored in more detail in further sections.

3. Increased Tumor Stiffness Enables Prostate Cancer Detection Via Physical Palpation

A frequent characteristic of different tumor types, including those of the lung, breast, colon, pancreas, and liver, is increased tumor stiffness, which is a consequence of excessive deposition of ECM components, especially type I collagen. Among the properties that are affected by increased tumor stiffness are tumor initiation, growth, invasion, metastasis, immune cell infiltration, stem cell differentiation, growth factor secretion and signaling, and angiogenesis and vessel permeability [115]. In prostate cancer, increased tumor stiffness has also been documented and correlated with more malignant tumors with a higher Gleason score (reviewed in [115]). Signaling pathways activated by ECM stiffness and linked to castration resistance mechanisms in prostate cancer have been recently reviewed [115]. Briefly, they involve AR-centric (for example, the expression of constitutively active AR variants) and AR-independent mechanisms, which might include the activation of FGFR or modulation of the WNT pathway to drive AR-independent growth of prostate cancer. Among other malignant characteristics, matrix stiffness has been recently shown to induce EMT in prostate cancer cells [116]. Furthermore, it was shown that prostate cancer PC3 cell adhesion to endothelial cells increased with matrix stiffness, suggesting that tumor matrix stiffness promotes cancer cell interaction with the endothelium, which is among the key steps in cancer cell intravasation and dissemination within the vasculature [117]. Additionally, prostate cancer cells cultured on stiff substrates have higher migration potential [118]. Finally, prostate cancer cell contractility, viscoelasticity, and modulation of cellular stiffness are also differentially influenced by substrate stiffness [118,119]. Taken together, these brief outlines suggest that tumor stiffness largely determines the fate of prostate cancer cells.
Because of increased stiffness, prostate cancer lesions feel harder upon physical palpation than the surrounding, healthy tissue. Consequently, this characteristic enables prostate cancer detection through physical palpation in a digital rectal examination (DRE). According to the most recent European Association of Urology guidelines [120,121], the cT staging of prostate cancer is based on DRE only. The cT staging, which is a part of the TNM (tumor, node, and metastasis) classification, is used to determine the clinical stages of the tumor, that is, to describe the size of the tumor and how far it has grown. However, DRE used alone has sensitivity and specificity below 60%, so it cannot be considered to exclude prostate cancer [122]. Although PSA levels in the blood are a better predictor of prostate cancer [121], an abnormal DRE is still an indicator for prostate cancer biopsy and adds significantly to its diagnosis.

4. Bone Turnover: ECM Biomarkers in Prostate Cancer Bone Metastasis Diagnosis and Prognosis

It is estimated that about 70–90% of prostate cancer patients with advanced disease will develop bone metastasis (usually homed in the axial skeleton of the pelvis or spine) that is frequently accompanied by intolerable bone pain that lowers life quality and impairs overall survival [123,124]. However, bone metastases are challenging to detect before their final stages. Tissue biopsies and imaging are used in the diagnosis of bone metastasis, but these methods are expensive, highly invasive, with low specificity and sensitivity, and with the risk that is brought about by radiation exposure. Therefore, novel diagnostic and prognostic biomarkers are needed. Since prostate cancer cell growth in the bone metastatic site is accompanied by bone remodeling, the bone formation and bone resorption biomarkers are promising molecules for the diagnosis and prognosis of prostate cancer bone metastasis, which is primarily characterized by osteoblastic lesions, that is, uncontrollable bone formation. The value of bone turnover biomarkers is especially emphasized by the fact that bone turnover releases specific molecules in the blood and urine.
Bone turnover markers include several molecules from the pathway of collagen biosynthesis and degradation. Namely, pro-collagen type I N-terminal pro-peptide (PINP) and pro-collagen type I C-terminal pro-peptide (PICP) are the collagen-related bone formation biomarkers that contribute to the production of mature type I collagen. On the other hand, C-telopeptide of type I collagen (CTx), N-telopeptide of type I collagen (NTx), and C-terminal pyridinoline cross-linked telopeptide of type I collagen (ICTP) are bone resorption biomarkers released in the process of collagen breakdown. Furthermore, pyridoxine (PYD) and deoxypyridinoline (D-PYD) cross-links help to keep collagen fibers stable and are found within and between collagen molecules. They are also released into the blood upon the breakdown of bone tissue. The biomarker potential of PINP, PICP, CTx, NTx, ICTP, PYD, and D-PYD in prostate cancer has been extensively reviewed [123,124,125,126,127,128,129]. Briefly, bone metastases were repeatedly shown to increase PINP and PICP levels in the serum of prostate cancer patients [123], and the rise in levels of PINP in the serum is a sign of prostate cancer bone metastasis progression [130]. Furthermore, PINP was correlated with survival in prostate cancer patients with bone metastasis [131,132]. Increased blood levels of PYD, D-PYD [123], and ICTP [130] were also found in individuals with prostate cancer bone metastasis. Higher PYD levels were linked to worse overall survival [133], while ICTP was shown to be a useful biomarker for prostate cancer bone metastasis, especially when combined with other biomarkers [134]. Although some earlier studies suggested that NTx and CTx had a low sensitivity for diagnosing prostate cancer bone metastasis [135], a recent meta-analysis on NTx revealed that the pooled sensitivity and specificity for metastasis detection were 77% and 80%, respectively, for 45 diagnostic studies with combined cancer types that included prostate cancer [136]. Additionally, the prognostic value of NTx in human cancers with bone metastasis revealed that high NTx levels were linked to poor overall survival. Further to this, another recent study suggested that high levels of bone turnover biomarkers were associated with worse overall survival in men with newly diagnosed metastatic prostate cancer [137]. Taken together, these studies suggest that bone turnover proteins from the pathway of collagen synthesis and breakdown have biomarker potential in prostate cancer bone metastasis diagnosis but also bear prognostic value since they are correlated with the survival of prostate cancer patients. Other bone formation (BGLAP (osteocalcin) and SPP1 (osteopontin)) and bone resorption (IBSP (integrin-binding sialoprotein or bone sialoprotein)) ECM glycoproteins were also explored for their biomarker potential in prostate cancer metastasis formation and are discussed in more detail in [123]. Briefly, further research is required to define their potential biomarker roles.

5. The Biomarker Potential of EVs-Derived Integrins in Prostate Cancer

The EVs are accessible by minimally invasive or non-invasive methods and are widely studied [138] in search of cancer biomarkers (reviewed in [139,140,141,142,143,144]). In prostate cancer, the exosomes from different compartments were studied [145]. For example, the potential of urinary EVs [146] and plasma-derived exosomes [147] was explored. In a recent article, the authors did the proteomic analysis of EVs isolated from the blood sera of prostate cancer patients, healthy donors, patients with hypertrophic disease, and post-prostatectomy disease-free cases. The antibody-based proteomic technology analysis (reverse-phase protein microarrays) showed that integrin β5 is among the few differentially expressed proteins in tumor-derived EVs with diagnostic potential [148]. In a previously mentioned study [111], based on in vitro and in vivo prostate cancer models and patient tumor tissues, it was suggested that αV integrin-positive large oncosome-like structures were present in tumor xenografts and prostate cancer patients’ tissues. Moreover, increased αV-integrin expression in tumors was correlated with a high Gleason score and lymph node status. Furthermore, in a study based on a PC-3 cell model, it was suggested that exosomal integrin β4 and vinculin were potential biomarkers for the progression of prostate cancer associated with taxane resistance since their expression was upregulated in exosomes derived from PC-3R taxane-resistant cells compared to PC-3 parental cells [149]. Finally, exosomal integrin α3 was shown to interfere with non-cancerous prostate epithelial cells’ functions. The western blot analysis from the same study performed on urine samples from 13 patients in total has revealed that integrins α3 and β1 were more abundant in the urine exosomes of metastatic patients compared to benign prostate hyperplasia or prostate cancer [150]. In conclusion, besides their functional role in prostate cancer, the EVs-derived integrins are also a source of potential prostate cancer biomarkers.

6. ECM- and Integrin Adhesion Complex (IAC)-Related Single Genes and Proteins as Prostate Cancer Biomarkers

While increased tumor stiffness, bone turnover, and the priming of metastatic niches are complex processes involving a larger group of proteins and a series of steps, the role of individual ECM- and IAC-related genes and proteins and their biomarker potential in prostate cancer has also been extensively documented. Matrisome proteins are grouped in the core matrisome and matrisome-associated protein categories [21,22]. For the purposes of this review article, the core matrisome proteins (n = 274) were examined for their potential roles in prostate cancer biomarker discovery. Additionally, MMPs, ADAMs, LOXs, and CTSs from the ECM regulators subcategory of matrisome-associated proteins are included because of their important roles in ECM remodeling, which is especially emphasized during cancer progression. Table 1 summarizes the information on the biomarker potential of single ECM-related genes and proteins in prostate cancer. Although the list of genes, proteins, and publications in Table 1 is not exhaustive, Table 1 already refers to more than two hundred articles, which tells about how extensively the ECM proteins were studied in prostate cancer. Among the most studied genes and proteins from Table 1 are IGFBP1 (insulin-like growth-factor-binding protein 1), -2, -3, CYR61 (cysteine-rich angiogenic inducer 61), POSTN (periostin), and SPON2 (spondin 2). Insulin-like growth factors (IGFs) are related to insulin but have much higher growth-promoting activity. Approximately 98% of IGF1 is always bound to one of six binding proteins (IGFBPs). IGFBP3, the most abundant among them, accounts for 80% of all IGF binding. Binding to an IGFBP increases the half-life of IGF in the circulation and blocks its potential binding to the insulin receptor, which regulates IGF signaling [151]. One mechanism for regulating the biological activity of IGFBPs is their differential localization to the cell surface, or ECM [152]. While the biomarker potential of IGFBP2 and -3 in prostate cancer is a matter of reports emphasizing its complexity (see references from Table 1 and [153,154,155,156,157,158,159,160,161]), the articles on the roles of IGFBP1 are scarcer but more unison, suggesting its potential role as the biomarker of prostate cancer risk, disease stratification, and prognosis (Table 1). Just like the IGFBPs, CYR61, POSTN, and SPON2 also belong to the category of ECM glycoproteins. While the articles on SPON2 (Table 1) mainly suggest its diagnostic potential in prostate cancer, the literature on the other two proteins additionally explores their potential roles as prognostic, predictive, and risk stratification biomarkers. Among them, CYR61 is a secreted growth factor-inducible protein that promotes adhesion and interacts with several integrins. It plays a role in cell proliferation, differentiation, apoptosis, angiogenesis, wound healing, and extracellular matrix formation. Earlier studies on prostate tissues [162] and sera from prostate cancer patients [163] suggested that there was a strong association between CYR61 expression and prostate cancer and that CYR61 expression was correlated with more advanced disease (Gleason score of 8 or greater) and non-organ-confined in comparison to organ-confined prostate cancer. However, decreased expression of CYR61 in cancer tissues is associated with prostate cancer recurrence after surgical treatment [164], suggesting that CYR61 expression increases during prostate cancer development and decreases with further disease progression [165]. POSTN is a secreted ECM protein that induces cell attachment and spreading and plays a role in cell adhesion, tissue development, and regeneration. Earlier studies dealt with the risk stratification potential of POST expression in prostate cancer tissues and stroma and suggested its association with the Gleason score, the stage of the tumor, the degree of malignancy, and bone metastasis [166,167,168,169]. Further proteomics study found significant up-regulation of POSTN in prostate cancer tissue in comparison to benign prostate hyperplasia [170], confirming its diagnostic potential. Finally, other articles established that POSTN stromal and epithelial expression on prostate cancer biopsy samples has a prognostic value since it is correlated with the prostate cancer patients’ clinical outcome [171,172,173,174,175,176]. Other frequently studied ECM glycoproteins in prostate cancer include ADIPOQ (adiponectin), IBSP (integrin-binding sialoprotein), SPARC (osteonectin or secreted protein acidic and cysteine-rich), and SPP1 (osteopontin). Among them, IBSP and SPP1 were already mentioned in Section 4 for their roles as potential bone metastasis biomarkers. However, they are studied more extensively than that, as evident from Table 1.
Since ECM remodeling plays an essential role in cancer cell dissemination, it is not surprising that its main executors are widely explored for their biomarker potential. A recent systematic-like review [51] presented published literature on the roles of the metzincin superfamily of proteases in prostate cancer. The vast majority of reviewed papers can be considered to deal with the biomarker potential of MMPs, TIMPs (tissue inhibitors of metalloproteinases), ADAMs, and ADAMTS, since many of those are correlated to prostate cancer and/or its clinical stages and progression. The number of papers that deal with their biomarker potential in prostate cancer exceeds the amount of literature published on other groups of genes and proteins in Table 1. In Table 1, MMP2 and MMP9 stand out because their biomarker potential has been frequently studied and documented in the literature. Namely, it was suggested that MMP2 has diagnostic, prognostic, risk stratification, and risk of disease biomarker potential in prostate cancer (Table 1). Moreover, an interesting paper found that the expression of MMP2 in bone marrow micro-metastasis is associated with the presence of circulating prostate cells and a worse prognosis in prostate cancer patients treated with radical prostatectomy [177]. For MMP9, its potential diagnostic, prognostic, and risk stratification biomarker values were suggested (Table 1). However, it should be noted that not all studies on MMP2 and MMP9 (and MMPs in general) in prostate cancer are unison (discussed in more detail in [51]). For example, the MMP9 prognostic and risk stratification potential were questioned since different studies came to different conclusions (e.g., [178,179]). Of the articles that studied a group of MMPs and TIMPs, a recent paper showed that the MMP gene expression signature consisting of MMP1, MMP7, MMP11, MMP24, and MMP26 had a high prognostic value since patients with a high MMPS risk score and low M2 macrophages showed the worst recurrence-free survival [180]. Finally, another recent article suggested that MMPs/TIMPs expression in biopsy tissues may reflect evolutionary changes from prostate benign tissues to prostate cancer and add to its diagnosis [181]. However, speaking in general, the role and the biomarker potential of TIMPs in prostate cancer are frequently the subject of conflicting reports (reviewed in [51]). Among ADAMs, ADAM9, -10, -12, -15, -19, and -28 (Table 1) were suggested to have biomarker potential in prostate cancer. The role of LOX as a prostate cancer biomarker is complex, since one study found that high LOX expression in the non-malignant prostate epithelium predicts a poor outcome in prostate cancer patients that are managed by watchful waiting. The same study found that the LOX expression score in prostate tumor epithelium was positively correlated to the Gleason score and metastases but was not associated with cancer survival [182]. However, another study suggested that low LOX expression in tumors detected by immunohistochemistry was associated with a poor prognosis in patients with prostate cancer [183].
The literature on the biomarker potential of laminins in prostate cancer is less abundant than in other cancer types (e.g., [184]). However, there are reports (Table 1) suggesting their potential biomarker roles in prostate cancer. In Table 1, the articles comparing the expression of laminins in healthy and cancer tissues are mainly included. The most significant change is the loss of the hemidesmosomal laminin-332 (see further text) in invasive prostate carcinoma, that is, its LAMA3, LAMB3, and LAMC2 subunits, which might be epigenetically silenced in prostate cancer [185].
Along with ECM glycoproteins, proteoglycans were also studied for their biomarker potential in prostate cancer (Table 1). An article that analyzed proteoglycan expression in prostate cancer tissues found extensive changes in proteoglycan expression in prostate tumors, with a decrease in decorin and lumican expression and an increase in syndecan-1 and glypican-1 expression in tumor stroma and their disappearance in tumor epithelial cells [186].
Finally, the biomarker potential of collagen in prostate cancer is also presented in Table 1. In a recent study, by using second-harmonic generation imaging and genotyping of ECM around prostate cancer, the authors showed that the changes in content, orientation, and type of collagen varied with the prostate cancer Gleason grade. Moreover, the ability of the collagen content orientation to predict clinically significant prostate cancer has been demonstrated since there were clear differences between collagen orientation and type in normal and cancer tissues [187]. This would suggest the involvement of changed collagen features in prostate cancer.
Table 1. Examples of the ECM genes and proteins with biomarker potential in prostate cancer. Core matrisome genes/proteins were considered. Additionally, MMPs, ADAMs, LOXs, and CTSs from the ECM regulators category are included. Collagen synthesis and breakdown intermediates are omitted from this table and are discussed in the text. CT, cancer tissue; M, metastases; B, blood; S, serum; P, plasma; U, urine; EVs, extracellular vesicles; D, diagnostic; PRO, prognostic; PRE, predictive biomarker; R, biomarker of prostate cancer risk; RS, risk stratification biomarker.
Table 1. Examples of the ECM genes and proteins with biomarker potential in prostate cancer. Core matrisome genes/proteins were considered. Additionally, MMPs, ADAMs, LOXs, and CTSs from the ECM regulators category are included. Collagen synthesis and breakdown intermediates are omitted from this table and are discussed in the text. CT, cancer tissue; M, metastases; B, blood; S, serum; P, plasma; U, urine; EVs, extracellular vesicles; D, diagnostic; PRO, prognostic; PRE, predictive biomarker; R, biomarker of prostate cancer risk; RS, risk stratification biomarker.
Gene/ProteinECM CategoryType of Molecule StudiedCompartment UsedBiomarker TypeReferences
Type I collagenCollagenmRNA and proteinCTD[188]
Type III collagenCollagenmRNA, protein, and autoantibodiesCT, SD[188,189]
Type VII collagenCollagenProteinCTD[190]
Type VIII collagenCollagenProteinSD[191]
Type XX collagenCollagenProteinSD[192]
Type XXIII collagenCollagenProteinCT, M, UD, PRO[193]
COL4A1 (collagen type IV alpha 1 chain)CollagenmRNACT, MD, RS[194]
COL4A6CollagenmRNACTD, PRO, RS[195,196]
COL10A1CollagenmRNA and proteinCTD, PRO[197]
ASPN (asporin)ProteoglycansGene, mRNA, and proteinCT, BD, PRO[198,199,200,201,202]
BGN (biglycan)ProteoglycansmRNA and proteinCTD, PRO, RS[199,203,204]
ESM1 (endocan)ProteoglycansProteinCT, SD, PRO, RS[205,206,207]
FMOD (fibromodulin)ProteoglycansGene, mRNA, and proteinCTD, PRO, RS, R[208,209,210,211]
HSPG2 (perlecan)ProteoglycansProteinCT, S, UD[212,213]
SPOCK1 (testican-1)ProteoglycansmRNA and proteinCTD, PRO, RS[214,215,216]
SPOCK3 (testican-3)ProteoglycansmRNACTD, PRO, RS[217,218]
VCAN (versican)ProteoglycansmRNA and proteinCTD, PRO, RS[219,220]
ADIPOQ (adiponectin)GlycoproteinsGene and proteinCT, SD, PRO, RS, R[221,222,223,224,225,226,227,228,229,230]
COMP (cartilage oligomeric matrix protein)GlycoproteinsmRNA and proteinCT, M, BD, RS[202,231,232]
CTHRC1 (collagen triple helix repeat containing 1)GlycoproteinsmRNA and proteinCTPRO[233]
CYR61 (cysteine-rich heparin-binding protein 61)GlycoproteinsmRNA and proteinCT, SD, PRO, PRE, RS[162,163,164,165,234]
DSPP (dentin sialophosphoprotein)GlycoproteinsmRNA and proteinCT, SD, RS[235,236]
EDIL3 (EGF like repeats and discoidin domains 3)GlycoproteinsProteinCT, SD, RS[237]
EFEMP1 (EGF containing fibulin ECM protein 1)GlycoproteinsmRNA, protein, and DNA methylationCT, S, UD, RS[238,239,240]
EFEMP2GlycoproteinsmRNACTD[216]
FBLN1 (fibulin 1)GlycoproteinsmRNA and proteinCTD[216]
FBLN5GlycoproteinsmRNA and proteinCTD[216]
FBN1 (fibrillin 1)GlycoproteinsProteinUD, RS[241]
FGG (fibrinogen gamma chain)GlycoproteinsProteinS, UD[242,243]
FN1 (fibronectin 1)GlycoproteinsProteinBD[169]
HMCN2 (hemicentin 2)GlycoproteinsProteinUD, RS[241]
IBSP (integrin-binding sialoprotein)GlycoproteinsmRNA and proteinCT, M, SD, PRO, RS[235,244,245,246,247,248,249,250,251]
IGFBP1 (insulin like growth factor binding protein 1)GlycoproteinsGene and proteinS, PPRO, RS, R[252,253,254,255,256,257]
IGFBP2GlycoproteinsmRNA and proteinCT, SD, PRO, PRE, R?[161,258,259,260,261,262,263,264,265,266,267]
IGFBP3GlycoproteinsGene and proteinCT, S, P, UD, PRO, RS, R[268,269,270,271,272,273,274,275,276,277] [261,278,279,280,281,282,283]
IGFBP6GlycoproteinsProteinSD[284]
LAMA1 (laminin subunit alpha 1)GlycoproteinsProteinCTD[285]
LAMA3GlycoproteinsProteinCTD[285]
LAMA5GlycoproteinsProteinCTD[286]
LAMB1GlycoproteinsmRNACT, MD, RS[194]
LAMB3GlycoproteinsmRNA and proteinCTD[287,288]
LAMC2GlycoproteinsmRNA and proteinCTD[190,287,288]
LRG1 (leucine rich alpha-2-glycoprotein 1)GlycoproteinsProteinCT, B, P (EVs), U (EVs)D, PRO, PRE, RS[146,147,289,290]
NTN1 (netrin 1)GlycoproteinsmRNA and proteinCT, PD[291,292]
POSTN (periostin)GlycoproteinsmRNA and proteinCT, M, B, PD, PRO, RS[166,167,168,169,170,171,174,175,176,232,293,294]
RELN (reelin)GlycoproteinsProteinCTD, RS[295]
RSPO3 (R-spondin 3)GlycoproteinsmRNACTD, PRO[296]
SLIT2 (slit guidance ligand 2)GlycoproteinsProteinCT, MD[297]
SPARC (osteonectin)GlycoproteinsmRNA, protein, and DNA methylationCT, MD, PRO, RS[298,299,300,301,302]
SPON1 (spondin 1)GlycoproteinsmRNACTD, PRO, RS[217]
SPON2 (spondin 2)GlycoproteinsProtein and DNA methylationCT, SD, RS[245,303,304,305,306]
SPP1 (osteopontin)GlycoproteinsmRNA and proteinCT, M, S, P, UD, PRO, PRE, RS[246,275,307,308,309,310,311,312,313] [235,250,314,315,316,317,318]
THBS1 (thrombospondin 1)GlycoproteinsProteinCT, S, S (EVs)D, PRO[319,320,321,322]
THBS2 GlycoproteinsmRNA and proteinCTD, PRO[323]
TNC (tenascin C)GlycoproteinsGene and proteinCTD, PRO, RS[286,324,325,326,327]
VTN (vitronectin)GlycoproteinsProteinCT, S, UD, RS[241,328]
WISP1 (WNT1 induced secreted protein 1)GlycoproteinsmRNA and proteinCTPRO[329]
ADAM9 (a disintegrin and metalloproteinase domain 9)ECM regulatorsmRNA and proteinCTD, PRO[330,331,332,333]
ADAM10ECM regulatorsProteinCTD, RS[334]
ADAM12ECM regulatorsProteinB, UD[335]
ADAM15ECM regulatorsProteinCTD, PRO, RS[336,337]
ADAM19ECM regulatorsmRNA and proteinCTD, PRO, RS[338]
ADAM28ECM regulatorsProteinCTD[339]
CTSB (cathepsin B)ECM regulatorsGene and proteinCT, SD, RS, R[340,341,342,343]
CTSB/CSTA (cystatin A) ratioECM regulatorsmRNA and proteinCTD, PRO, RS[344,345,346,347,348]
CTSDECM regulatorsProtein and protein activityCT, M, SD, PRO, PRE, RS[176,349,350,351,352,353,354,355]
CTSKECM regulatorsmRNA and proteinCT, MD, PRE[356,357]
CTSLECM regulatorsProteinCTRS[293]
CTSZECM regulatorsmRNA and proteinCT, BD, PRO[358,359]
LOX (lysyl oxidase)ECM regulatorsGene, mRNA, and proteinCT, MD, PRO, PRE, RS[182,183,360,361,362]
MMP1 (matrix metalloproteinase 1)ECM regulatorsProteinCTD, PRO, RS[363,364]
MMP2ECM regulatorsGene, mRNA, protein, and protein activityCT, S, P, UD, PRO, RS, R[365,366,367,368,369,370,371,372,373,374,375]
MMP7ECM regulatorsGene and protein SPRO, PRE, R[376,377,378]
MMP9ECM regulatorsmRNA, protein, and protein activityCT, B, PD, PRO, RS[178,179,366,369,371,375,379,380,381,382,383,384,385]
MMP11ECM regulatorsGene and proteinCTD, PRO, RS[386,387,388]
MMP13ECM regulatorsProteinCTD, PRO, RS[386,389]
Table 2 presents information on the biomarker potential of single integrin and IAC-related genes and proteins in prostate cancer in a non-exhaustive manner. It is evident that integrin subunits, but also heterodimers, were frequently studied for their biomarker potential. For example, a recent article dealt with the commonly studied αVβ3 and αVβ6 integrins in prostate cancer mouse models and patient-derived xenografts and suggested that αVβ3 integrin may promote a shift in lineage plasticity towards a more aggressive, neuroendocrine (NE) prostate cancer phenotype and might be a potential biomarker of NE differentiation in prostate cancer. However, this was not the case with the integrin αVβ6, which was shown to be confined to the adenocarcinoma of the prostate [390]. Among the most prominent changes in integrin expression in prostate cancer tissue is the loss of the hemidesmosome-related integrin α6β4, which was noticed in early publications [190,391]. Hemidesmosomes are the type of IACs that facilitate the stable adhesion of basal epithelial cells to the underlying basement membrane [392]. An early report suggested that prostate carcinoma cells lacked hemidesmosomal proteins, the integrin α6β4, BP180, LAMC2, and collagen VII, but did express BP230, plectin, and the integrin laminin receptors α3β1 and α6β1 [190]. In addition to integrins and their ligands, many secreted factors belong to the category of ECM proteins and, together with their receptors, are biomarkers for specific subtypes of prostate cancer.
Although many proteins are considered to be part of the human adhesome [12], in this article, the sixty consensus adhesome proteins were considered. Furthermore, since the αVβ5 integrin heterodimer is among the most studied integrins, the additional four proteins (talin 2 (TLN2), filamin A and B (FLNA, FLNB), and plectin (PLEC)) that were shown to be part of its adhesome [14] were analyzed for their potential roles in prostate cancer biomarker discovery. Among adhesome proteins, alpha-actinins belong to the cytoskeletal proteins and show multiple roles in different cell types. ACTN4 was shown to promote the progression of prostate cancer [393]. In a study that analyzed the composition of exosomes in different groups of men with metastatic prostate cancer (untreated, well-controlled with primary androgen deprivation therapy (ADT), and castration-resistant prostate cancer (CRPC) patients), the expression of ACTN4 was shown to be increased in the exosomes of CRPC patients in comparison to the ADT group of patients [394]. Furthermore, filamins are proteins involved in the remodeling of the cytoskeleton and, therefore, play important roles in migration and invasiveness. Moreover, AR is found in a complex with FLNA, and the AR/FLNA complex was suggested to be a target in the prostate cancer microenvironment, for example, by using an AR-derived stapled peptide, which disrupts the AR/FLNA complex assembly [59]. FLNA and FLNB are listed in Table 2 for their biomarker potential in prostate cancer. An interesting early paper showed that localization of FLNA also bears biomarker potential in prostate cancer since cytoplasmic localization of FLNA was shown to correlate with metastasis [395], and potentiation of FLNA nuclear localization was even suggested to enhance the effectiveness of androgen deprivation therapy [396]. Moreover, CpG site hypermethylation of FLNC and some other genes was associated with the prediction of the biochemical, local, and systemic recurrence of prostate cancer [397,398]. Integrin-linked kinase (ILK) [399], plectin (PLEC) [400,401], paxillin (PXN) [402], talin 1 (TLN1) [403,404], and vinculin (VCL) [405] are other adhesome proteins that were implicated in prostate cancer and that showed biomarker potential in this cancer type (Table 2).
Table 2. Examples of integrin and IAC-related genes and proteins with biomarker potential in prostate cancer. Integrins and the genes/proteins of the consensus adhesome and the adhesome of the often-studied integrin αVβ5 were considered. CT, cancer tissue; M, metastases; BM, bone marrow; B, blood; S, serum; P, plasma; U, urine; EVs, extracellular vesicles; D, diagnostic; PRO, prognostic; PRE, predictive biomarker; R, biomarker of prostate cancer risk; RS, risk stratification biomarker.
Table 2. Examples of integrin and IAC-related genes and proteins with biomarker potential in prostate cancer. Integrins and the genes/proteins of the consensus adhesome and the adhesome of the often-studied integrin αVβ5 were considered. CT, cancer tissue; M, metastases; BM, bone marrow; B, blood; S, serum; P, plasma; U, urine; EVs, extracellular vesicles; D, diagnostic; PRO, prognostic; PRE, predictive biomarker; R, biomarker of prostate cancer risk; RS, risk stratification biomarker.
Gene/ProteinCategoryType of Molecule StudiedCompartment UsedBiomarker TypeReferences
ITGA2 (integrin subunit alpha 2)IntegrinmRNA and proteinCT, BM, MD, PRO[406,407,408]
ITGA3IntegrinProteinCT, U (EVs)D, PRO, RS[150,409,410]
ITGA5IntegrinProteinCT, MD, RS[91,411]
ITGA6IntegrinProteinCT, BMPRO, RS[407,408,409,412,413]
ITGA7IntegrinGene and proteinCTD, PRO, RS[411,414]
ITGAVIntegrinGene and proteinCT, M, UD, PRO, R, RS[91,415,416,417]
ITGB1IntegrinProteinCT, U (EVs)D, PRO, RS[150,412,418]
ITGB4IntegrinGene, mRNA, and proteinCTD, PRO[391,419,420]
ITGB5IntegrinProteinCT, S (EVs)D, RS[148,421]
α3β1 integrinIntegrinProteinCTPRO[410]
α6β4 integrinIntegrinProteinCTD[190,391]
αVβ5 integrinIntegrinProteinCTPRO, RS[415]
ACTN1 (actinin alpha 1)Consensus (cons.) and αVβ5 adhesomeProteinCTPRO, RS[422]
ANXA1 (annexin A1)Cons. adhesomemRNA and proteinCT, UD[243,420]
FEN1 (flap endonuclease 1)Cons. adhesomeProteinCTD, RS[423]
FHL2 (four and a half LIM domains 2)Cons. adhesomeProtein (nuclear)CTD, PRO, RS[424,425]
FLNA (filamin-A)αVβ5 adhesomeProteinCT, SD[395,426]
FLNA, FLNB correlationαVβ5 adhesomeProteinSD[427]
ILK (integrin linked kinase)Cons. adhesomeProteinCTD, PRO, RS[428]
IQGAP1 (IQ motif containing GTPase activating protein 1)Cons. adhesomemRNA and proteinCTD, PRO, RS[429]
P4HB (prolyl 4-hydroxylase subunit beta)Cons. adhesomemRNACTD, PRO, PRE, RS[430]
PDLIM5 (PDZ and LIM domain 5)Cons. adhesomeGene, mRNA, and proteinCTD, PRO, PRE, RS[431,432,433]
PLEC (plectin)αVβ5 adhesomeProteinCT, MD[400]
PXN (paxillin)Cons. adhesomeProteinCT, MD, PRE, RS[434,435]
SORBS1(sorbin and SH3 domain containing 1)Cons. adhesomemRNACTD, PRO[436,437]
TGM2 (transglutaminase 2)Cons. adhesomemRNA and proteinCTD, PRO, RS[438,439]
TLN1 (talin 1)Consensus and
αVβ5 adhesome
ProteinCT, MD, PRE, RS[404,440]
VCL (vinculin)Consensus and αVβ5 adhesomeGene and proteinCT, UD[441,442]
ZYX (zyxin)Cons. adhesomeProteinCTD[170,443]
Finally, the ECM and IACs-related genes/proteins currently being tested in active clinical trials include ANXA3 (ClinicalTrials.gov ID: NCT04825002) within the urinary multimarker sensor. The sensor is based on the measurements of trace amounts of four protein biomarkers from naturally voided urine in men referred with clinical suspicion of prostate cancer who have had no prior prostate biopsy. The goal of the study is to test whether a urinary multimarker sensor would help to avoid unnecessary prostate biopsy while detecting clinically significant prostate cancer. Annexins are ECM-affiliated proteins, and some of them are categorized as the meta-adhesome proteins, and ANXA1 is a part of the consensus adhesome. Furthermore, SLPI (secretory leukocyte peptidase inhibitor), which belongs to the category of ECM regulators, is currently being tested to verify whether an increased SLPI level in the sera may serve as a biomarker of cancer progression (NCT04854343). Further to this, ADIPOQ, leptin, IGF1, and IGFBP3 ECM proteins are tested among the potential biomarkers whose levels are changed upon physical activity and eating patterns that improve the body composition of prostate cancer survivors (NCT03971591).

ECM- and IACs-Related Genes and Proteins Taking a Part in Prostate Cancer Gene and Protein Signatures with Biomarker Potential

The number of studies that define the gene and protein signatures for diagnosis, prognosis, prediction, and/or risk stratification in prostate cancer has increased rapidly in recent years. The ECM- and IACs-related genes and proteins are frequently found as part of those signatures in prostate cancer (e.g., [217,444,445]). Some examples of prostate cancer radical prostatectomy tissues include the gene expression of NID1 (nidogen 1) and COL4A6 (collagen type IV alpha 6 chain) within the immune-related five gene signature for prostate cancer risk stratification and prognosis [446] or genes contributing to the ECM’s connective tissue signature (COL1A1, COL1A2, COL3A1, LUM (lumican), VCAN (versican), FN1 (fibronectin 1), AEBP1 (AE Binding Protein 1), ASPN (asporin), TIMP1 (TIMP metallopeptidase inhibitor 1), TIMP3, BGN (biglycan), FMOD (fibromodulin), and FLNA) and their expression related to prostate cancer growth and progression [447]. Other examples include the P-score, which consists of the expression of three genes, among which is IGFBP3, and adds to the prognosis for prostate cancer patients [448,449,450]. There are also examples of such studies in the blood [202,451,452,453], EVs [454], and urine [243,455,456] of prostate cancer patients. For example, a study that focused on the clinical validation of a serum protein panel consisting of FLNA, FLNB, and KRT19 (keratin 19) found that their expression and PSA in combination were better than PSA alone in identifying prostate cancer. Moreover, they improved the prediction of high- and low-risk disease and the prediction of cancer versus benign prostatic hyperplasia [457]. Another study created a multivariable model comprising ECM protein concentrations of FN1 (fibronectin 1), LUM, MMP9, THBS1, LGALS3BP (galectin-3-binding protein), and PSA from serum, together with clinical grade group and clinical stage. The proposed model was shown to be a predictor of biochemical recurrence after radical prostatectomy, and it was significantly associated with adverse pathology [458].
However, the most prominent gene and protein signatures for prostate cancer include those contained in commercially available tests like the tissue-based Oncotype DX, Prolaris, Decipher, PORTOS, ProMark, and the blood-based Proclarix. Among other genes, some of these tests contain ECM- and IAC-related genes. For example, Oncotype DX tests the expression of 5 reference genes and 12 cancer-related genes, including BGN (biglycan), COL1A1, FLNC, and SFRP4 (secreted frizzled related protein 4) [459]. While the reviewed genes and proteins from the first part of Section 6 and Table 1 and Table 2 are investigated mainly in early, initial studies that suggested their biomarker potential, the mentioned tests are more studied. However, these tests were mainly not analyzed in prospective clinical trials and, until now, did not receive Food and Drug Administration approval. Still, they are supported for a subset of patients in the most recent European Association of Urology guidelines [120]. Among the tests, Proclarix (Proteomedix, Schlieren, Switzerland) would be probably the most interesting from the point of view of the ECM- and IAC-related molecules since it is based on the expression of two ECM proteins, THBS1 (thrombospondin-1) and CTSD (cathepsin D), in blood. Together with the total PSA, percentage-free PSA, and patient age, it estimates the likelihood of clinically significant prostate cancer. It is convenient to present the evolution of the potential biomarker signature from the initial studies to its inclusion in one of the relevant prostate cancer guidelines by using the example of Proclarix. Namely, initial papers on the potential of THBS1 and CTSD signature in prostate cancer were published in 2017 [460], 2019 [461], and 2020 [462] and were based on the earlier analyses of the serum proteome in metastatic castration-resistant prostate cancer patients and the PTEN conditional knockout mouse model [463,464]. Those initial articles, based on a retrospective cohort of biobanked serum samples, demonstrated and validated the diagnostic biomarker potential of the mentioned protein signature in prostate cancer. Subsequently, the Proclarix test was shown to be suitable for use in clinical practice [465]. Moreover, Proclarix was evaluated in several further prospective studies [466,467,468,469], which confirmed its utility for reducing the number of biopsies that needed to be performed. In one study, Proclarix detected 100% of clinically significant prostate cancer cases and reduced the need for prostate biopsies by 21.3% and insignificant prostate cancer overdetection by 5.3% [469]. The Proclarix test was even analyzed in a systematic review, which confirmed its potential benefit for a subset of prostate cancer patients [470]. A further study compared Proclarix, PSA density, and the MRI-ERSPC risk calculator to select patients for prostate biopsy after multiparametric magnetic resonance imaging (mpMRI). The study concluded that the MRI-ERSPC risk calculator outperformed PSA density and Proclarix in the overall population; however, Proclarix outperformed in a subset of patients within the Prostate Imaging-Reporting and Data System (PI-RADS) ≤ 3 category [471,472]. Several further studies analyzed the combination of Proclarix with the prostate health index [473,474] and MRI [475] and confirmed its utility. Finally, a very recent article suggested that there was a correlation between Proclarix and the aggressiveness of prostate cancer [476]. Taken together, the current literature on Proclarix seems promising; however, many of the cited studies pointed out that further validation is needed.
Just to briefly mention, DNA methylation signatures were also explored for their biomarker roles in prostate cancer. Namely, the gene encoding HAPLN3 (hyaluronan and proteoglycan link protein 3) ECM proteoglycan was found to be a part of the three-gene DNA methylation biomarker with diagnostic [477,478,479] and prognostic [480] potential in prostate cancer. The mentioned studies analyzed prostate cancer tissues; however, the HAPLN3 DNA methylation from prostate cancer patients’ circulating tumor DNA was also shown to be a part of the three methylated gene signature with potential role in prostate cancer diagnosis and risk stratification [481].

7. Conclusions

There is a wide discrepancy between the number of research items on prostate cancer biomarkers and the number of potential molecules and other variables that are used in clinics for prostate cancer biomarker purposes. This is in accordance with some estimates, which say that less than 1% of published cancer biomarkers enter clinical practice [482]. Similar to new drugs, new biomarkers are also subject to rigorous validation before they are introduced into routine clinical care. A very early (2001) article on the phases of biomarker development for early detection of cancer recognized five such phases (preclinical exploratory, clinical assay and validation, retrospective longitudinal, prospective screening, and cancer control) [483], while newer studies (2012) suggested three steps in the development of a candidate biomarker (evaluating analytic validity, clinical validity, and clinical utility) [484,485]. However, many of the potential diagnostic (and other) biomarkers from Table 1 and Table 2 of this article are tested only in the initial, phase 1 (or equivalent) preclinical exploratory studies, which use immunohistochemistry, western blots, mass spectrometry, RT-qPCR, gene-expression profiles, or the levels of circulating antibodies in order to compare the expression of a mRNA or a protein in cancer and non-affected samples or to find correlations with different aspects of a disease. While these data might seem promising at this early stage, many other potential diagnostic (and other) prostate cancer biomarkers have failed to progress through rigorous evaluation [486]. It could be noted that even phase 1 studies are frequently a matter of contradictory reports. There are many reasons behind this, including the use of diverse approaches (studying mRNA in contrast to protein or employing different techniques), different compartments (cancer tissue, plasma/serum, urine), or the molecular, morphological, and clinical heterogeneity of prostate cancer (e.g., [487]), just to name a few. Even when the initial reports on biomarker potential are unison, a significant effort must be made to finish other stages of biomarker development. The reasons for their frequent failure have been a matter of debate for quite some time and are explored in more detail elsewhere [20,482,488]. Briefly, weak clinical performance (low specificity, low sensitivity, low prognostic/predictive value, and information unnecessary for clinical decision-making) and original claims that fail validation because of bioinformatic or pre-, post-, and analytical shortcomings are among the main reasons [488]. The intention of this review article was to summarize the knowledge on the biomarker potential stemming from ECM- and IAC-related molecules and processes and to invite closer inspection. A good example is the Proclarix test, which showed very promising results. Many of the papers reviewed in this article are reminiscent of the initial studies on Proclarix, and their topics might be worth studying further. Hence, in summary, the ECM and IACs seem to contribute significantly to the prostate cancer biomarker discovery, and it might be good to thoroughly re-evaluate their potential.

Funding

This research was funded by a donation from Zagrebačka banka (My Zaba Start 2019).

Conflicts of Interest

The author declares no conflicts of interest.

References

  1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
  2. Huang, J.; Zhang, L.; Wan, D.; Zhou, L.; Zheng, S.; Lin, S.; Qiao, Y. Extracellular Matrix and Its Therapeutic Potential for Cancer Treatment. Signal Transduct. Target. Ther. 2021, 6, 153. [Google Scholar] [CrossRef] [PubMed]
  3. Cox, T.R. The Matrix in Cancer. Nat. Rev. Cancer 2021, 21, 217–238. [Google Scholar] [CrossRef] [PubMed]
  4. Karamanos, N.K.; Theocharis, A.D.; Piperigkou, Z.; Manou, D.; Passi, A.; Skandalis, S.S.; Vynios, D.H.; Orian-Rousseau, V.; Ricard-Blum, S.; Schmelzer, C.E.H.; et al. A Guide to the Composition and Functions of the Extracellular Matrix. FEBS J. 2021, 288, 6850–6912. [Google Scholar] [CrossRef] [PubMed]
  5. Dzobo, K.; Dandara, C. The Extracellular Matrix: Its Composition, Function, Remodeling, and Role in Tumorigenesis. Biomimetics 2023, 8, 146. [Google Scholar] [CrossRef] [PubMed]
  6. Samaržija, I.; Dekanić, A.; Humphries, J.D.; Paradžik, M.; Stojanović, N.; Humphries, M.J.; Ambriović-Ristov, A. Integrin Crosstalk Contributes to the Complexity of Signalling and Unpredictable Cancer Cell Fates. Cancers 2020, 12, 1910. [Google Scholar] [CrossRef] [PubMed]
  7. Hynes, R.O. Integrins: Bidirectional, Allosteric Signaling Machines. Cell 2002, 110, 673–687. [Google Scholar] [CrossRef] [PubMed]
  8. Bachmann, M.; Kukkurainen, S.; Hytönen, V.P.; Wehrle-Haller, B. Cell Adhesion by Integrins. Physiol. Rev. 2019, 99, 1655–1699. [Google Scholar] [CrossRef]
  9. Chastney, M.R.; Conway, J.R.W.; Ivaska, J. Integrin Adhesion Complexes. Curr. Biol. 2021, 31, R496–R552. [Google Scholar] [CrossRef]
  10. Zaidel-Bar, R.; Itzkovitz, S.; Ma’ayan, A.; Iyengar, R.; Geiger, B. Functional Atlas of the Integrin Adhesome. Nat. Cell Biol. 2007, 9, 858–867. [Google Scholar] [CrossRef]
  11. Winograd-Katz, S.E.; Fässler, R.; Geiger, B.; Legate, K.R. The Integrin Adhesome: From Genes and Proteins to Human Disease. Nat. Rev. Mol. Cell Biol. 2014, 15, 273–288. [Google Scholar] [CrossRef] [PubMed]
  12. Horton, E.R.; Byron, A.; Askari, J.A.; Ng, D.H.J.; Millon-Frémillon, A.; Robertson, J.; Koper, E.J.; Paul, N.R.; Warwood, S.; Knight, D.; et al. Definition of a Consensus Integrin Adhesome and Its Dynamics during Adhesion Complex Assembly and Disassembly. Nat. Cell Biol. 2015, 17, 1577–1587. [Google Scholar] [CrossRef] [PubMed]
  13. Atkinson, S.J.; Gontarczyk, A.M.; Alghamdi, A.A.; Ellison, T.S.; Johnson, R.T.; Fowler, W.J.; Kirkup, B.M.; Silva, B.C.; Harry, B.E.; Schneider, J.G.; et al. The β3-integrin Endothelial Adhesome Regulates Microtubule-dependent Cell Migration. EMBO Rep. 2018, 19, e44578. [Google Scholar] [CrossRef] [PubMed]
  14. Paradžik, M.; Humphries, J.D.; Stojanović, N.; Nestić, D.; Majhen, D.; Dekanić, A.; Samaržija, I.; Sedda, D.; Weber, I.; Humphries, M.J.; et al. KANK2 Links αVβ5 Focal Adhesions to Microtubules and Regulates Sensitivity to Microtubule Poisons and Cell Migration. Front. Cell Dev. Biol. 2020, 8, 125. [Google Scholar] [CrossRef] [PubMed]
  15. Tadijan, A.; Humphries, J.D.; Samaržija, I.; Stojanović, N.; Zha, J.; Čuljak, K.; Tomić, M.; Paradžik, M.; Nestić, D.; Kang, H.; et al. The Tongue Squamous Carcinoma Cell Line Cal27 Primarily Employs Integrin α6β4-Containing Type II Hemidesmosomes for Adhesion Which Contribute to Anticancer Drug Sensitivity. Front. Cell Dev. Biol. 2021, 9, 786758. [Google Scholar] [CrossRef] [PubMed]
  16. Tadijan, A.; Samaržija, I.; Humphries, J.D.; Humphries, M.J.; Ambriović-Ristov, A. KANK Family Proteins in Cancer. Int. J. Biochem. Cell Biol. 2021, 131, 105903. [Google Scholar] [CrossRef] [PubMed]
  17. Lu, F.; Zhu, L.; Bromberger, T.; Yang, J.; Yang, Q.; Liu, J.; Plow, E.F.; Moser, M.; Qin, J. Mechanism of Integrin Activation by Talin and Its Cooperation with Kindlin. Nat. Commun. 2022, 13, 2362. [Google Scholar] [CrossRef] [PubMed]
  18. Liu, J.; Lu, F.; Ithychanda, S.S.; Apostol, M.; Das, M.; Deshpande, G.; Plow, E.F.; Qin, J. A Mechanism of Platelet Integrin αIIbβ3 Outside-in Signaling through a Novel Integrin αIIb Subunit–Filamin–Actin Linkage. Blood 2023, 141, 2629–2641. [Google Scholar] [CrossRef]
  19. Lončarić, M.; Stojanović, N.; Rac-Justament, A.; Coopmans, K.; Majhen, D.; Humphries, J.D.; Humphries, M.J.; Ambriović-Ristov, A. Talin2 and KANK2 Functionally Interact to Regulate Microtubule Dynamics, Paclitaxel Sensitivity and Cell Migration in the MDA-MB-435S Melanoma Cell Line. Cell. Mol. Biol. Lett. 2023, 28, 56. [Google Scholar] [CrossRef]
  20. Hanash, S.M. Why Have Protein Biomarkers Not Reached the Clinic? Genome Med. 2011, 3, 66. [Google Scholar] [CrossRef]
  21. Hynes, R.O.; Naba, A. Overview of the Matrisome-An Inventory of Extracellular Matrix Constituents and Functions. Cold Spring Harb. Perspect. Biol. 2012, 4, a004903. [Google Scholar] [CrossRef] [PubMed]
  22. Naba, A.; Clauser, K.R.; Ding, H.; Whittaker, C.A.; Carr, S.A.; Hynes, R.O. The Extracellular Matrix: Tools and Insights for the “Omics” Era. Matrix Biol. 2016, 49, 10–24. [Google Scholar] [CrossRef] [PubMed]
  23. He, X.; Lee, B.; Jiang, Y. Extracellular Matrix in Cancer Progression and Therapy. Med. Rev. 2022, 2, 125–139. [Google Scholar] [CrossRef] [PubMed]
  24. Scott, L.E.; Weinberg, S.H.; Lemmon, C.A. Mechanochemical Signaling of the Extracellular Matrix in Epithelial-Mesenchymal Transition. Front. Cell Dev. Biol. 2019, 7, 135. [Google Scholar] [CrossRef] [PubMed]
  25. Tzanakakis, G.; Kavasi, R.M.; Voudouri, K.; Berdiaki, A.; Spyridaki, I.; Tsatsakis, A.; Nikitovic, D. Role of the Extracellular Matrix in Cancer-Associated Epithelial to Mesenchymal Transition Phenomenon. Dev. Dyn. 2018, 247, 368–381. [Google Scholar] [CrossRef] [PubMed]
  26. Kai, F.B.; Drain, A.P.; Weaver, V.M. The Extracellular Matrix Modulates the Metastatic Journey. Dev. Cell 2019, 49, 332–346. [Google Scholar] [CrossRef]
  27. Jiang, Y.; Zhang, H.; Wang, J.; Liu, Y.; Luo, T.; Hua, H. Targeting Extracellular Matrix Stiffness and Mechanotransducers to Improve Cancer Therapy. J. Hematol. Oncol. 2022, 15, 34. [Google Scholar] [CrossRef]
  28. Jurj, A.; Ionescu, C.; Berindan-Neagoe, I.; Braicu, C. The Extracellular Matrix Alteration, Implication in Modulation of Drug Resistance Mechanism: Friends or Foes? J. Exp. Clin. Cancer Res. 2022, 41, 276. [Google Scholar] [CrossRef]
  29. Leight, J.L.; Drain, A.P.; Weaver, V.M. Extracellular Matrix Remodeling and Stiffening Modulate Tumor Phenotype and Treatment Response. Annu. Rev. Cancer Biol. 2017, 1, 313–334. [Google Scholar] [CrossRef]
  30. Henke, E.; Nandigama, R.; Ergün, S. Extracellular Matrix in the Tumor Microenvironment and Its Impact on Cancer Therapy. Front. Mol. Biosci. 2020, 6, 160. [Google Scholar] [CrossRef]
  31. Liao, X.; Li, X.; Liu, R. Extracellular-Matrix Mechanics Regulate Cellular Metabolism: A Ninja Warrior behind Mechano-Chemo Signaling Crosstalk. Rev. Endocr. Metab. Disord. 2023, 24, 207–220. [Google Scholar] [CrossRef] [PubMed]
  32. Ge, H.; Tian, M.; Pei, Q.; Tan, F.; Pei, H. Extracellular Matrix Stiffness: New Areas Affecting Cell Metabolism. Front. Oncol. 2021, 11, 631991. [Google Scholar] [CrossRef]
  33. Mongiat, M.; Andreuzzi, E.; Tarticchio, G.; Paulitti, A. Extracellular Matrix, a Hard Player in Angiogenesis. Int. J. Mol. Sci. 2016, 17, 1822. [Google Scholar] [CrossRef]
  34. Neve, A.; Cantatore, F.P.; Maruotti, N.; Corrado, A.; Ribatti, D. Extracellular Matrix Modulates Angiogenesis in Physiological and Pathological Conditions. Biomed Res. Int. 2014, 2014, 756078. [Google Scholar] [CrossRef]
  35. Yuan, Z.; Li, Y.; Zhang, S.; Wang, X.; Dou, H.; Yu, X.; Zhang, Z.; Yang, S.; Xiao, M. Extracellular Matrix Remodeling in Tumor Progression and Immune Escape: From Mechanisms to Treatments. Mol. Cancer 2023, 22, 48. [Google Scholar] [CrossRef] [PubMed]
  36. Ricard-Blum, S. The Collagen Family. Cold Spring Harb. Perspect. Biol. 2011, 3, a004978. [Google Scholar] [CrossRef] [PubMed]
  37. Necula, L.; Matei, L.; Dragu, D.; Pitica, I.; Neagu, A.; Bleotu, C.; Diaconu, C.C.; Chivu-Economescu, M. Collagen Family as Promising Biomarkers and Therapeutic Targets in Cancer. Int. J. Mol. Sci. 2022, 23, 12415. [Google Scholar] [CrossRef] [PubMed]
  38. Aumailley, M. The Laminin Family. Cell Adh. Migr. 2013, 7, 48–55. [Google Scholar] [CrossRef]
  39. Yap, L.; Tay, H.G.; Nguyen, M.T.X.; Tjin, M.S.; Tryggvason, K. Laminins in Cellular Differentiation. Trends Cell Biol. 2019, 29, 987–1000. [Google Scholar] [CrossRef]
  40. Rousselle, P.; Scoazec, J.Y. Laminin 332 in Cancer: When the Extracellular Matrix Turns Signals from Cell Anchorage to Cell Movement. Semin. Cancer Biol. 2020, 62, 149–165. [Google Scholar] [CrossRef]
  41. Navdaev, A.; Eble, J.A. Components of Cell-Matrix Linkage as Potential New Markers for Prostate Cancer. Cancers 2011, 3, 883–896. [Google Scholar] [CrossRef] [PubMed]
  42. Maltseva, D.V.; Rodin, S.A. Laminins in Metastatic Cancer. Mol. Biol. 2018, 52, 350–371. [Google Scholar] [CrossRef]
  43. Graf, F.; Horn, P.; Ho, A.D.; Boutros, M.; Maercker, C. The Extracellular Matrix Proteins Type I Collagen, Type III Collagen, Fibronectin, and Laminin 421 Stimulate Migration of Cancer Cells. FASEB J. 2021, 35, e21692. [Google Scholar] [CrossRef] [PubMed]
  44. Girigoswami, K.; Saini, D.; Girigoswami, A. Extracellular Matrix Remodeling and Development of Cancer. Stem Cell Rev. Rep. 2021, 17, 739–747. [Google Scholar] [CrossRef]
  45. Bonnans, C.; Chou, J.; Werb, Z. Remodelling the Extracellular Matrix in Development and Disease. Nat. Rev. Mol. Cell Biol. 2014, 15, 786–801. [Google Scholar] [CrossRef]
  46. Winkler, J.; Abisoye-Ogunniyan, A.; Metcalf, K.J.; Werb, Z. Concepts of Extracellular Matrix Remodelling in Tumour Progression and Metastasis. Nat. Commun. 2020, 11, 5120. [Google Scholar] [CrossRef]
  47. Koistinen, H.; Kovanen, R.M.; Hollenberg, M.D.; Dufour, A.; Radisky, E.S.; Stenman, U.H.; Batra, J.; Clements, J.; Hooper, J.D.; Diamandis, E.; et al. The Roles of Proteases in Prostate Cancer. IUBMB Life 2023, 75, 493–513. [Google Scholar] [CrossRef]
  48. Srinivasan, S.; Kryza, T.; Batra, J.; Clements, J. Remodelling of the Tumour Microenvironment by the Kallikrein-Related Peptidases. Nat. Rev. Cancer 2022, 22, 223–238. [Google Scholar] [CrossRef]
  49. Alaseem, A.; Alhazzani, K.; Dondapati, P.; Alobid, S.; Bishayee, A.; Rathinavelu, A. Matrix Metalloproteinases: A Challenging Paradigm of Cancer Management. Semin. Cancer Biol. 2019, 56, 100–115. [Google Scholar] [CrossRef]
  50. Roy, R.; Morad, G.; Jedinak, A.; Moses, M.A. Metalloproteinases and Their Roles in Human Cancer. Anat. Rec. 2020, 303, 1557–1572. [Google Scholar] [CrossRef]
  51. Binder, M.J.; Ward, A.C. The Role of the Metzincin Superfamily in Prostate Cancer Progression: A Systematic-like Review. Int. J. Mol. Sci. 2021, 22, 3608. [Google Scholar] [CrossRef] [PubMed]
  52. Mandel, A.; Larsson, P.; Sarwar, M.; Semenas, J.; Syed Khaja, A.S.; Persson, J.L. The Interplay between AR, EGF Receptor and MMP-9 Signaling Pathways in Invasive Prostate Cancer. Mol. Med. 2018, 24, 34. [Google Scholar] [CrossRef] [PubMed]
  53. Grindel, B.J.; Martinez, J.R.; Pennington, C.L.; Muldoon, M.; Stave, J.; Chung, L.W.; Farach-Carson, M.C. Matrilysin/Matrix Metalloproteinase-7(MMP7) Cleavage of Perlecan/HSPG2 Creates a Molecular Switch to Alter Prostate Cancer Cell Behavior. Matrix Biol. 2014, 36, 64–76. [Google Scholar] [CrossRef] [PubMed]
  54. Grindel, B.J.; Martinez, J.R.; Tellman, T.V.; Harrington, D.A.; Zafar, H.; Nakhleh, L.; Chung, L.W.; Farach-Carson, M.C. Matrilysin/MMP-7 Cleavage of Perlecan/HSPG2 Complexed with Semaphorin 3A Supports FAK-Mediated Stromal Invasion by Prostate Cancer Cells. Sci. Rep. 2018, 8, 7262. [Google Scholar] [CrossRef]
  55. Gupta, A.; Cao, W.; Sadashivaiah, K.; Chen, W.; Schneider, A.; Chellaiah, M.A. Promising Noninvasive Cellular Phenotype in Prostate Cancer Cells Knockdown of Matrix Metalloproteinase 9. Sci. World J. 2013, 2013, 493689. [Google Scholar] [CrossRef]
  56. Tellman, T.V.; Cruz, L.A.; Grindel, B.J.; Farach-Carson, M.C. Cleavage of the Perlecan-Semaphorin 3a-Plexin A1-Neuropilin-1 (Pspn) Complex by Matrix Metalloproteinase 7/Matrilysin Triggers Prostate Cancer Cell Dyscohesion and Migration. Int. J. Mol. Sci. 2021, 22, 3218. [Google Scholar] [CrossRef]
  57. Bruni-Cardoso, A.; Johnson, L.C.; Vessella, R.L.; Peterson, T.E.; Lynch, C.C. Osteoclast-Derived Matrix Metalloproteinase-9 Directly Affects Angiogenesis in the Prostate Tumor-Bone Microenvironment. Mol. Cancer Res. 2010, 8, 459–470. [Google Scholar] [CrossRef]
  58. Littlepage, L.E.; Sternlicht, M.D.; Rougier, N.; Phillips, J.; Gallo, E.; Yu, Y.; Williams, K.; Brenot, A.; Gordon, J.I.; Werb, Z. Matrix Metalloproteinases Contribute Distinct Roles in Neuroendocrine Prostate Carcinogenesis, Metastasis, and Angiogenesis Progression. Cancer Res. 2010, 70, 2224–2234. [Google Scholar] [CrossRef]
  59. Di Donato, M.; Zamagni, A.; Galasso, G.; Di Zazzo, E.; Giovannelli, P.; Barone, M.V.; Zanoni, M.; Gunelli, R.; Costantini, M.; Auricchio, F.; et al. The Androgen Receptor/Filamin A Complex as a Target in Prostate Cancer Microenvironment. Cell Death Dis. 2021, 12, 127. [Google Scholar] [CrossRef]
  60. Li, T.; Wu, C.; Gao, L.; Qin, F.; Wei, Q.; Yuan, J. Lysyl Oxidase Family Members in Urological Tumorigenesis and Fibrosis. Oncotarget 2018, 9, 20156–20164. [Google Scholar] [CrossRef]
  61. Chen, X.; Shao, Y.; Wei, W.; Shen, H.; Li, Y.; Chen, Y.; Ma, Q.; Li, H.; Yang, Z.; Niu, Y.; et al. Downregulation of LOX Promotes Castration-Resistant Prostate Cancer Progression via IGFBP3. J. Cancer 2021, 12, 7349–7357. [Google Scholar] [CrossRef] [PubMed]
  62. Nilsson, M.; Adamo, H.; Bergh, A.; Halin Bergström, S. Inhibition of Lysyl Oxidase and Lysyl Oxidase-Like Enzymes Has Tumour-Promoting and Tumour-Suppressing Roles in Experimental Prostate Cancer. Sci. Rep. 2016, 6, 19608. [Google Scholar] [CrossRef] [PubMed]
  63. Vidak, E.; Javoršek, U.; Vizovišek, M.; Turk, B. Cysteine Cathepsins and Their Extracellular Roles: Shaping the Microenvironment. Cells 2019, 8, 264. [Google Scholar] [CrossRef] [PubMed]
  64. Vizovišek, M.; Fonović, M.; Turk, B. Cysteine Cathepsins in Extracellular Matrix Remodeling: Extracellular Matrix Degradation and Beyond. Matrix Biol. 2019, 75–76, 141–159. [Google Scholar] [CrossRef] [PubMed]
  65. Park, S.; Kwon, W.; Park, J.K.; Baek, S.M.; Lee, S.W.; Cho, G.J.; Ha, Y.S.; Lee, J.N.; Kwon, T.G.; Kim, M.O.; et al. Suppression of Cathepsin a Inhibits Growth, Migration, and Invasion by Inhibiting the P38 MAPK Signaling Pathway in Prostate Cancer. Arch. Biochem. Biophys. 2020, 688, 108407. [Google Scholar] [CrossRef] [PubMed]
  66. Nalla, A.K.; Gorantla, B.; Gondi, C.S.; Lakka, S.S.; Rao, J.S. Targeting MMP-9, UPAR, and Cathepsin B Inhibits Invasion, Migration and Activates Apoptosis in Prostate Cancer Cells. Cancer Gene Ther. 2010, 17, 599–613. [Google Scholar] [CrossRef] [PubMed]
  67. Pruitt, F.L.; He, Y.; Franco, O.E.; Jiang, M.; Cates, J.M.; Hayward, S.W. Cathepsin D Acts as an Essential Mediator to Promote Malignancy of Benign Prostatic Epithelium. Prostate 2013, 73, 476–488. [Google Scholar] [CrossRef] [PubMed]
  68. Kawakubo, T.; Okamoto, K.; Iwata, J.I.; Shin, M.; Okamoto, Y.; Yasukochi, A.; Nakayama, K.I.; Kadowaki, T.; Tsukuba, T.; Yamamoto, K. Cathepsin E Prevents Tumor Growth and Metastasis by Catalyzing the Proteolytic Release of Soluble TRAIL from Tumor Cell Surface. Cancer Res. 2007, 67, 10869–10878. [Google Scholar] [CrossRef]
  69. Jevnikar, Z.; Rojnik, M.; Jamnik, P.; Doljak, B.; Fonović, U.P.; Kos, J. Cathepsin H Mediates the Processing of Talin and Regulates Migration of Prostate Cancer Cells. J. Biol. Chem. 2013, 288, 2201–2209. [Google Scholar] [CrossRef]
  70. Le Gall, C.; Bonnelye, E.; Clézardin, P. Cathepsin K Inhibitors as Treatment of Bone Metastasis. Curr. Opin. Support. Palliat. Care 2008, 2, 218–222. [Google Scholar] [CrossRef]
  71. Herroon, M.K.; Rajagurubandara, E.; Rudy, D.L.; Chalasani, A.; Hardaway, A.L.; Podgorski, I. Macrophage Cathepsin K Promotes Prostate Tumor Progression in Bone. Oncogene 2013, 32, 1580–1593. [Google Scholar] [CrossRef] [PubMed]
  72. Liang, W.; Wang, F.; Chen, Q.; Dai, J.; Escara-Wilke, J.; Keller, E.T.; Zimmermann, J.; Hong, N.; Lu, Y.; Zhang, J. Targeting Cathepsin K Diminishes Prostate Cancer Establishment and Growth in Murine Bone. J. Cancer Res. Clin. Oncol. 2019, 145, 1999–2012. [Google Scholar] [CrossRef] [PubMed]
  73. Wu, N.; Wang, Y.Z.; Wang, K.K.; Zhong, B.Q.; Liao, Y.H.; Liang, J.M.; Jiang, N. Cathepsin K Regulates the Tumor Growth and Metastasis by IL-17/CTSK/EMT Axis and Mediates M2 Macrophage Polarization in Castration-Resistant Prostate Cancer. Cell Death Dis. 2022, 13, 813. [Google Scholar] [CrossRef] [PubMed]
  74. Sudhan, D.R.; Siemann, D.W. Cathepsin L Inhibition by the Small Molecule KGP94 Suppresses Tumor Microenvironment Enhanced Metastasis Associated Cell Functions of Prostate and Breast Cancer Cells. Clin. Exp. Metastasis 2013, 30, 891–902. [Google Scholar] [CrossRef] [PubMed]
  75. Sudhan, D.R.; Pampo, C.; Rice, L.; Siemann, D.W. Cathepsin L Inactivation Leads to Multimodal Inhibition of Prostate Cancer Cell Dissemination in a Preclinical Bone Metastasis Model. Int. J. Cancer 2016, 138, 2665–2677. [Google Scholar] [CrossRef] [PubMed]
  76. Fitchev, P.P.; Wcislak, S.M.; Lee, C.; Bergh, A.; Brendler, C.B.; Stellmach, V.M.; Crawford, S.E.; Mavroudis, C.D.; Cornwell, M.L.; Doll, J.A. Thrombospondin-1 Regulates the Normal Prostate in Vivo through Angiogenesis and TGF-Β Activation. Lab. Investig. 2010, 90, 1078–1090. [Google Scholar] [CrossRef] [PubMed]
  77. Miyata, Y.; Sakai, H. Thrombospondin-1 in urological cancer: Pathological role, clinical significance, and therapeutic prospects. Int. J. Mol. Sci. 2013, 14, 12249–12272. [Google Scholar] [CrossRef] [PubMed]
  78. Chen, P.C.; Tang, C.H.; Lin, L.W.; Tsai, C.H.; Chu, C.Y.; Lin, T.H.; Huang, Y.L. Thrombospondin-2 Promotes Prostate Cancer Bone Metastasis by the up-Regulation of Matrix Metalloproteinase-2 through down-Regulating MiR-376c Expression. J. Hematol. Oncol. 2017, 10, 33. [Google Scholar] [CrossRef]
  79. Hou, Y.; Li, H.; Huo, W. THBS4 Silencing Regulates the Cancer Stem Cell-like Properties in Prostate Cancer via Blocking the PI3K/Akt Pathway. Prostate 2020, 80, 753–763. [Google Scholar] [CrossRef]
  80. Moran-Jones, K.; Ledger, A.; Naylor, M.J. β1 Integrin Deletion Enhances Progression of Prostate Cancer in the TRAMP Mouse Model. Sci. Rep. 2012, 2, 526. [Google Scholar] [CrossRef]
  81. Pellinen, T.; Blom, S.; Sánchez, S.; Välimäki, K.; Mpindi, J.P.; Azegrouz, H.; Strippoli, R.; Nieto, R.; Vitón, M.; Palacios, I.; et al. ITGB1-Dependent Upregulation of Caveolin-1 Switches TGFβ Signalling from Tumour-Suppressive to Oncogenic in Prostate Cancer. Sci. Rep. 2018, 8, 2338. [Google Scholar] [CrossRef] [PubMed]
  82. Reigstad, I.; Smeland, H.Y.H.; Skogstrand, T.; Sortland, K.; Schmid, M.C.; Reed, R.K.; Stuhr, L. Stromal Integrin α11β1 Affects RM11 Prostate and 4T1 Breast Xenograft Tumors Differently. PLoS ONE 2016, 11, e0151663. [Google Scholar] [CrossRef] [PubMed]
  83. Ojalill, M.; Parikainen, M.; Rappu, P.; Aalto, E.; Jokinen, J.; Virtanen, N.; Siljamäki, E.; Heino, J. Integrin α2β1 Decelerates Proliferation, but Promotes Survival and Invasion of Prostate Cancer Cells. Oncotarget 2018, 9, 32435–32447. [Google Scholar] [CrossRef] [PubMed]
  84. Salemi, Z.; Azizi, R.; Fallahian, F.; Aghaei, M. Integrin α2β1 Inhibition Attenuates Prostate Cancer Cell Proliferation by Cell Cycle Arrest, Promoting Apoptosis and Reducing Epithelial–Mesenchymal Transition. J. Cell. Physiol. 2021, 236, 4954–4965. [Google Scholar] [CrossRef] [PubMed]
  85. Dodagatta-Marri, E.; Ma, H.Y.; Liang, B.; Li, J.; Meyer, D.S.; Chen, S.Y.; Sun, K.H.; Ren, X.; Zivak, B.; Rosenblum, M.D.; et al. Integrin αvβ8 on T Cells Suppresses Anti-Tumor Immunity in Multiple Models and Is a Promising Target for Tumor Immunotherapy. Cell Rep. 2021, 36, 109309. [Google Scholar] [CrossRef] [PubMed]
  86. Van Den Hoogen, C.; Van Der Horst, G.; Cheung, H.; Buijs, J.T.; Pelger, R.C.M.; Van Der Pluijm, G. Integrin αv Expression Is Required for the Acquisition of a Metastatic Stem/Progenitor Cell Phenotype in Human Prostate Cancer. Am. J. Pathol. 2011, 179, 2559–2568. [Google Scholar] [CrossRef] [PubMed]
  87. Yoshioka, T.; Otero, J.; Chen, Y.; Kim, Y.M.; Koutcher, J.A.; Satagopan, J.; Reuter, V.; Carver, B.; De Stanchina, E.; Enomoto, K.; et al. β4 Integrin Signaling Induces Expansion of Prostate Tumor Progenitors. J. Clin. Investig. 2013, 123, 682–699. [Google Scholar] [CrossRef]
  88. Koivusalo, S.; Schmidt, A.; Manninen, A.; Wenta, T. Regulation of Kinase Signaling Pathways by α6β4-Integrins and Plectin in Prostate Cancer. Cancers 2023, 15, 149. [Google Scholar] [CrossRef]
  89. Schmidt, A.; Kaakinen, M.; Wenta, T.; Manninen, A. Loss of α6β4 Integrin-Mediated Hemidesmosomes Promotes Prostate Epithelial Cell Migration by Stimulating Focal Adhesion Dynamics. Front. Cell Dev. Biol. 2022, 10, 886569. [Google Scholar] [CrossRef]
  90. Samaržija, I. Site-Specific and Common Prostate Cancer Metastasis Genes as Suggested by Meta-Analysis of Gene Expression Data. Life 2021, 11, 636. [Google Scholar] [CrossRef]
  91. Connell, B.; Kopach, P.; Ren, W.; Joshi, R.; Naber, S.; Zhou, M.; Mathew, P. Aberrant Integrin αv and α5 Expression in Prostate Adenocarcinomas and Bone-Metastases Is Consistent with a Bone-Colonizing Phenotype. Transl. Androl. Urol. 2020, 9, 1630–1638. [Google Scholar] [CrossRef] [PubMed]
  92. Zhao, Z.; Li, E.; Luo, L.; Zhao, S.; Liu, L.; Wang, J.; Kang, R.; Luo, J. A PSCA/PGRN-NF-ΚB-Integrin-α4 Axis Promotes Prostate Cancer Cell Adhesion to Bone Marrow Endothelium and Enhances Metastatic Potential. Mol. Cancer Res. 2020, 18, 501–513. [Google Scholar] [CrossRef]
  93. Chang, A.C.; Chen, P.C.; Lin, Y.F.; Su, C.M.; Liu, J.F.; Lin, T.H.; Chuang, S.M.; Tang, C.H. Osteoblast-Secreted WISP-1 Promotes Adherence of Prostate Cancer Cells to Bone via the VCAM-1/Integrin α4β1 System. Cancer Lett. 2018, 426, 47–56. [Google Scholar] [CrossRef] [PubMed]
  94. Joshi, R.; Goihberg, E.; Ren, W.; Pilichowska, M.; Mathew, P. Proteolytic Fragments of Fibronectin Function as Matrikines Driving the Chemotactic Affinity of Prostate Cancer Cells to Human Bone Marrow Mesenchymal Stromal Cells via the α5β1 Integrin. Cell Adhes. Migr. 2017, 11, 305–315. [Google Scholar] [CrossRef] [PubMed]
  95. Martin, R.S.; Pathak, R.; Jain, A.; Jung, S.Y.; Hilsenbeck, S.G.; Piña-Barba, M.C.; Sikora, A.G.; Pienta, K.J.; Rowley, D.R. Tenascin-C and Integrin α9 Mediate Interactions of Prostate Cancer with the Bone Microenvironment. Cancer Res. 2017, 77, 5977–5988. [Google Scholar] [CrossRef] [PubMed]
  96. Dutta, A.; Li, J.; Lu, H.; Akech, J.; Pratap, J.; Wang, T.; Zerlanko, B.J.; Gerald, T.J.F.; Jiang, Z.; Birbe, R.; et al. Integrin αvb6 Promotes an Osteolytic Program in Cancer Cells by Upregulating MMP2. Cancer Res. 2014, 74, 1598–1608. [Google Scholar] [CrossRef] [PubMed]
  97. Gupta, A.; Cao, W.; Chellaiah, M.A. Integrin αvβ3 and CD44 Pathways in Metastatic Prostate Cancer Cells Support Osteoclastogenesis via a Runx2/Smad 5/Receptor Activator of NF-ΚB Ligand Signaling Axis. Mol. Cancer 2012, 11, 66. [Google Scholar] [CrossRef] [PubMed]
  98. Landowski, T.H.; Gard, J.; Pond, E.; Pond, G.D.; Nagle, R.B.; Geffre, C.P.; Cress, A.E. Targeting Integrin α6 Stimulates Curative-Type Bone Metastasis Lesions in a Xenograft Model. Mol. Cancer Ther. 2014, 13, 1558–1566. [Google Scholar] [CrossRef]
  99. Sottnik, J.L.; Daignault-Newton, S.; Zhang, X.; Morrissey, C.; Hussain, M.H.; Keller, E.T.; Hall, C.L. Integrin Alpha2beta1 (α2β 1) Promotes Prostate Cancer Skeletal Metastasis. Clin. Exp. Metastasis 2013, 30, 569–578. [Google Scholar] [CrossRef]
  100. Jin, J.K.; Tien, P.C.; Cheng, C.J.; Song, J.H.; Huang, C.; Lin, S.H.; Gallick, G.E. Talin1 Phosphorylation Activates β1 Integrins: A Novel Mechanism to Promote Prostate Cancer Bone Metastasis. Oncogene 2014, 34, 1811–1821. [Google Scholar] [CrossRef]
  101. Ruppender, N.; Larson, S.; Lakely, B.; Kollath, L.; Brown, L.; Coleman, I.; Coleman, R.; Nguyen, H.; Nelson, P.S.; Corey, E.; et al. Cellular Adhesion Promotes Prostate Cancer Cells Escape from Dormancy. PLoS ONE 2015, 10, e0130565. [Google Scholar] [CrossRef] [PubMed]
  102. Kalluri, R.; LeBleu, V.S. The Biology, Function, and Biomedical Applications of Exosomes. Science 2020, 367, eaau6977. [Google Scholar] [CrossRef] [PubMed]
  103. Hoshino, A.; Costa-Silva, B.; Shen, T.L.; Rodrigues, G.; Hashimoto, A.; Tesic Mark, M.; Molina, H.; Kohsaka, S.; Di Giannatale, A.; Ceder, S.; et al. Tumour Exosome Integrins Determine Organotropic Metastasis. Nature 2015, 527, 329–335. [Google Scholar] [CrossRef] [PubMed]
  104. Fedele, C.; Singh, A.; Zerlanko, B.J.; Iozzo, R.V.; Languino, L.R. The αVβ6 Integrin Is Transferred Intercellularly via Exosomes. J. Biol. Chem. 2015, 290, 4545–4551. [Google Scholar] [CrossRef]
  105. Lu, H.; Bowler, N.; Harshyne, L.A.; Craig Hooper, D.; Krishn, S.R.; Kurtoglu, S.; Fedele, C.; Liu, Q.; Tang, H.Y.; Kossenkov, A.V.; et al. Exosomal αvβ6 Integrin Is Required for Monocyte M2 Polarization in Prostate Cancer. Matrix Biol. 2018, 70, 20–35. [Google Scholar] [CrossRef]
  106. Krishn, S.R.; Salem, I.; Quaglia, F.; Naranjo, N.M.; Agarwal, E.; Liu, Q.; Sarker, S.; Kopenhaver, J.; McCue, P.A.; Weinreb, P.H.; et al. The αvβ6 Integrin in Cancer Cell-Derived Small Extracellular Vesicles Enhances Angiogenesis. J. Extracell. Vesicles 2020, 9, 1763594. [Google Scholar] [CrossRef]
  107. Singh, A.; Fedele, C.; Lu, H.; Nevalainen, M.T.; Keen, J.H.; Languino, L.R. Exosome-Mediated Transfer of αvβ3 Integrin from Tumorigenic to Nontumorigenic Cells Promotes a Migratory Phenotype. Mol. Cancer Res. 2016, 14, 1136–1146. [Google Scholar] [CrossRef]
  108. Quaglia, F.; Krishn, S.R.; Daaboul, G.G.; Sarker, S.; Pippa, R.; Domingo-Domenech, J.; Kumar, G.; Fortina, P.; McCue, P.; Kelly, W.K.; et al. Small Extracellular Vesicles Modulated by αVβ3 Integrin Induce Neuroendocrine Differentiation in Recipient Cancer Cells. J. Extracell. Vesicles 2020, 9, 1761072. [Google Scholar] [CrossRef]
  109. Krishn, S.R.; Singh, A.; Bowler, N.; Duffy, A.N.; Friedman, A.; Fedele, C.; Kurtoglu, S.; Tripathi, S.K.; Wang, K.; Hawkins, A.; et al. Prostate Cancer Sheds the αvβ3 Integrin in Vivo through Exosomes. Matrix Biol. 2019, 77, 41–57. [Google Scholar] [CrossRef]
  110. DeRita, R.M.; Sayeed, A.; Garcia, V.; Krishn, S.R.; Shields, C.D.; Sarker, S.; Friedman, A.; McCue, P.; Molugu, S.K.; Rodeck, U.; et al. Tumor-Derived Extracellular Vesicles Require β1 Integrins to Promote Anchorage-Independent Growth. iScience 2019, 14, 199–209. [Google Scholar] [CrossRef]
  111. Ciardiello, C.; Leone, A.; Lanuti, P.; Roca, M.S.; Moccia, T.; Minciacchi, V.R.; Minopoli, M.; Gigantino, V.; De Cecio, R.; Rippa, M.; et al. Large Oncosomes Overexpressing Integrin Alpha-V Promote Prostate Cancer Adhesion and Invasion via AKT Activation. J. Exp. Clin. Cancer Res. 2019, 38, 317. [Google Scholar] [CrossRef] [PubMed]
  112. Gaballa, R.; Ali, H.E.A.; Mahmoud, M.O.; Rhim, J.S.; Ali, H.I.; Salem, H.F.; Saleem, M.; Kandeil, M.A.; Ambs, S.; Abd Elmageed, Z.Y. Exosomes-Mediated Transfer of ITGA2 Promotes Migration and Invasion of Prostate Cancer Cells by Inducing Epithelial-Mesenchymal Transition. Cancers 2020, 12, 2300. [Google Scholar] [CrossRef] [PubMed]
  113. Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P.; et al. STRING V10: Protein-Protein Interaction Networks, Integrated over the Tree of Life. Nucleic Acids Res. 2015, 43, D447–D452. [Google Scholar] [CrossRef] [PubMed]
  114. Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
  115. Luthold, C.; Hallal, T.; Labbé, D.P.; Bordeleau, F. The Extracellular Matrix Stiffening: A Trigger of Prostate Cancer Progression and Castration Resistance? Cancers 2022, 14, 2887. [Google Scholar] [CrossRef] [PubMed]
  116. Lopez-Cavestany, M.; Bin Hahn, S.; Hope, J.M.; Reckhorn, N.T.; Greenlee, J.D.; Schwager, S.C.; VanderBurgh, J.A.; Reinhart-King, C.A.; King, M.R. Matrix Stiffness Induces Epithelial-to-Mesenchymal Transition via Piezo1-Regulated Calcium Flux in Prostate Cancer Cells. iScience 2023, 26, 106275. [Google Scholar] [CrossRef] [PubMed]
  117. Reid, S.E.; Kay, E.J.; Neilson, L.J.; Henze, A.; Serneels, J.; McGhee, E.J.; Dhayade, S.; Nixon, C.; Mackey, J.B.; Santi, A.; et al. Tumor Matrix Stiffness Promotes Metastatic Cancer Cell Interaction with the Endothelium. EMBO J. 2017, 36, 2373–2389. [Google Scholar] [CrossRef]
  118. Tang, X.; Zhang, Y.; Mao, J.; Wang, Y.; Zhang, Z.; Wang, Z.; Yang, H. Effects of Substrate Stiffness on the Viscoelasticity and Migration of Prostate Cancer Cells Examined by Atomic Force Microscopy. Beilstein J. Nanotechnol. 2022, 13, 560–569. [Google Scholar] [CrossRef]
  119. Molter, C.W.; Muszynski, E.F.; Tao, Y.; Trivedi, T.; Clouvel, A.; Ehrlicher, A.J. Prostate Cancer Cells of Increasing Metastatic Potential Exhibit Diverse Contractile Forces, Cell Stiffness, and Motility in a Microenvironment Stiffness-Dependent Manner. Front. Cell Dev. Biol. 2022, 10, 932510. [Google Scholar] [CrossRef]
  120. Mottet, N.; Cornford, P.; van den Bergh, R.C.N.; Briers, E.; Eberli, D.; De Meerlerr, G.; De Santis, M.; Gillessen, S.; Grummet, J.; Henry, A.M.; et al. EAU-EANM-ESTRO-ESUR-ISUP-SIOG-Guidelines-on-Prostate-Cancer-2023. 2023. Available online: https://uroweb.org/guidelines/prostate-cancer (accessed on 18 November 2023).
  121. Mottet, N.; van den Bergh, R.C.N.; Briers, E.; Van den Broeck, T.; Cumberbatch, M.G.; De Santis, M.; Fanti, S.; Fossati, N.; Gandaglia, G.; Gillessen, S.; et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer—2020 Update. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2021, 79, 243–262. [Google Scholar] [CrossRef]
  122. Naji, L.; Randhawa, H.; Sohani, Z.; Dennis, B.; Lautenbach, D.; Kavanagh, O.; Bawor, M.; Banfield, L.; Profetto, J. Digital Rectal Examination for Prostate Cancer Screening in Primary Care: A Systematic Review and Meta-Analysis. Ann. Fam. Med. 2018, 16, 149–154. [Google Scholar] [CrossRef] [PubMed]
  123. Ying, M.; Mao, J.; Sheng, L.; Wu, H.; Bai, G.; Zhong, Z.; Pan, Z. Biomarkers for Prostate Cancer Bone Metastasis Detection and Prediction. J. Pers. Med. 2023, 13, 705. [Google Scholar] [CrossRef] [PubMed]
  124. D’Oronzo, S.; Brown, J.; Coleman, R. The Role of Biomarkers in the Management of Bone-Homing Malignancies. J. Bone Oncol. 2017, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
  125. Schini, M.; Vilaca, T.; Gossiel, F.; Salam, S.; Eastell, R. Bone Turnover Markers: Basic Biology to Clinical Applications. Endocr. Rev. 2023, 44, 417–473. [Google Scholar] [CrossRef] [PubMed]
  126. Ferreira, A.; Alho, I.; Casimiro, S.; Costa, L. Bone Remodeling Markers and Bone Metastases: From Cancer Research to Clinical Implications. Bonekey Rep. 2015, 4, 668. [Google Scholar] [CrossRef] [PubMed]
  127. Kamiya, N.; Suzuki, H.; Endo, T.; Yano, M.; Naoi, M.; Nishimi, D.; Kawamura, K.; Imamoto, T.; Ichikawa, T. Clinical Usefulness of Bone Markers in Prostate Cancer with Bone Metastasis. Int. J. Urol. 2012, 19, 968–979. [Google Scholar] [CrossRef]
  128. Joerger, M.; Huober, J. Diagnostic and Prognostic Use of Bone Turnover Markers. Recent Results Cancer Res. 2012, 192, 197–223. [Google Scholar] [CrossRef] [PubMed]
  129. Saad, F.; Eastham, J.A.; Smith, M.R. Biochemical Markers of Bone Turnover and Clinical Outcomes in Men with Prostate Cancer. Urol. Oncol. Semin. Orig. Investig. 2012, 30, 369–378. [Google Scholar] [CrossRef]
  130. Koopmans, N.; de Jong, I.J.; Breeuwsma, A.J.; van der Veer, E. Serum Bone Turnover Markers (PINP and ICTP) for the Early Detection of Bone Metastases in Patients with Prostate Cancer: A Longitudinal Approach. J. Urol. 2007, 178, 849–853. [Google Scholar] [CrossRef]
  131. Brasso, K.; Christensen, I.J.; Johansen, J.S.; Teisner, B.; Garnero, P.; Price, P.A.; Iversen, P. Prognostic Value of PINP, Bone Alkaline Phosphatase, CTX-I, and YKL-40 in Patients with Metastatic Prostate Carcinoma. Prostate 2006, 66, 503–513. [Google Scholar] [CrossRef]
  132. Jung, K.; Miller, K.; Wirth, M.; Albrecht, M.; Lein, M. Bone Turnover Markers as Predictors of Mortality Risk in Prostate Cancer Patients with Bone Metastases Following Treatment with Zoledronic Acid. Eur. Urol. 2011, 59, 604–612. [Google Scholar] [CrossRef]
  133. Lara, P.N.; Ely, B.; Quinn, D.I.; Mack, P.C.; Tangen, C.; Gertz, E.; Twardowski, P.W.; Goldkorn, A.; Hussain, M.; Vogelzang, N.J.; et al. Serum Biomarkers of Bone Metabolism in Castration-Resistant Prostate Cancer Patients with Skeletal Metastases: Results from SWOG 0421. J. Natl. Cancer Inst. 2014, 106, dju013. [Google Scholar] [CrossRef]
  134. Kataoka, A.; Yuasa, T.; Kageyama, S.; Tsuchiya, N.; Habuchi, T.; Iwaki, H.; Narita, M.; Okada, Y.; Yoshiki, T. Diagnosis of Bone Metastasis in Men with Prostate Cancer by Measurement of Serum ICTP in Combination with Alkali Phosphatase and Prostate-Specific Antigen. Clin. Oncol. 2006, 18, 480–484. [Google Scholar] [CrossRef]
  135. Jung, K.; Lein, M.; Stephan, C.; Von Hösslin, K.; Semjonow, A.; Sinha, P.; Loening, S.A.; Schnorr, D. Comparison of 10 Serum Bone Turnover Markers in Prostate Carcinoma Patients with Bone Metastatic Spread: Diagnostic and Prognostic Implications. Int. J. Cancer 2004, 111, 783–791. [Google Scholar] [CrossRef]
  136. Li, L.; Shen, X.; Liang, Y.; Li, B.; Si, Y.; Ma, R. N-Telopeptide as a Potential Diagnostic and Prognostic Marker for Bone Metastasis in Human Cancers: A Meta-Analysis. Heliyon 2023, 9, e15980. [Google Scholar] [CrossRef]
  137. Lara, P.N.; Mayerson, E.; Gertz, E.; Tangen, C.; Goldkorn, A.; van Loan, M.; Hussain, M.; Gupta, S.; Zhang, J.; Parikh, M.; et al. Bone Biomarkers and Subsequent Survival in Men with Hormone-Sensitive Prostate Cancer: Results from the SWOG S1216 Phase 3 Trial of Androgen Deprivation Therapy with or without Orteronel. Eur. Urol. 2023. [Google Scholar] [CrossRef]
  138. Akoto, T.; Saini, S. Role of Exosomes in Prostate Cancer Metastasis. Int. J. Mol. Sci. 2021, 22, 3528. [Google Scholar] [CrossRef]
  139. Bamankar, S.; Londhe, V.Y. The Rise of Extracellular Vesicles as New Age Biomarkers in Cancer Diagnosis: Promises and Pitfalls. Technol. Cancer Res. Treat. 2023, 22, 15330338221149266. [Google Scholar] [CrossRef]
  140. Lane, R.E.; Korbie, D.; Hill, M.M.; Trau, M. Extracellular Vesicles as Circulating Cancer Biomarkers: Opportunities and Challenges. Clin. Transl. Med. 2018, 7, 14. [Google Scholar] [CrossRef]
  141. Liu, S.Y.; Liao, Y.; Hosseinifard, H.; Imani, S.; Wen, Q.L. Diagnostic Role of Extracellular Vesicles in Cancer: A Comprehensive Systematic Review and Meta-Analysis. Front. Cell Dev. Biol. 2021, 9, 705791. [Google Scholar] [CrossRef]
  142. Urabe, F.; Kosaka, N.; Ito, K.; Kimura, T.; Egawa, S.; Ochiya, T. Extracellular Vesicles as Biomarkers and Therapeutic Targets for Cancer. Am. J. Physiol. Cell Physiol. 2020, 318, C29–C39. [Google Scholar] [CrossRef]
  143. Zhou, E.; Li, Y.; Wu, F.; Guo, M.; Xu, J.; Wang, S.; Tan, Q.; Ma, P.; Song, S.; Jin, Y. Circulating Extracellular Vesicles Are Effective Biomarkers for Predicting Response to Cancer Therapy. EBioMedicine 2021, 67, 103365. [Google Scholar] [CrossRef]
  144. Irmer, B.; Chandrabalan, S.; Maas, L.; Bleckmann, A.; Menck, K. Extracellular Vesicles in Liquid Biopsies as Biomarkers for Solid Tumors. Cancers 2023, 15, 1307. [Google Scholar] [CrossRef]
  145. Ramirez-Garrastacho, M.; Bajo-Santos, C.; Line, A.; Martens-Uzunova, E.S.; de la Fuente, J.M.; Moros, M.; Soekmadji, C.; Tasken, K.A.; Llorente, A. Extracellular Vesicles as a Source of Prostate Cancer Biomarkers in Liquid Biopsies: A Decade of Research. Br. J. Cancer 2021, 126, 331–350. [Google Scholar] [CrossRef]
  146. Zhang, H.; Zhang, G.Y.; Su, W.C.; Chen, Y.T.; Liu, Y.F.; Wei, D.; Zhang, Y.X.; Tang, Q.Y.; Liu, Y.X.; Wang, S.Z.; et al. High Throughput Isolation and Data Independent Acquisition Mass Spectrometry (DIA-MS) of Urinary Extracellular Vesicles to Improve Prostate Cancer Diagnosis. Molecules 2022, 27, 8155. [Google Scholar] [CrossRef]
  147. Liu, P.; Wang, W.; Wang, F.; Fan, J.; Guo, J.; Wu, T.; Lu, D.; Zhou, Q.; Liu, Z.; Wang, Y.; et al. Alterations of Plasma Exosomal Proteins and Motabolies Are Associated with the Progression of Castration-Resistant Prostate Cancer. J. Transl. Med. 2023, 21, 40. [Google Scholar] [CrossRef]
  148. Signore, M.; Alfonsi, R.; Federici, G.; Nanni, S.; Addario, A.; Bertuccini, L.; Aiello, A.; Di Pace, A.L.; Sperduti, I.; Muto, G.; et al. Diagnostic and Prognostic Potential of the Proteomic Profiling of Serum-Derived Extracellular Vesicles in Prostate Cancer. Cell Death Dis. 2021, 12, 636. [Google Scholar] [CrossRef]
  149. Kawakami, K.; Fujita, Y.; Kato, T.; Mizutani, K.; Kameyama, K.; Tsumoto, H.; Miura, Y.; Deguchi, T.; Ito, M. Integrin β4 and Vinculin Contained in Exosomes Are Potential Markers for Progression of Prostate Cancer Associated with Taxane-Resistance. Int. J. Oncol. 2015, 47, 384–390. [Google Scholar] [CrossRef]
  150. Bijnsdorp, I.V.; Geldof, A.A.; Lavaei, M.; Piersma, S.R.; van Moorselaar, R.J.A.; Jimenez, C.R. Exosomal ITGA3 Interferes with Non-Cancerous Prostate Cell Functions and Is Increased in Urine Exosomes of Metastatic Prostate Cancer Patients. J. Extracell. Vesicles 2013, 2, 22097. [Google Scholar] [CrossRef]
  151. Allard, J.B.; Duan, C. IGF-Binding Proteins: Why Do They Exist and Why Are There so Many? Front. Endocrinol. 2018, 9, 117. [Google Scholar] [CrossRef]
  152. Russo, V.C.; Schütt, B.S.; Andaloro, E.; Ymer, S.I.; Hoeflich, A.; Ranke, M.B.; Bach, L.A.; Werther, G.A. Insulin-like Growth Factor Binding Protein-2 Binding to Extracellular Matrix Plays a Critical Role in Neuroblastoma Cell Proliferation, Migration, and Invasion. Endocrinology 2005, 146, 4445–4455. [Google Scholar] [CrossRef]
  153. Meyer, F.; Galan, P.; Douville, P.; Bairati, I.; Kegle, P.; Bertrais, S.; Czernichow, S.; Hercberg, S. A Prospective Study of the Insulin-like Growth Factor Axis in Relation with Prostate Cancer in the SU.VI.MAX Trial. Cancer Epidemiol. Biomark. Prev. 2005, 14, 2269–2272. [Google Scholar] [CrossRef]
  154. Matuschek, C.; Rudoy, M.; Peiper, M.; Gerber, P.A.; Hoff, N.P.; Buhren, B.A.; Flehmig, B.; Budach, W.; Knoefel, W.T.; Bojar, H.; et al. Do Insulin-like Growth Factor Associated Proteins Qualify as a Tumor Marker? Results of a Prospective Study in 163 Cancer Patients. Eur. J. Med. Res. 2011, 16, 451–456. [Google Scholar] [CrossRef]
  155. Capoun, O.; Soukup, V.; Kalousova, M.; Sobotka, R.; Pesl, M.; Zima, T.; Hanus, T. Diagnostic Importance of Selected Protein Serum Markers in the Primary Diagnostics of Prostate Cancer. Urol. Int. 2015, 95, 429–435. [Google Scholar] [CrossRef]
  156. Borugian, M.J.; Spinelli, J.J.; Sun, Z.; Kolonel, L.N.; Oakley-Girvan, I.; Pollak, M.D.; Whittemore, A.S.; Wu, A.H.; Gallagher, R.P. Prostate Cancer Risk in Relation to Insulin-like Growth Factor (IGF)-I and IGF-Binding Protein-3: A Prospective Multiethnic Study. Cancer Epidemiol. Biomark. Prev. 2008, 17, 252–254. [Google Scholar] [CrossRef]
  157. Hong, S.K.; Han, B.K.; Jeong, J.S.; Jeong, S.J.; Moon, K.H.; Byun, S.S.; Lee, S.E. Serum Measurements of Testosterone, Insulin-like Growth Factor 1, and Insulin-like Growth Factor Binding Protein-3 in the Diagnosis of Prostate Cancer among Korean Men. Asian J. Androl. 2008, 10, 207–213. [Google Scholar] [CrossRef]
  158. Rainato, G.; Fabricio, A.S.C.; Zancan, M.; Peloso, L.; Dittadi, R.; Barichello, M.; Fandella, A.; Scattoni, V.; Gion, M. Evaluating Serum Insulin-like Growth Factor 1 and Insulin-like Growth Factor Binding Protein 3 as Markers in Prostate Cancer Diagnosis. Int. J. Biol. Markers 2016, 31, 317–323. [Google Scholar] [CrossRef]
  159. Roddam, A.W.; Allen, N.E.; Appleby, P.; Key, T.J.; Ferrucci, L.; Carter, H.B.; Metter, E.J.; Chen, C.; Weiss, N.S.; Fitzpatrick, A.; et al. Insulin-like Growth Factors, Their Binding Proteins, and Prostate Cancer Risk: Analysis of Individual Patient Data from 12 Prospective Studies. Ann. Intern. Med. 2008, 149, 461–471. [Google Scholar] [CrossRef]
  160. Schumacher, F.R.; Cheng, I.; Freedman, M.L.; Mucci, L.; Allen, N.E.; Pollak, M.N.; Hayes, R.B.; Stram, D.O.; Canzian, F.; Henderson, B.E.; et al. A Comprehensive Analysis of Common IGF1, IGFBP1 and IGFBP3 Genetic Variation with Prospective IGF-I and IGFBP-3 Blood Levels and Prostate Cancer Risk among Caucasians. Hum. Mol. Genet. 2010, 19, 3089–3101. [Google Scholar] [CrossRef]
  161. Rowlands, M.A.; Gunnell, D.; Harris, R.; Vatten, L.J.; Holly, J.M.P.; Martin, R.M. Circulating Insulin-like Growth Factor Peptides and Prostate Cancer Risk: A Systematic Review and Meta-Analysis. Int. J. Cancer 2009, 124, 2416–2429. [Google Scholar] [CrossRef]
  162. D’Antonio, K.B.; Toubaji, A.; Albadine, R.; Mondul, A.M.; Platz, E.A.; Netto, G.J.; Getzenberg, R.H. Extracellular Matrix Associated Protein CYR61 Is Linked to Prostate Cancer Development. J. Urol. 2010, 183, 1604–1610. [Google Scholar] [CrossRef]
  163. Terada, N.; Shiraishi, T.; Zeng, Y.; Mooney, S.M.; Yeater, D.B.; Mangold, L.A.; Partin, A.W.; Kulkarni, P.; Getzenberg, R.H. Cyr61 Is Regulated by CAMP-Dependent Protein Kinase with Serum Levels Correlating with Prostate Cancer Aggressiveness. Prostate 2012, 72, 966–976. [Google Scholar] [CrossRef]
  164. D’Antonio, K.B.; Schultz, L.; Albadine, R.; Mondul, A.M.; Platz, E.A.; Netto, G.J.; Getzenberg, R.H. Decreased Expression of Cyr61 Is Associated with Prostate Cancer Recurrence after Surgical Treatment. Clin. Cancer Res. 2010, 16, 5908–5913. [Google Scholar] [CrossRef]
  165. Terada, N.; Kulkarni, P.; Getzenberg, R.H. Cyr61 Is a Potential Prognostic Marker for Prostate Cancer. Asian J. Androl. 2012, 14, 405–408. [Google Scholar] [CrossRef]
  166. Tsunoda, T.; Furusato, B.; Takashima, Y.; Ravulapalli, S.; Dobi, A.; Srivastava, S.; McLeod, D.G.; Sesterhenn, I.A.; Ornstein, D.K.; Shirasawa, S. The Increased Expression of Periostin during Early Stages of Prostate Cancer and Advanced Stages of Cancer Stroma. Prostate 2009, 69, 1398–1403. [Google Scholar] [CrossRef]
  167. Tischler, V.; Fritzsche, F.R.; Wild, P.J.; Stephan, C.; Seifert, H.H.; Riener, M.O.; Hermanns, T.; Mortezavi, A.; Gerhardt, J.; Schraml, P.; et al. Periostin Is Up-Regulated in High Grade and High Stage Prostate Cancer. BMC Cancer 2010, 10, 273. [Google Scholar] [CrossRef]
  168. Tian, Y.; Choi, C.H.; Li, Q.K.; Rahmatpanah, F.B.; Chen, X.; Kim, S.R.; Veltri, R.; Chia, D.; Zhang, Z.; Mercola, D.; et al. Overexpression of Periostin in Stroma Positively Associated with Aggressive Prostate Cancer. PLoS ONE 2015, 10, e0121502. [Google Scholar] [CrossRef]
  169. Konac, E.; Kiliccioglu, I.; Sogutdelen, E.; Dikmen, A.U.; Albayrak, G.; Bilen, C.Y. Do the Expressions of Epithelial–Mesenchymal Transition Proteins, Periostin, Integrin-A4 and Fibronectin Correlate with Clinico-Pathological Features and Prognosis of Metastatic Castration-Resistant Prostate Cancer? Exp. Biol. Med. 2017, 242, 1795–1801. [Google Scholar] [CrossRef]
  170. Sun, C.; Song, C.; Ma, Z.; Xu, K.; Zhang, Y.; Jin, H.; Tong, S.; Ding, W.; Xia, G.; Ding, Q. Periostin Identified as a Potential Biomarker of Prostate Cancer by ITRAQ-Proteomics Analysis of Prostate Biopsy. Proteome Sci. 2011, 9, 22. [Google Scholar] [CrossRef]
  171. Nuzzo, P.V.; Rubagotti, A.; Zinoli, L.; Ricci, F.; Salvi, S.; Boccardo, S.; Boccardo, F. Prognostic Value of Stromal and Epithelial Periostin Expression in Human Prostate Cancer: Correlation with Clinical Pathological Features and the Risk of Biochemical Relapse or Death. BMC Cancer 2012, 12, 625. [Google Scholar] [CrossRef]
  172. González-González, L.; Alonso, J. Periostin: A Matricellular Protein with Multiple Functions in Cancer Development and Progression. Front. Oncol. 2018, 8, 225. [Google Scholar] [CrossRef]
  173. Dorafshan, S.; Razmi, M.; Safaei, S.; Gentilin, E.; Madjd, Z.; Ghods, R. Periostin: Biology and Function in Cancer. Cancer Cell Int. 2022, 22, 315. [Google Scholar] [CrossRef]
  174. Cattrini, C.; Rubagotti, A.; Nuzzo, P.V.; Zinoli, L.; Salvi, S.; Boccardo, S.; Perachino, M.; Cerbone, L.; Vallome, G.; Latocca, M.M.; et al. Overexpression of Periostin in Tumor Biopsy Samples Is Associated with Prostate Cancer Phenotype and Clinical Outcome. Clin. Genitourin. Cancer 2018, 16, e1257–e1265. [Google Scholar] [CrossRef]
  175. Doldi, V.; Lecchi, M.; Ljevar, S.; Colecchia, M.; Campi, E.; Centonze, G.; Marenghi, C.; Rancati, T.; Miceli, R.; Verderio, P.; et al. Potential of the Stromal Matricellular Protein Periostin as a Biomarker to Improve Risk Assessment in Prostate Cancer. Int. J. Mol. Sci. 2022, 23, 7987. [Google Scholar] [CrossRef]
  176. Garcia-Marques, F.; Liu, S.; Totten, S.M.; Bermudez, A.; Tanimoto, C.; Hsu, E.C.; Nolley, R.; Hembree, A.; Stoyanova, T.; Brooks, J.D.; et al. Protein Signatures to Distinguish Aggressive from Indolent Prostate Cancer. Prostate 2022, 82, 605–616. [Google Scholar] [CrossRef]
  177. Murray, N.P.; Reyes, E.; Salazar, A.; Lopez, M.A.; Orrego, S.; Guzman, E. The Expression of Matrix-Metalloproteinase-2 in Bone Marrow Micro-Metastasis Is Associated with the Presence of Circulating Prostate Cells and a Worse Prognosis in Men Treated with Radical Prostatectomy for Prostate Cancer. Turk. J. Urol. 2020, 46, 186–195. [Google Scholar] [CrossRef]
  178. Reis, S.T.; Pontes-Junior, J.; Antunes, A.A.; de Sousa-Canavez, J.M.; Dall’Oglio, M.F.; Passerotti, C.C.; Abe, D.K.; Crippa, A.; da Cruz, J.A.S.; Timoszczuk, L.M.S.; et al. MMP-9 Overexpression Due to TIMP-1 and RECK Underexpression Is Associated with Prognosis in Prostate Cancer. Int. J. Biol. Markers 2011, 26, 255–261. [Google Scholar] [CrossRef]
  179. Trudel, D.; Fradet, Y.; Meyer, F.; Têtu, B. Matrix Metalloproteinase 9 Is Associated with Gleason Score in Prostate Cancer but Not with Prognosis. Hum. Pathol. 2010, 41, 1694–1701. [Google Scholar] [CrossRef]
  180. Geng, X.; Chen, C.; Huang, Y.; Hou, J. The Prognostic Value and Potential Mechanism of Matrix Metalloproteinases among Prostate Cancer. Int. J. Med. Sci. 2020, 17, 1550–1560. [Google Scholar] [CrossRef]
  181. Eiro, N.; Medina, A.; Gonzalez, L.O.; Fraile, M.; Palacios, A.; Escaf, S.; Fernández-Gómez, J.M.; Vizoso, F.J. Evaluation of Matrix Metalloproteases by Artificial Intelligence Techniques in Negative Biopsies as New Diagnostic Strategy in Prostate Cancer. Int. J. Mol. Sci. 2023, 24, 7022. [Google Scholar] [CrossRef]
  182. Nilsson, M.; Hägglöf, C.; Hammarsten, P.; Thysell, E.; Stattin, P.; Egevad, L.; Granfors, T.; Jernberg, E.; Wikstrom, P.; Halin Bergström, S.; et al. High Lysyl Oxidase (LOX) in the Non-Malignant Prostate Epithelium Predicts a Poor Outcome in Prostate Cancer Patient Managed by Watchful Waiting. PLoS ONE 2015, 10, e0140985. [Google Scholar] [CrossRef]
  183. Zheng, W.; Wang, X.; Chen, Q.; Fang, K.; Wang, L.; Chen, F.; Li, X.; Li, Z.; Wang, J.; Liu, Y.; et al. Low Extracellular Lysyl Oxidase Expression Is Associated with Poor Prognosis in Patients with Prostate Cancer. Oncol. Lett. 2016, 12, 3161–3166. [Google Scholar] [CrossRef]
  184. Kim, M.S.; Ha, S.E.; Wu, M.; Zogg, H.; Ronkon, C.F.; Lee, M.Y.; Ro, S. Extracellular Matrix Biomarkers in Colorectal Cancer. Int. J. Mol. Sci. 2021, 22, 9185. [Google Scholar] [CrossRef]
  185. Sathyanarayana, U.G.; Padar, A.; Suzuki, M.; Maruyama, R.; Shigematsu, H.; Hsieh, J.T.; Frenkel, E.P.; Gazdar, A.F. Aberrant Promoter Methylation of Laminin-5-Encoding Genes in Prostate Cancers and Its Relationship to Clinicopathological Features. Clin. Cancer Res. 2003, 9, 6395–6400. [Google Scholar]
  186. Suhovskih, A.V.; Mostovich, L.A.; Kunin, I.S.; Boboev, M.M.; Nepomnyashchikh, G.I.; Aidagulova, S.V.; Grigorieva, E.V. Proteoglycan Expression in Normal Human Prostate Tissue and Prostate Cancer. ISRN Oncol. 2013, 2013, 680136. [Google Scholar] [CrossRef]
  187. Ageeli, W.; Zhang, X.; Ogbonnaya, C.N.; Ling, Y.; Wilson, J.; Li, C.; Nabi, G. Characterisation of Collagen Re-modelling in Localised Prostate Cancer Using Second-generation Harmonic Imaging and Transrectal Ultrasound Shear Wave Elastography. Cancers 2021, 13, 5553. [Google Scholar] [CrossRef]
  188. Duarte, A.H.; Colli, S.; Alves-Pereira, J.L.; Martins, M.P.; Sampaio, F.J.B.; Ramos, C.F. Collagen I and III and Metalloproteinase Gene and Protein Expression in Prostate Cancer in Relation to Gleason Score. Int. Braz. J. Urol. 2012, 38, 341–355. [Google Scholar] [CrossRef]
  189. Jensen, C.; Drobinski, P.; Thorlacius-Ussing, J.; Karsdal, M.A.; Bay-Jensen, A.C.; Willumsen, N. Autoreactivity against Denatured Type III Collagen Is Significantly Decreased in Serum from Patients with Cancer Compared to Healthy Controls. Int. J. Mol. Sci. 2023, 24, 7067. [Google Scholar] [CrossRef]
  190. Nagle, R.B.; Hao, J.; Knox, J.D.; Dalkin, B.L.; Clark, V.; Cress, A.E. Expression of Hemidesmosomal and Extracellular Matrix Proteins by Normal and Malignant Human Prostate Tissue. Am. J. Pathol. 1995, 146, 1498–1507. [Google Scholar]
  191. Hansen, N.U.B.; Willumsen, N.; Sand, J.M.B.; Larsen, L.; Karsdal, M.A.; Leeming, D.J. Type VIII Collagen Is Elevated in Diseases Associated with Angiogenesis and Vascular Remodeling. Clin. Biochem. 2016, 49, 903–908. [Google Scholar] [CrossRef]
  192. Thorlacius-ussing, J.; Jensen, C.; Madsen, E.A.; Nissen, N.I.; Manon-jensen, T.; Chen, I.M.; Johansen, J.S.; Diab, H.M.H.; Jørgensen, L.N.; Karsdal, M.A.; et al. Type XX Collagen Is Elevated in Circulation of Patients with Solid Tumors. Int. J. Mol. Sci. 2022, 23, 4144. [Google Scholar] [CrossRef]
  193. Banyard, J.; Bao, L.; Hofer, M.D.; Zurakowski, D.; Spivey, K.A.; Feldman, A.S.; Hutchinson, L.M.; Kuefer, R.; Rubin, M.A.; Zetter, B.R. Collagen XXIII Expression Is Associated with Prostate Cancer Recurrence and Distant Metastases. Clin. Cancer Res. 2007, 13, 2634–2642. [Google Scholar] [CrossRef]
  194. Pföhler, C.; Fixemer, T.; Jung, V.; Dooley, S.; Remberger, K.; Bonkhoff, H. In Situ Hybridization Analysis of Genes Coding Collagen IV A1 Chain, Laminin Β1 Chain, and S-Laminin in Prostate Tissue and Prostate Cancer: Increased Basement Membrane Gene Expression in High-Grade and Metastatic Lesions. Prostate 1998, 36, 143–150. [Google Scholar] [CrossRef]
  195. Varisli, L. Identification of New Genes Downregulated in Prostate Cancer and Investigation of Their Effects on Prognosis. Genet. Test. Mol. Biomarkers 2013, 17, 562–566. [Google Scholar] [CrossRef]
  196. Ma, J.-B.; Bai, J.Y.; Zhang, H.B.; Gu, L.; He, D.; Guo, P. Downregulation of Collagen COL4A6 Is Associated with Prostate Cancer Progression and Metastasis. Genet. Test. Mol. Biomarkers 2020, 24, 399–408. [Google Scholar] [CrossRef]
  197. Wang, C.; Wang, J.; Chen, S.; Li, K.; Wan, S.; Yang, L. COL10A1 as a Prognostic Biomarker in Association with Immune Infiltration in Prostate Cancer. Curr. Cancer Drug Targets 2023. ahead of print. [Google Scholar] [CrossRef]
  198. Rochette, A.; Boufaied, N.; Scarlata, E.; Hamel, L.; Brimo, F.; Whitaker, H.C.; Ramos-Montoya, A.; Neal, D.E.; Dragomir, A.; Aprikian, A.; et al. Asporin Is a Stromally Expressed Marker Associated with Prostate Cancer Progression. Br. J. Cancer 2017, 116, 775–784. [Google Scholar] [CrossRef]
  199. Gerke, J.S.; Orth, M.F.; Tolkach, Y.; Romero-Pérez, L.; Wehweck, F.S.; Stein, S.; Musa, J.; Knott, M.M.L.; Hölting, T.L.B.; Li, J.; et al. Integrative Clinical Transcriptome Analysis Reveals TMPRSS2-ERG Dependency of Prognostic Biomarkers in Prostate Adenocarcinoma. Int. J. Cancer 2020, 146, 2036–2046. [Google Scholar] [CrossRef]
  200. Zhang, P.; Qian, B.; Liu, Z.; Wang, D.; Lv, F.; Xing, Y.; Xiao, Y. Identification of Novel Biomarkers of Prostate Cancer through Integrated Analysis. Transl. Androl. Urol. 2021, 10, 3239–3254. [Google Scholar] [CrossRef]
  201. Hurley, P.J.; Sundi, D.; Shinder, B.; Simons, B.W.; Hughes, R.M.; Miller, R.M.; Benzon, B.; Faraj, S.F.; Netto, G.J.; Vergara, I.A.; et al. Germline Variants in Asporin Vary by Race, Modulate the Tumor Microenvironment, and Are Differentially Associated with Metastatic Prostate Cancer. Clin. Cancer Res. 2016, 22, 448–458. [Google Scholar] [CrossRef]
  202. Klee, E.W.; Bondar, O.P.; Goodmanson, M.K.; Dyer, R.B.; Erdogan, S.; Bergstralh, E.J.; Bergen, H.R.; Sebo, T.J.; Klee, G.G. Candidate Serum Biomarkers for Prostate Adenocarcinoma Identified by mRNA Differences in Prostate Tissue and Verified with Protein Measurements in Tissue and Blood. Clin. Chem. 2012, 58, 599–609. [Google Scholar] [CrossRef]
  203. Jacobsen, F.; Kraft, J.; Schroeder, C.; Hube-Magg, C.; Kluth, M.; Lang, D.S.; Simon, R.; Sauter, G.; Izbicki, J.R.; Clauditz, T.S.; et al. Up-Regulation of Biglycan Is Associated with Poor Prognosis and PTEN Deletion in Patients with Prostate Cancer. Neoplasia 2017, 19, 707–715. [Google Scholar] [CrossRef]
  204. Furumido, J.; Maishi, N.; Yanagawa-Matsuda, A.; Kikuchi, H.; Matsumoto, R.; Osawa, T.; Abe, T.; Matsuno, Y.; Shinohara, N.; Hida, Y.; et al. Stroma Biglycan Expression Can Be a Prognostic Factor in Prostate Cancers. Int. J. Urol. 2023, 30, 147–154. [Google Scholar] [CrossRef]
  205. Arslan, B.; Onuk, Ö.; Hazar, I.; Aydin, M.; Çilesiz, N.C.; Eroglu, A.; Nuhoglu, B. Prognostic Value of Endocan in Prostate Cancer: Clinicopathologic Association between Serum Endocan Levels and Biochemical Recurrence after Radical Prostatectomy. Tumori 2017, 103, 204–208. [Google Scholar] [CrossRef]
  206. Lai, C.Y.; Chen, C.M.; Hsu, W.H.; Hsieh, Y.H.; Liu, C.J. Overexpression of Endothelial Cell-Specific Molecule 1 Correlates with Gleason Score and Expression of Androgen Receptor in Prostate Carcinoma. Int. J. Med. Sci. 2017, 14, 1263–1267. [Google Scholar] [CrossRef]
  207. Dadali, M.; Tad, M.; Bagbanci, M.S. Expression of Endocan in Tissue Samples from Prostate Adenocarcinoma and Prostate Hyperplasia: A Comparative Retrospective Study. Urol. J. 2021, 18, 530–536. [Google Scholar] [CrossRef]
  208. Bettin, A.; Reyes, I.; Reyes, N. Gene Expression Profiling of Prostate Cancer-Associated Genes Identifies Fibromodulin as Potential Novel Biomarker for Prostate Cancer. Int. J. Biol. Markers 2016, 31, 153–162. [Google Scholar] [CrossRef]
  209. Silva, T.; Gomes, C.P.; Voigt, D.D.; De Souza, R.B.; Medeiros, K.; Cosentino, N.L.; Fonseca, A.C.P.; Tilli, T.M.; Loayza, E.A.C.; Ramos, V.G.; et al. Fibromodulin Gene Variants (FMOD) as Potential Biomarkers for Prostate Cancer and Benign Prostatic Hyperplasia. Dis. Markers 2022, 2022, 5215247. [Google Scholar] [CrossRef]
  210. Reyes, N.; Benedetti, I.; Bettin, A.; Rebollo, J.; Geliebter, J. The Small Leucine Rich Proteoglycan Fibromodulin Is Overexpressed in Human Prostate Epithelial Cancer Cell Lines in Culture and Human Prostate Cancer Tissue. Cancer Biomark. 2016, 16, 191–202. [Google Scholar] [CrossRef]
  211. Samaržija, I.; Konjevoda, P. Extracellular Matrix- and Integrin Adhesion Complexes-Related Genes in the Prognosis of Prostate Cancer Patients’ Progression-Free Survival. Biomedicines 2023, 11, 2006. [Google Scholar] [CrossRef]
  212. Grindel, B.; Li, Q.; Arnold, R.; Petros, J.; Zayzafoon, M.; Muldoon, M.; Stave, J.; Chung, L.W.K.; Farach-Carson, M.C. Perlecan/HSPG2 and Matrilysin/MMP-7 as Indices of Tissue Invasion: Tissue Localization and Circulating Perlecan Fragments in a Cohort of 288 Radical Prostatectomy Patients. Oncotarget 2016, 7, 10433–10447. [Google Scholar] [CrossRef]
  213. Lima, T.; Barros, A.S.; Trindade, F.; Ferreira, R.; Leite-Moreira, A.; Barros-Silva, D.; Jerónimo, C.; Araújo, L.; Henrique, R.; Vitorino, R.; et al. Application of Proteogenomics to Urine Analysis towards the Identification of Novel Biomarkers of Prostate Cancer: An Exploratory Study. Cancers 2022, 14, 2001. [Google Scholar] [CrossRef]
  214. Chien, M.H.; Lin, Y.W.; Wen, Y.C.; Yang, Y.C.; Hsiao, M.; Chang, J.L.; Huang, H.C.; Lee, W.J. Targeting the SPOCK1-Snail/Slug Axis-Mediated Epithelial-to-Mesenchymal Transition by Apigenin Contributes to Repression of Prostate Cancer Metastasis. J. Exp. Clin. Cancer Res. 2019, 38, 246. [Google Scholar] [CrossRef]
  215. Chen, M.L.; Ho, C.J.; Yeh, C.M.; Chen, S.L.; Sung, W.W.; Wang, S.C.; Chen, C.J. High SPOCK1 Expression Is Associated with Advanced Stage, T Value, and Gleason Grade in Prostate Cancer. Medicina 2019, 55, 343. [Google Scholar] [CrossRef]
  216. Wlazlinski, A.; Engers, R.; Hoffmann, M.J.; Hader, C.; Jung, V.; Müller, M.; Schulz, W.A. Downregulation of Several Fibulin Genes in Prostate Cancer. Prostate 2007, 67, 1770–1780. [Google Scholar] [CrossRef]
  217. Wang, L.Y.; Cui, J.J.; Zhu, T.; Shao, W.H.; Zhao, Y.; Wang, S.; Zhang, Y.P.; Wu, J.C.; Zhang, L. Biomarkers Identified for Prostate Cancer Patients through Genome-Scale Screening. Oncotarget 2017, 8, 92055–92063. [Google Scholar] [CrossRef]
  218. Luo, J.; Lai, C.; Xu, X.; Shi, J.; Hu, J.; Guo, K.; Mulati, Y.; Xiao, Y.; Kong, D.; Liu, C.; et al. Mechanism of Prognostic Marker SPOCK3 Affecting Malignant Progression of Prostate Cancer and Construction of Prognostic Model. BMC Cancer 2023, 23, 741. [Google Scholar] [CrossRef]
  219. Ricciardelli, C.; Mayne, K.; Sykes, P.J.; Raymond, W.A.; McCaul, K.; Marshall, V.R.; Horsfall, D.J. Elevated Levels of Versican but Not Decorin Predict Disease Progression in Early-Stage Prostate Cancer. Clin. Cancer Res. 1998, 4, 963–971. [Google Scholar]
  220. Lygirou, V.; Fasoulakis, K.; Stroggilos, R.; Makridakis, M.; Latosinska, A.; Frantzi, M.; Katafigiotis, I.; Alamanis, C.; Stravodimos, K.G.; Constantinides, C.A.; et al. Proteomic Analysis of Prostate Cancer FFPE Samples Reveals Markers of Disease Progression and Aggressiveness. Cancers 2022, 14, 3765. [Google Scholar] [CrossRef]
  221. Housa, D.; Vernerová, Z.; Heráček, J.; Procházka, B.; Čechák, P.; Kuncová, J.; Haluzík, M. Adiponectin as a Potential Marker of Prostate Cancer Progression: Studies in Organ-Confined and Locally Advanced Prostate Cancer. Physiol. Res. 2008, 57, 451–458. [Google Scholar] [CrossRef]
  222. Dhillon, P.K.; Penney, K.L.; Schumacher, F.; Rider, J.R.; Sesso, H.D.; Pollak, M.; Fiorentino, M.; Finn, S.; Loda, M.; Rifai, N.; et al. Common Polymorphisms in the Adiponectin and Its Receptor Genes, Adiponectin Levels and the Risk of Prostate Cancer. Cancer Epidemiol. Biomark. Prev. 2011, 20, 2618–2627. [Google Scholar] [CrossRef]
  223. Gu, C.; Qu, Y.; Zhang, G.; Sun, L.J.; Zhu, Y.; Ye, D. A Single Nucleotide Polymorphism in ADIPOQ Predicts Biochemical Recurrence after Radical Prostatectomy in Localized Prostate Cancer. Oncotarget 2015, 6, 32205–32211. [Google Scholar] [CrossRef]
  224. Freedland, S.J.; Sokoll, L.J.; Platz, E.A.; Mangold, L.A.; Bruzek, D.J.; Mohr, P.; Yiu, S.K.; Partin, A.W. Association between Serum Adiponectin, and Pathological Stage and Grade in Men Undergoing Radical Prostatectomy. J. Urol. 2005, 174, 1266–1270. [Google Scholar] [CrossRef]
  225. Michalakis, K.; Williams, C.J.; Mitsiades, N.; Blakeman, J.; Balafouta-Tselenis, S.; Giannopoulos, A.; Mantzoros, C.S. Serum Adiponectin Concentrations and Tissue Expression of Adiponectin Receptors Are Reduced in Patients with Prostate Cancer: A Case Control Study. Cancer Epidemiol. Biomark. Prev. 2007, 16, 308–313. [Google Scholar] [CrossRef]
  226. Kaklamani, V.; Yi, N.; Zhang, K.; Sadim, M.; Offit, K.; Oddoux, C.; Ostrer, H.; Mantzoros, C.; Pasche, B. Polymorphisms of ADIPOQ and ADIPOR1 and Prostate Cancer Risk. Metabolism 2011, 60, 1234–1243. [Google Scholar] [CrossRef]
  227. Nishimura, K.; Soda, T.; Nakazawa, S.; Yamanaka, K.; Hirai, T.; Kishikawa, H.; Ichikawa, Y. Serum Adiponectin and Leptin Levels Are Useful Markers for Prostate Cancer Screening after Adjustments for Age, Obesity-Related Factors, and Prostate Volume. Minerva Urol. E Nefrol. 2012, 64, 199–208. [Google Scholar]
  228. Liao, Q.; Long, C.; Deng, Z.; Bi, X.; Hu, J. The Role of Circulating Adiponectin in Prostate Cancer: A Meta-Analysis. Int. J. Biol. Markers 2015, 30, 22–31. [Google Scholar] [CrossRef]
  229. Hu, M.B.; Xu, H.; Hu, J.M.; Zhu, W.H.; Yang, T.; Jiang, H.W.; Ding, Q. Genetic Polymorphisms in Leptin, Adiponectin and Their Receptors Affect Risk and Aggressiveness of Prostate Cancer: Evidence from a Meta-Analysis and Pooled-Review. Oncotarget 2016, 7, 81049–81061. [Google Scholar] [CrossRef]
  230. Burton, A.J.; Gilbert, R.; Tilling, K.; Langdon, R.; Donovan, J.L.; Holly, J.M.P.; Martin, R.M. Circulating Adiponectin and Leptin and Risk of Overall and Aggressive Prostate Cancer: A Systematic Review and Meta-Analysis. Sci. Rep. 2021, 11, 320. [Google Scholar] [CrossRef]
  231. Guo, B.; Wang, Y.; Liu, W.; Zhang, S. Cartilage Oligomeric Matrix Protein Acts as a Molecular Biomarker in Multiple Cancer Types. Clin. Transl. Oncol. 2023, 25, 535–554. [Google Scholar] [CrossRef]
  232. Chen, J.; Xi, J.; Tian, Y.; Bova, G.S.; Zhang, H. Identification, Prioritization, and Evaluation of Glycoproteins for Aggressive Prostate Cancer Using Quantitative Glycoproteomics and Antibody-Based Assays on Tissue Specimens. Proteomics 2013, 13, 2268–2277. [Google Scholar] [CrossRef]
  233. Zhou, Q.; Xiong, W.; Zhou, X.; Gao, R.S.; Lin, Q.F.; Liu, H.Y.; Li, J.N.; Tian, X.F. CTHRC1 and PD-1/PD-L1 Expression Predicts Tumor Recurrence in Prostate Cancer. Mol. Med. Rep. 2019, 20, 4244–4252. [Google Scholar] [CrossRef]
  234. Lv, H.; Fan, E.; Sun, S.; Ma, X.; Zhang, X.; Han, D.M.K.; Cong, Y.S. Cyr61 Is Up-Regulated in Prostate Cancer and Associated with the P53 Gene Status. J. Cell. Biochem. 2009, 106, 738–744. [Google Scholar] [CrossRef]
  235. Jain, A.; McKnight, D.A.; Fisher, L.W.; Humphreys, E.B.; Mangold, L.A.; Partin, A.W.; Fedarko, N.S. Small Integrin-Binding Proteins as Serum Markers for Prostate Cancer Detection. Clin. Cancer Res. 2009, 15, 5199–5207. [Google Scholar] [CrossRef]
  236. Chaplet, M.; Waltregny, D.; Detry, C.; Fisher, L.W.; Castronovo, V.; Bellahcène, A. Expression of Dentin Sialophosphoprotein in Human Prostate Cancer and Its Correlation with Tumor Aggressiveness. Int. J. Cancer 2006, 118, 850–856. [Google Scholar] [CrossRef]
  237. Chung, J.W.; Kim, H.T.; Ha, Y.S.; Lee, E.H.; Chun, S.Y.; Lee, C.H.; Byeon, K.H.; Choi, S.H.; Lee, J.N.; Kim, B.S.; et al. Identification of a Novel Non-Invasive Biological Marker to Overcome the Shortcomings of PSA in Diagnosis and Risk Stratification for Prostate Cancer: Initial Prospective Study of Developmental Endothelial Locus-1 Protein. PLoS ONE 2021, 16, e0250254. [Google Scholar] [CrossRef]
  238. Shen, H.; Zhang, L.; Zhou, J.; Chen, Z.; Yang, G.; Liao, Y.; Zhu, M. Epidermal Growth Factor-Containing Fibulin-like Extracellular Matrix Protein 1 (EFEMP1) Acts as a Potential Diagnostic Biomarker for Prostate Cancer. Med. Sci. Monit. 2017, 23, 216–222. [Google Scholar] [CrossRef]
  239. Almeida, M.; Costa, V.L.; Costa, N.R.; Ramalho-Carvalho, J.; Baptista, T.; Ribeiro, F.R.; Paulo, P.; Teixeira, M.R.; Oliveira, J.; Lothe, R.A.; et al. Epigenetic Regulation of EFEMP1 in Prostate Cancer: Biological Relevance and Clinical Potential. J. Cell. Mol. Med. 2014, 18, 2287–2297. [Google Scholar] [CrossRef]
  240. Kim, Y.J.; Yoon, H.Y.; Kim, S.K.; Kim, Y.W.; Kim, E.J.; Kim, I.Y.; Kim, W.J. EFEMP1 as a Novel DNA Methylation Marker for Prostate Cancer: Array-Based DNA Methylation and Expression Profiling. Clin. Cancer Res. 2011, 17, 4523–4530. [Google Scholar] [CrossRef]
  241. Wang, Y.; Lih, T.S.M.; Höti, N.; Sokoll, L.J.; Chesnut, G.; Petrovics, G.; Kohaar, I.; Zhang, H. Differentially Expressed Glycoproteins in Pre- and Post-Digital Rectal Examination Urine Samples for Detecting Aggressive Prostate Cancer. Proteomics 2023, 23, e2200023. [Google Scholar] [CrossRef]
  242. Peng, H.H.; Wang, J.N.; Xiao, L.F.; Yan, M.; Chen, S.P.; Wang, L.; Yang, K. Elevated Serum FGG Levels Prognosticate and Promote the Disease Progression in Prostate Cancer. Front. Genet. 2021, 12, 651647. [Google Scholar] [CrossRef]
  243. Davalieva, K.; Kiprijanovska, S.; Kostovska, I.M.; Stavridis, S.; Stankov, O.; Komina, S.; Petrusevska, G.; Polenakovic, M. Comparative Proteomics Analysis of Urine Reveals Down-Regulation of Acute Phase Response Signaling and LXR/RXR Activation Pathways in Prostate Cancer. Proteomes 2018, 6, 1. [Google Scholar] [CrossRef]
  244. Wei, R.J.; Li, T.Y.; Yang, X.C.; Jia, N.; Yang, X.L.; Song, H.B. Serum Levels of PSA, ALP, ICTP, and BSP in Prostate Cancer Patients and the Significance of ROC Curve in the Diagnosis of Prostate Cancer Bone Metastases. Genet. Mol. Res. 2016, 15, 15027707. [Google Scholar] [CrossRef]
  245. Zhu, B.P.; Guo, Z.Q.; Lin, L.; Liu, Q. Serum BSP, PSADT, and Spondin-2 Levels in Prostate Cancer and the Diagnostic Significance of Their ROC Curves in Bone Metastasis. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 61–67. [Google Scholar]
  246. Fedarko, N.S.; Jain, A.; Karadag, A.; van Eman, M.R.; Fisher, L.W. Elevated Serum Bone Sialoprotein and Osteopontin in Colon, Breast, Prostate, and Lung Cancer. Clin. Cancer Res. 2001, 7, 4060–4066. [Google Scholar]
  247. Waltregny, D.; Bellahcène, A.; Van Riet, I.; Fisher, L.W.; Young, M.; Fernandez, P.; Dewé, W.; De Leval, J.; Castronovo, V. Prognostic Value of Bone Sialoprotein Expression in Clinically Localized Human Prostate Cancer. J. Natl. Cancer Inst. 1998, 90, 1000–1008. [Google Scholar] [CrossRef]
  248. Waltregny, D.; Bellahcène, A.; De Leval, X.; Florkin, B.; Weidle, U.; Castronovo, V. Increased Expression of Bone Sialoprotein in Bone Metastases Compared with Visceral Metastases in Human Breast and Prostate Cancers. J. Bone Miner. Res. 2000, 15, 834–843. [Google Scholar] [CrossRef]
  249. De Pinieux, G.; Flam, T.; Zerbib, M.; Taupin, P.; Bellahcène, A.; Waltregny, D.; Vieillefond, A.; Poupon, M.F. Bone Sialoprotein, Bone Morphogenetic Protein 6 and Thymidine Phosphorylase Expression in Localized Human Prostatic Adenocarcinoma as Predictors of Clinical Outcome: A Clinicopathological and Immunohistochemical Study of 43 Cases. J. Urol. 2001, 166, 1924–1930. [Google Scholar] [CrossRef]
  250. Carlinfante, G.; Vassiliou, D.; Svensson, O.; Wendel, M.; Heinegård, D.; Andersson, G. Differential Expression of Osteopontin and Bone Sialoprotein in Bone Metastasis of Breast and Prostate Carcinoma. Clin. Exp. Metastasis 2003, 20, 437–444. [Google Scholar] [CrossRef]
  251. Wang, Y.; Zhang, X.F.; Dai, J.; Zheng, Y.C.; Zhang, M.G.; He, J.J. Predictive Value of Serum Bone Sialoprotein and Prostate-Specific Antigen Doubling Time in Patients with Bone Metastasis of Prostate Cancer. J. Huazhong Univ. Sci. Technol.-Med. Sci. 2013, 33, 559–562. [Google Scholar] [CrossRef]
  252. Sharma, J.; Gray, K.P.; Evan, C.; Nakabayashi, M.; Fichorova, R.; Rider, J.; Mucci, L.; Kantoff, P.W.; Sweeney, C.J. Elevated Insulin-like Growth Factor Binding Protein-1 (IGFBP-1) in Men with Metastatic Prostate Cancer Starting Androgen Deprivation Therapy (ADT) Is Associated with Shorter Time to Castration Resistance and Overall Survival. Prostate 2014, 74, 225–234. [Google Scholar] [CrossRef] [PubMed]
  253. Cao, Y.; Nimptsch, K.; Shui, I.M.; Platz, E.A.; Wu, K.; Pollak, M.N.; Kenfield, S.A.; Stampfer, M.J.; Giovannucci, E.L. Prediagnostic Plasma IGFBP-1, IGF-1 and Risk of Prostate Cancer. Int. J. Cancer 2015, 136, 2418–2426. [Google Scholar] [CrossRef] [PubMed]
  254. Bonilla, C.; Lewis, S.J.; Rowlands, M.A.; Gaunt, T.R.; Davey Smith, G.; Gunnell, D.; Palmer, T.; Donovan, J.L.; Hamdy, F.C.; Neal, D.E.; et al. Assessing the Role of Insulin-like Growth Factors and Binding Proteins in Prostate Cancer Using Mendelian Randomization: Genetic Variants as Instruments for Circulating Levels. Int. J. Cancer 2016, 139, 1520–1533. [Google Scholar] [CrossRef] [PubMed]
  255. Watts, E.L.; Perez-Cornago, A.; Fensom, G.K.; Smith-Byrne, K.; Noor, U.; Andrews, C.D.; Gunter, M.J.; Holmes, M.V.; Martin, R.M.; Tsilidis, K.K.; et al. Circulating Insulin-like Growth Factors and Risks of Overall, Aggressive and Early-Onset Prostate Cancer: A Collaborative Analysis of 20 Prospective Studies and Mendelian Randomization Analysis. Int. J. Epidemiol. 2023, 52, 71–86. [Google Scholar] [CrossRef] [PubMed]
  256. Cheng, I.; Penney, K.L.; Stram, D.O.; Le Marchand, L.; Giorgi, E.; Haiman, C.A.; Kolonel, L.N.; Pike, M.; Hirschhorn, J.; Henderson, B.E.; et al. Haplotype-Based Association Studies of IGFBP1 and IGFBP3 with Prostate and Breast Cancer Risk: The Multiethnic Cohort. Cancer Epidemiol. Biomark. Prev. 2006, 15, 1993–1997. [Google Scholar] [CrossRef] [PubMed]
  257. Zhang, B.; Hong, C.Q.; Lin, Y.W.; Luo, Y.; Ding, T.Y.; Xu, Y.W.; Peng, Y.H.; Wu, F.C. Association between IGFBP1 Expression and Cancer Risk: A Systematic Review and Meta-Analysis. Heliyon 2023, 9, e16470. [Google Scholar] [CrossRef]
  258. Inman, B.A.; Harel, F.; Audet, J.F.; Meyer, F.; Douville, P.; Fradet, Y.; Lacombe, L. Insulin-like Growth Factor Binding Protein 2: An Androgen-Dependent Predictor of Prostate Cancer Survival. Eur. Urol. 2005, 47, 695–702. [Google Scholar] [CrossRef]
  259. Mehrian-Shai, R.; Chen, C.D.; Shi, T.; Horvath, S.; Nelson, S.F.; Reichardt, J.K.V.; Sawyers, C.L. Insulin Growth Factor-Binding Protein 2 Is a Candidate Biomarker for PTEN Status and PI3K/Akt Pathway Activation in Glioblastoma and Prostate Cancer. Proc. Natl. Acad. Sci. USA 2007, 104, 5563–5568. [Google Scholar] [CrossRef]
  260. Ambrosini-Spaltro, A.; Farnedi, A.; Montironi, R.; Foschini, M.P. IGFBP2 as an Immunohistochemical Marker for Prostatic Adenocarcinoma. Appl. Immunohistochem. Mol. Morphol. 2011, 19, 318–328. [Google Scholar] [CrossRef]
  261. Rowlands, M.A.; Holly, J.M.P.; Gunnell, D.; Donovan, J.; Lane, J.A.; Hamdy, F.; Neal, D.E.; Oliver, S.; Smith, G.D.; Martin, R.M. Circulating Insulin-like Growth Factors and IGF-Binding Proteins in PSA-Detected Prostate Cancer: The Large Case-Control Study ProtecT. Cancer Res. 2012, 72, 503–515. [Google Scholar] [CrossRef]
  262. Tennant, M.K.; Thrasher, J.B.; Twomey, P.A.; Birnbaum, R.S.; Plymate, S.R. Insulin-like Growth Factor-Binding Protein-2 and -3 Expression in Benign Human Prostate Epithelium, Prostate Intraepithelial Neoplasia, and Adenocarcinoma of the Prostate. J. Clin. Endocrinol. Metab. 1996, 81, 411–420. [Google Scholar] [CrossRef]
  263. Ho, P.J.; Baxter, R.C. Insulin-like Growth Factor-Binding Protein-2 in Patients with Prostate Carcinoma and Benign Prostatic Hyperplasia. Clin. Endocrinol. 1997, 46, 145–154. [Google Scholar] [CrossRef]
  264. Neuhouser, M.L.; Platz, E.A.; Till, C.; Tangen, C.M.; Goodman, P.J.; Kristal, A.; Parnes, H.L.; Tao, Y.; Figg, W.D.; Lucia, M.S.; et al. Insulin-like Growth Factors and Insulin-like Growth Factor-Binding Proteins and Prostate Cancer Risk: Results from the Prostate Cancer Prevention Trial. Cancer Prev. Res. 2013, 6, 91–99. [Google Scholar] [CrossRef] [PubMed]
  265. Travis, R.C.; Appleby, P.N.; Martin, R.M.; Holly, J.M.P.; Albanes, D.; Black, A.; Bueno-De-Mesquita, H.B.; Chan, J.M.; Chen, C.; Chirlaque, M.D.; et al. A Meta-Analysis of Individual Participant Data Reveals an Association between Circulating Levels of IGF-I and Prostate Cancer Risk. Cancer Res. 2016, 76, 2288–2300. [Google Scholar] [CrossRef] [PubMed]
  266. Chau, C.H.; Till, C.; Price, D.K.; Goodman, P.J.; Neuhouser, M.L.; Pollak, M.N.; Thompson, I.M.; Figg, W.D. Serum Markers, Obesity and Prostate Cancer Risk: Results from the Prostate Cancer Prevention Trial. Endocr. Relat. Cancer 2022, 29, 99–109. [Google Scholar] [CrossRef] [PubMed]
  267. Borziak, K.; Finkelstein, J. Gene Expression Markers of Prognostic Importance for Prostate Cancer Risk in Patients with Benign Prostate Hyperplasia. In Proceedings of the Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Glasgow, Scotland, 11–15 July 2022. [Google Scholar]
  268. Miyata, Y.; Sakai, H.; Hayashi, T.; Kanetake, H. Serum Insulin-like Growth Factor Binding Protein-3/Prostate-Specific Antigen Ratio Is a Useful Predictive Marker in Patients with Advanced Prostate Cancer. Prostate 2003, 54, 125–132. [Google Scholar] [CrossRef]
  269. Platz, E.A.; Pollak, M.N.; Leitzmann, M.F.; Stampfer, M.J.; Willett, W.C.; Giovannucci, E. Plasma Insulin-like Growth Factor-1 and Binding Protein-3 and Subsequent Risk of Prostate Cancer in the PSA Era. Cancer Causes Control. 2005, 16, 255–262. [Google Scholar] [CrossRef]
  270. Severi, G.; Morris, H.A.; MacInnis, R.J.; English, D.R.; Tilley, W.D.; Hopper, J.L.; Boyle, P.; Giles, G.G. Circulating Insulin-like Growth Factor-I and Binding Protein-3 and Risk of Prostate Cancer. Cancer Epidemiol. Biomark. Prev. 2006, 15, 1137–1141. [Google Scholar] [CrossRef]
  271. Hernandez, W.; Grenade, C.; Santos, E.R.; Bonilla, C.; Ahaghotu, C.; Kittles, R.A. IGF-1 and IGFBP-3 Gene Variants Influence on Serum Levels and Prostate Cancer Risk in African-Americans. Carcinogenesis 2007, 28, 2154–2159. [Google Scholar] [CrossRef]
  272. Tajtakova, M.; Pidanicova, A.; Valansky, L.; Lachvac; Nagy, V.; Sivonova, M.; Dobrota, D.; Kliment, J.; Petrovicova, J. Serum Level of IGFBP3 and IGF1/IGFBP3 Molar Ratio in Addition to PSA and Single Nucleotide Polymorphism in PSA and CYP17 Gene May Contribute to Early Diagnostics of Prostate Cancer. Neoplasma 2010, 57, 118–122. [Google Scholar] [CrossRef]
  273. Safarinejad, M.R.; Shafiei, N.; Safarinejad, S. Relationship of Insulin-like Growth Factor (IGF) Binding Protein-3 (IGFBP-3) Gene Polymorphism with the Susceptibility to Development of Prostate Cancer and Influence on Serum Levels of IGF-I, and IGFBP-3. Growth Horm. IGF Res. 2011, 21, 146–154. [Google Scholar] [CrossRef]
  274. Terracciano, D.; Bruzzese, D.; Ferro, M.; Mazzarella, C.; Di Lorenzo, G.; Altieri, V.; Mariano, A.; MacChia, V.; Di Carlo, A. Preoperative Insulin-like Growth Factor-Binding Protein-3 (IGFBP-3) Blood Level Predicts Gleason Sum Upgrading. Prostate 2012, 72, 100–107. [Google Scholar] [CrossRef]
  275. Prager, A.J.; Peng, C.R.; Lita, E.; Mcnally, D.; Kaushal, A.; Sproull, M.; Compton, K.; Dahut, W.L.; Figg, W.D.; Citrin, D.; et al. Urinary AHGF, IGFBP3 and OPN as Diagnostic and Prognostic Biomarkers for Prostate Cancer. Biomark. Med. 2013, 7, 831–841. [Google Scholar] [CrossRef]
  276. Corrêa de Mello, L.L.; Neto, L.V.; Balarini Lima, G.A.; Gabrich, R.; de Miranda, L.C.D.; Gadelha, M.R. Insulin-like Growth Factor (IgF)-I, IgF Binding Protein-3, and Prostate Cancer: Correlation with Gleason Score. Int. Braz. J. Urol. 2015, 41, 110–115. [Google Scholar] [CrossRef]
  277. Tan, V.Y.; Biernacka, K.M.; Dudding, T.; Bonilla, C.; Gilbert, R.; Kaplan, R.C.; Qibin, Q.; Teumer, A.; Martin, R.M.; Perks, C.M.; et al. Reassessing the Association between Circulating Vitamin D and IGFBP-3: Observational and Mendelian Randomization Estimates from Independent Sources. Cancer Epidemiol. Biomark. Prev. 2018, 27, 1462–1471. [Google Scholar] [CrossRef]
  278. Neuhouser, M.L.; Schenk, J.; Yoon, J.S.; Tangen, C.M.; Goodman, P.J.; Pollak, M.; Penson, D.F.; Thompson, I.M.; Kristal, A.R. Insulin-like Growth Factor-I, Insulin-like Growth Factor Binding Protein-3 and Risk of Benign Prostate Hyperplasia in the Prostate Cancer Prevention Trial. Prostate 2008, 68, 1477–1486. [Google Scholar] [CrossRef]
  279. Park, K.; Kim, J.H.; Jeon, H.G.; Byun, S.S.; Lee, E. Influence of IGFBP3 Gene Polymorphisms on IGFBP3 Serum Levels and the Risk of Prostate Cancer in Low-Risk Korean Men. Urology 2010, 75, 1516.e1–1516.e7. [Google Scholar] [CrossRef]
  280. Rowlands, M.A.; Holly, J.M.P.; Hamdy, F.; Phillips, J.; Goodwin, L.; Marsden, G.; Gunnell, D.; Donovan, J.; Neal, D.E.; Martin, R.M. Serum Insulin-like Growth Factors and Mortality in Localised and Advanced Clinically Detected Prostate Cancer. Cancer Causes Control. 2012, 23, 347–354. [Google Scholar] [CrossRef]
  281. Seligson, D.B.; Yu, H.; Tze, S.; Said, J.; Pantuck, A.J.; Cohen, P.; Lee, K.W. IGFBP-3 Nuclear Localization Predicts Human Prostate Cancer Recurrence. Horm. Cancer 2013, 4, 12–23. [Google Scholar] [CrossRef]
  282. Ding, Q.; Shi, Y.; Fan, B.; Fan, Z.; Wang, J. IGFBP-3 Promoter Polymorphism-202A>C (Rs2854774) Contributes to Prostate Cancer Risk: Evidence Based on 9482 Subjects. Urol. Int. 2014, 93, 100–107. [Google Scholar] [CrossRef]
  283. Zhang, G.; Zhu, Y.; Liu, F.; Gu, C.; Chen, H.; Xu, J.; Ye, D. Genetic Variants in Insulin-like Growth Factor Binding Protein-3 Are Associated with Prostate Cancer Susceptibility in Eastern Chinese Han Men. Onco Targets Ther. 2015, 9, 61–66. [Google Scholar] [CrossRef]
  284. Xu, Y.; Zhang, L.; Sun, S.K.; Zhang, X. CC Chemokine Ligand 18 and IGF-Binding Protein 6 as Potential Serum Biomarkers for Prostate Cancer. Tohoku J. Exp. Med. 2014, 233, 25–31. [Google Scholar] [CrossRef]
  285. Brar, P.K.; Dalkin, B.L.; Weyer, C.; Sallam, K.; Virtanen, I.; Nagle, R.B. Laminin Alpha-1, Alpha-3, and Alpha-5 Chain Expression in Human Prepubetal Benign Prostate Glands and Adult Benign and Malignant Prostate Glands. Prostate 2003, 55, 65–70. [Google Scholar] [CrossRef]
  286. Tomas, D.; Ulamec, M.; Hudolin, T.; Bulimbašić, S.; Belicza, M.; Krušlin, B. Myofibroblastic Stromal Reaction and Expression of Tenascin-C and Laminin in Prostate Adenocarcinoma. Prostate Cancer Prostatic Dis. 2006, 9, 414–419. [Google Scholar] [CrossRef]
  287. Hao, J.; Yang, Y.; McDaniel, K.M.; Dalkin, B.L.; Cress, A.E.; Nagle, R.B. Differential Expression of Laminin 5 (α3β3γ2) by Human Malignant and Normal Prostate. Am. J. Pathol. 1996, 149, 1341. [Google Scholar]
  288. Hao, J.; Jackson, L.; Calaluce, R.; McDaniel, K.; Dalkin, B.L.; Nagle, R.B. Investigation into the Mechanism of the Loss of Laminin 5 (α3β3γ2) Expression in Prostate Cancer. Am. J. Pathol. 2001, 158, 1129–1135. [Google Scholar] [CrossRef]
  289. Guldvik, I.J.; Zuber, V.; Braadland, P.R.; Grytli, H.H.; Ramberg, H.; Lilleby, W.; Thiede, B.; Zucknick, M.; Saatcioglu, F.; Gislefoss, R.; et al. Identification and Validation of Leucine-Rich α-2-Glycoprotein 1 as a Noninvasive Biomarker for Improved Precision in Prostate Cancer Risk Stratification. Eur. Urol. Open Sci. 2020, 21, 51–60. [Google Scholar] [CrossRef]
  290. Guldvik, I.J.; Braadland, P.R.; Sivanesan, S.; Ramberg, H.; Kristensen, G.; Tennstedt, P.; Røder, A.; Schlomm, T.; Berge, V.; Eri, L.M.; et al. Low Blood Levels of LRG1 Before Radical Prostatectomy Identify Patients with High Risk of Progression to Castration-Resistant Prostate Cancer. Eur. Urol. Open Sci. 2022, 45, 68–75. [Google Scholar] [CrossRef]
  291. Ramesh, G.; Berg, A.; Jayakumar, C. Plasma Netrin-1 Is a Diagnostic Biomarker of Human Cancers. Biomarkers 2011, 16, 172–180. [Google Scholar] [CrossRef]
  292. Latil, A.; Chêne, L.; Cochant-Priollet, B.; Mangin, P.; Fournier, G.; Berthon, P.; Cussenot, O. Quantification of Expression of Netrins, Slits and Their Receptors in Human Prostate Tumors. Int. J. Cancer 2003, 103, 306–315. [Google Scholar] [CrossRef]
  293. Tian, Y.; Bova, G.S.; Zhang, H. Quantitative Glycoproteomic Analysis of Optimal Cutting Temperature-Embedded Frozen Tissues Identifying Glycoproteins Associated with Aggressive Prostate Cancer. Anal. Chem. 2011, 83, 7013–7019. [Google Scholar] [CrossRef]
  294. Cattrini, C.; Barboro, P.; Rubagotti, A.; Zinoli, L.; Zanardi, E.; Capaia, M.; Boccardo, F. Integrative Analysis of Periostin in Primary and Advanced Prostate Cancer. Transl. Oncol. 2020, 13, 100789. [Google Scholar] [CrossRef]
  295. Perrone, G.; Vincenzi, B.; Zagami, M.; Santini, D.; Panteri, R.; Flammia, G.; Verzí, A.; Lepanto, D.; Morini, S.; Russo, A.; et al. Reelin Expression in Human Prostate Cancer: A Marker of Tumor Aggressiveness Based on Correlation with Grade. Mod. Pathol. 2007, 20, 344–351. [Google Scholar] [CrossRef]
  296. Mesci, A.; Lucien, F.; Huang, X.; Wang, E.H.; Shin, D.; Meringer, M.; Hoey, C.; Ray, J.; Boutros, P.C.; Leong, H.S.; et al. RSPO3 Is a Prognostic Biomarker and Mediator of Invasiveness in Prostate Cancer. J. Transl. Med. 2019, 17, 125. [Google Scholar] [CrossRef]
  297. Bartholow, T.L.; Becich, M.J.; Chandran, U.R.; Parwani, A.V. Immunohistochemical Staining of Slit2 in Primary and Metastatic Prostatic Adenocarcinoma. Transl. Oncol. 2011, 4, 314–320. [Google Scholar] [CrossRef]
  298. DeRosa, C.A.; Furusato, B.; Shaheduzzaman, S.; Srikantan, V.; Wang, Z.; Chen, Y.; Siefert, M.; Ravindranath, L.; Young, D.; Nau, M.; et al. Elevated Osteonectin/SPARC Expression in Primary Prostate Cancer Predicts Metastatic Progression. Prostate Cancer Prostatic Dis. 2012, 15, 150–156. [Google Scholar] [CrossRef]
  299. Thomas, R.; True, L.D.; Bassuk, J.A.; Lange, P.H.; Vessella, R.L. Differential Expression of Osteonectin/SPARC during Human Prostate Cancer Progression. Clin. Cancer Res. 2000, 6, 1140–1149. [Google Scholar]
  300. Liu, T.; Qiu, X.; Zhao, X.; Yang, R.; Lian, H.; Qu, F.; Li, X.; Guo, H. Hypermethylation of the SPARC Promoter and Its Prognostic Value for Prostate Cancer. Oncol. Rep. 2018, 39, 659–666. [Google Scholar] [CrossRef]
  301. López-Moncada, F.; Torres, M.; Castellón, E.; Contreras, H.R. Secreted Protein Acidic and Rich in Cysteine (SPARC) Induces Epithelial-Mesenchymal Transition, Enhancing Migration and Invasion, and Is Associated with High Gleason Score in Prostate Cancer. Asian J. Androl. 2019, 21, 557–564. [Google Scholar] [CrossRef]
  302. Enriquez, C.; Cancila, V.; Ferri, R.; Sulsenti, R.; Fischetti, I.; Milani, M.; Ostano, P.; Gregnanin, I.; Mello-Grand, M.; Berrino, E.; et al. Castration-Induced Downregulation of SPARC in Stromal Cells Drives Neuroendocrine Differentiation of Prostate Cancer. Cancer Res. 2021, 81, 4257–4274. [Google Scholar] [CrossRef]
  303. Hanousková, L.; Řezáč, J.; Veselý, Š.; Průša, R.; Kotaška, K. Diagnostic Benefits of Mindin as a Prostate Cancer Biomarker. J. Med. Biochem. 2019, 39, 108–111. [Google Scholar] [CrossRef]
  304. Lucarelli, G.; Rutigliano, M.; Bettocchi, C.; Palazzo, S.; Vavallo, A.; Galleggiante, V.; Trabucco, S.; Di Clemente, D.; Selvaggi, F.P.; Battaglia, M.; et al. Spondin-2, a Secreted Extracellular Matrix Protein, Is a Novel Diagnostic Biomarker for Prostate Cancer. J. Urol. 2013, 190, 2271–2277. [Google Scholar] [CrossRef]
  305. Qian, X.; Li, C.; Pang, B.; Xue, M.; Wang, J.; Zhou, J. Spondin-2 (SPON2), a More Prostate-Cancer-Specific Diagnostic Biomarker. PLoS ONE 2012, 7, e37225. [Google Scholar] [CrossRef]
  306. Kim, J.W.; Kim, S.T.; Turner, A.R.; Young, T.; Smith, S.; Liu, W.; Lindberg, J.; Egevad, L.; Gronberg, H.; Isaacs, W.B.; et al. Identification of New Differentially Methylated Genes That Have Potential Functional Consequences in Prostate Cancer. PLoS ONE 2012, 7, e48455. [Google Scholar] [CrossRef]
  307. Pang, X.; Xie, R.; Zhang, Z.; Liu, Q.; Wu, S.; Cui, Y. Identification of SPP1 as an Extracellular Matrix Signature for Metastatic Castration-Resistant Prostate Cancer. Front. Oncol. 2019, 9, 924. [Google Scholar] [CrossRef]
  308. Yu, A.; Guo, K.; Qin, Q.; Xing, C.; Zu, X. Clinicopathological and Prognostic Significance of Osteopontin Expression in Patients with Prostate Cancer: A Systematic Review and Meta-Analysis. Biosci. Rep. 2021, 41, BSR20203531. [Google Scholar] [CrossRef]
  309. Wang, C.; Liu, G.; Liu, Y.; Yang, Z.; Xin, W.; Wang, M.; Li, Y.; Yang, L.; Mu, H.; Zhou, C. Novel Serum Proteomic Biomarkers for Early Diagnosis and Aggressive Grade Identification of Prostate Cancer. Front. Oncol. 2022, 12, 1004015. [Google Scholar] [CrossRef]
  310. Puzone, R.; Paleari, L.; Montefiore, F.; Ruggiero, L.; Puntoni, M.; Maffezzini, M.; Bobbio, B.; Marroni, P.; Libener, R.; Betta, P.G. Osteopontin Plasma Level Does Not Detect Prostate Cancer in Patients Referred for Diagnostic Prostate Biopsy. Int. J. Biol. Markers 2010, 25, 200–206. [Google Scholar] [CrossRef]
  311. Thoms, J.W.; Dal Pra, A.; Anborgh, P.H.; Christensen, E.; Fleshner, N.; Menard, C.; Chadwick, K.; Milosevic, M.; Catton, C.; Pintilie, M.; et al. Plasma Osteopontin as a Biomarker of Prostate Cancer Aggression: Relationship to Risk Category and Treatment Response. Br. J. Cancer 2012, 107, 840–846. [Google Scholar] [CrossRef]
  312. Anunobi, C.C.; Koli, K.; Saxena, G.; Banjo, A.A.; Ogbureke, K.U.E. Expression of the SIBLINGs and Their MMP Partners in Human Benign and Malignant Prostate Neoplasms. Oncotarget 2016, 7, 48038–48049. [Google Scholar] [CrossRef]
  313. Wiśniewski, T.; Zyromska, A.; Makarewicz, R.; Zekanowska, E. Osteopontin and Angiogenic Factors as New Biomarkers of Prostate Cancer. Urol. J. 2019, 16, 134–140. [Google Scholar]
  314. Tozawa, K.; Yamada, Y.; Kawai, N.; Okamura, T.; Ueda, K.; Kohri, K. Osteopontin Expression in Prostate Cancer and Benign Prostatic Hyperplasia. Urol. Int. 1999, 62, 155–158. [Google Scholar] [CrossRef]
  315. Hotte, S.J.; Winquist, E.W.; Stitt, L.; Wilson, S.M.; Chambers, A.F. Plasma Osteopontin: Associations with Survival and Metastasis to Bone in Men with Hormone-Refractory Prostate Carcinoma. Cancer 2002, 95, 506–512. [Google Scholar] [CrossRef]
  316. Forootan, S.S.; Foster, C.S.; Aachi, V.R.; Adamson, J.; Smith, P.H.; Lin, K.; Ke, Y. Prognostic Significance of Osteopontin Expression in Human Prostate Cancer. Int. J. Cancer 2006, 118, 2255–2261. [Google Scholar] [CrossRef]
  317. Ramankulov, A.; Lein, M.; Kristiansen, G.; Loening, S.A.; Jung, K. Plasma Osteopontin in Comparison with Bone Markers as Indicator of Bone Metastasis and Survival Outcome in Patients with Prostate Cancer. Prostate 2007, 67, 330–340. [Google Scholar] [CrossRef]
  318. Weber, G.F.; Lett, G.S.; Haubein, N.C. Osteopontin Is a Marker for Cancer Aggressiveness and Patient Survival. Br. J. Cancer 2010, 103, 861–869. [Google Scholar] [CrossRef]
  319. Vallbo, C.; Wang, W.; Damber, J.E. The Expression of Thrombospondin-1 in Benign Prostatic Hyperplasia and Prostatic Intraepithelial Neoplasia Is Decreased in Prostate Cancer. BJU Int. 2004, 93, 1339–1343. [Google Scholar] [CrossRef]
  320. Shafer, M.W.; Mangold, L.; Partin, A.W.; Haab, B.B. Antibody Array Profiling Reveals SerumTSP-I as a Marker to Distinguish Benign from Malignant Prostatic Disease. Prostate 2007, 67, 255–267. [Google Scholar] [CrossRef]
  321. Bhagirath, D.; Liston, M.; Akoto, T.; Lui, B.; Bensing, B.A.; Sharma, A.; Saini, S. Novel, Non-Invasive Markers for Detecting Therapy Induced Neuroendocrine Differentiation in Castration-Resistant Prostate Cancer Patients. Sci. Rep. 2021, 11, 8279. [Google Scholar] [CrossRef]
  322. Firlej, V.; Mathieu, J.R.R.; Gilbert, C.; Lemonnier, L.; Nakhlé, J.; Gallou-Kabani, C.; Guarmit, B.; Morin, A.; Prevarskaya, N.; Delongchamps, N.B.; et al. Thrombospondin-1 Triggers Cell Migration and Development of Advanced Prostate Tumors. Cancer Res. 2011, 71, 7649–7658. [Google Scholar] [CrossRef]
  323. Matos, A.R.; Coutinho-Camillo, C.M.; Thuler, L.C.S.; Fonseca, F.P.; Soares, F.A.; Silva, E.A.; Gimba, E.R. Expression Analysis of Thrombospondin 2 in Prostate Cancer and Benign Prostatic Hyperplasia. Exp. Mol. Pathol. 2013, 94, 438–444. [Google Scholar] [CrossRef]
  324. Mishra, P.; Kiebish, M.A.; Cullen, J.; Srinivasan, A.; Patterson, A.; Sarangarajan, R.; Narain, N.R.; Dobi, A. Genomic Alterations of Tenascin c in Highly Aggressive Prostate Cancer: A Meta-Analysis. Genes Cancer 2019, 10, 150–159. [Google Scholar] [CrossRef]
  325. Ni, W.D.; Yang, Z.T.; Cui, C.A.; Cui, Y.; Fang, L.Y.; Xuan, Y.H. Tenascin-C Is a Potential Cancer-Associated Fibroblasts Marker and Predicts Poor Prognosis in Prostate Cancer. Biochem. Biophys. Res. Commun. 2017, 486, 607–612. [Google Scholar] [CrossRef]
  326. Qian, Y.; Liu, X.; Feng, Y.; Li, X.; Xuan, Y. Tenascin C Regulates Cancer Cell Glycolysis and Tumor Progression in Prostate Cancer. Int. J. Urol. 2022, 29, 578–585. [Google Scholar] [CrossRef]
  327. Karkampouna, S.; De Filippo, M.R.; Ng, C.K.Y.; Klima, I.; Zoni, E.; Spahn, M.; Stein, F.; Haberkant, P.; Thalmann, G.N.; de Julio, M.K. Stroma Transcriptomic and Proteomic Profile of Prostate Cancer Metastasis Xenograft Models Reveals Prognostic Value of Stroma Signatures. Cancers 2020, 12, 3786. [Google Scholar] [CrossRef]
  328. Niu, Y.; Zhang, L.; Bi, X.; Yuan, S.; Chen, P. Evaluation of Vitronectin Expression in Prostate Cancer and the Clinical Significance of the Association of Vitronectin Expression with Prostate Specific Antigen in Detecting Prostate Cancer. Urol. J. 2016, 13, 2527–2532. [Google Scholar]
  329. Gaudreau, P.O.; Clairefond, S.; Class, C.A.; Boulay, P.L.; Chrobak, P.; Allard, B.; Azzi, F.; Pommey, S.; Do, K.A.; Saad, F.; et al. WISP1 Is Associated to Advanced Disease, EMT and an Inflamed Tumor Microenvironment in Multiple Solid Tumors. Oncoimmunology 2019, 8, e1581545. [Google Scholar] [CrossRef]
  330. Fritzsche, F.R.; Jung, M.; Tölle, A.; Wild, P.; Hartmann, A.; Wassermann, K.; Rabien, A.; Lein, M.; Dietel, M.; Pilarsky, C.; et al. ADAM9 Expression Is a Significant and Independent Prognostic Marker of PSA Relapse in Prostate Cancer. Eur. Urol. 2008, 54, 1097–1108. [Google Scholar] [CrossRef]
  331. Lin, G.-W.; Yao, X.-D.; Ye, D.-W.; Zhang, S.-L.; Dai, B.; Zhang, H.-H.; Ma, C.-G. ADAM9 Decreases in Castration Resistant Prostate Cancer and Is a Prognostic Factor for Overall Survival. Chin. Med. J. 2012, 125, 3800–3805. [Google Scholar] [CrossRef]
  332. Pen, C.C.; Liu, C.M.; Lin, C.C.; Lin, C.C.; Hsieh, T.F.; Josson, S.; He, Y.C.; Chung, L.W.K.; Lin, K.L.; Sung, S.Y. Combined Dynamic Alterations in Urinary VEGF Levels and Tissue ADAM9 Expression as Markers for Lethal Phenotypic Progression of Prostate Cancer. Chin. J. Physiol. 2012, 55, 390–397. [Google Scholar] [CrossRef]
  333. Sung, S.Y.; Kubo, H.; Shigemura, K.; Arnold, R.S.; Logani, S.; Wang, R.; Konaka, H.; Nakagawa, M.; Mousses, S.; Amin, M.; et al. Oxidative Stress Induces ADAM9 Protein Expression in Human Prostate Cancer Cells. Cancer Res. 2006, 66, 9519–9526. [Google Scholar] [CrossRef] [PubMed]
  334. Arima, T.; Enokida, H.; Kubo, H.; Kagara, I.; Matsuda, R.; Toki, K.; Nishimura, H.; Chiyomaru, T.; Tatarano, S.; Idesako, T.; et al. Nuclear Translocation of ADAM-10 Contributes to the Pathogenesis and Progression of Human Prostate Cancer. Cancer Sci. 2007, 98, 1720–1726. [Google Scholar] [CrossRef] [PubMed]
  335. Bilgin Doğru, E.; Dizdar, Y.; Akşit, E.; Ural, F.; Şanlı, Ö.; Yasasever, V. EMMPRIN and ADAM12 in Prostate Cancer: Preliminary Results of a Prospective Study. Tumor Biol. 2014, 35, 11647–11653. [Google Scholar] [CrossRef] [PubMed]
  336. Burdelski, C.; Fitzner, M.; Hube-Magg, C.; Kluth, M.; Heumann, A.; Simon, R.; Krech, T.; Clauditz, T.; Büscheck, F.; Steurer, S.; et al. Overexpression of the A Disintegrin and Metalloproteinase ADAM15 Is Linked to a Small but Highly Aggressive Subset of Prostate Cancers. Neoplasia 2017, 19, 279–287. [Google Scholar] [CrossRef] [PubMed]
  337. Kuefer, R.; Day, K.C.; Kleer, C.G.; Sabel, M.S.; Hofer, M.D.; Varambally, S.; Zorn, C.S.; Chinnaiyan, A.M.; Rubin, M.A.; Day, M.L. ADAM15 Disintegrin Is Associated with Aggressive Prostate and Breast Cancer Disease. Neoplasia 2006, 8, 319–329. [Google Scholar] [CrossRef] [PubMed]
  338. Hoyne, G.; Rudnicka, C.; Sang, Q.X.; Roycik, M.; Howarth, S.; Leedman, P.; Schlaich, M.; Candy, P.; Matthews, V. Genetic and Cellular Studies Highlight That A Disintegrin and Metalloproteinase 19 Is a Protective Biomarker in Human Prostate Cancer. BMC Cancer 2016, 16, 151. [Google Scholar] [CrossRef] [PubMed]
  339. Rudnicka, C.; Mochizuki, S.; Okada, Y.; McLaughlin, C.; Leedman, P.J.; Stuart, L.; Epis, M.; Hoyne, G.; Boulos, S.; Johnson, L.; et al. Overexpression and Knock-down Studies Highlight That a Disintegrin and Metalloproteinase 28 Controls Proliferation and Migration in Human Prostate Cancer. Medicine 2016, 95, e5085. [Google Scholar] [CrossRef]
  340. Sinha, A.A.; Wilson, M.J.; Reddy, P.K.; Gleason, D.F.; Sameni, M.; Sloane, B.F. Immunohistochemical Localization of Cathepsin B in Neoplastic Human Prostate. Prostate 1995, 26, 171–178. [Google Scholar] [CrossRef]
  341. Sinha, A.A.; Jamuar, M.P.; Wilson, M.J.; Rozhin, J.; Sloane, B.F. Plasma Membrane Association of Cathepsin B in Human Prostate Cancer: Biochemical and Immunogold Electron Microscopic Analysis. Prostate 2001, 49, 172–184. [Google Scholar] [CrossRef]
  342. Miyake, H.; Hara, I.; Eto, H. Serum Level of Cathepsin B and Its Density in Men with Prostate Cancer as Novel Markers of Disease Progression. Anticancer Res. 2004, 24, 2573–2577. [Google Scholar]
  343. Štiblar-Martinčič, D.; Hajdinjak, T. Polymorphism L26V in the Cathepsin B Gene May Be Associated with a Risk of Prostate Cancer and Differentiation. J. Int. Med. Res. 2009, 37, 1604–1610. [Google Scholar] [CrossRef] [PubMed]
  344. Sinha, A.A.; Quast, B.J.; Korkowski, J.C.; Wilson, M.J.; Reddy, P.K.; Ewing, S.L.; Sloane, B.F.; Gleason, D.F. The Relationship of Cathepsin B and Stefin A mRNA Localization Identifies a Potentially Aggressive Variant of Human Prostate Cancer within a Gleason Histologic Score. Anticancer Res. 1999, 19, 2821–2829. [Google Scholar] [PubMed]
  345. Sinha, A.A.; Quast, B.J.; Wilson, M.J.; Fernandes, E.T.; Reddy, P.K.; Ewing, S.L.; Sloane, B.F.; Gleason, D.F. Ratio of Cathepsin B to Stefin A Identifies Heterogeneity within Gleason Histologic Scores for Human Prostate Cancer. Prostate 2001, 48, 274–284. [Google Scholar] [CrossRef] [PubMed]
  346. Sinha, A.A.; Quast, B.J.; Wilson, M.J.; Fernandes, E.T.; Reddy, P.K.; Ewing, S.L.; Gleason, D.F. Prediction of Pelvic Lymph Node Metastasis by the Ratio of Cathepsin B to Stefin A in Patients with Prostate Carcinoma. Cancer 2002, 94, 3141–3149. [Google Scholar] [CrossRef] [PubMed]
  347. Qian, J.; Bostwick, D.G.; Iczkowski, K.A.; Betre, K.; Wilson, M.J.; Le, C.; Sinha, A.A. Characterization of Prostate Cancer in Needle Biopsy by Cathepsin B, Cell Proliferation and DNA Ploidy. Anticancer Res. 2010, 30, 719–725. [Google Scholar] [PubMed]
  348. Sinha, A.A.; Morgan, J.L.; Wood, N.; Betre, K.; Reddy, A.; Wilson, M.J.; Ramanani, D.M. Heterogeneity of Cathepsin B and Stefin A Expression in Gleason Pattern 3 + 3 (Score 6) Prostate Cancer Needle Biopsies. Anticancer Res. 2007, 27, 1407–1413. [Google Scholar] [PubMed]
  349. Maygarden, S.J.; Novotny, D.B.; Moul, J.W.; Bae, V.L.; Ware, J.L. Evaluation of Cathepsin D and Epidermal Growth Factor Receptor in Prostate Carcinoma. Mod. Pathol. 1994, 7, 930–936. [Google Scholar]
  350. Kuczyk, M.A.; Serth, J.; Bokemeyer, C.; Hofner, K.; Allhoff, E.P.; Jonas, U. Immunohistochemical Detection of Cathepsin D Expression in Prostate Cancer. Oncol. Rep. 1994, 1, 1247–1251. [Google Scholar] [CrossRef]
  351. Cherry, J.P. Analysis of Cathepsin d Forms and Their Clinical Implications in Human Prostate Cancer. J. Urol. 1998, 160, 2223–2228. [Google Scholar] [CrossRef]
  352. Hara, I.; Miyake, H.; Yamanaka, K.; Hara, S.; Kamidono, S. Serum Cathepsin D and Its Density in Men with Prostate Cancer as New Predictors of Disease Progression. Oncol. Rep. 2002, 9, 1379–1383. [Google Scholar] [CrossRef]
  353. Miyake, H.; Hara, I.; Eto, H. Prediction of the Extent of Prostate Cancer by the Combined Use of Systematic Biopsy and Serum Level of Cathepsin D. Int. J. Urol. 2003, 10, 196–200. [Google Scholar] [CrossRef] [PubMed]
  354. El Melegy, N.T.; Aboulella, H.A.; Abul-Fadl, A.M.; Mohamed, N.A. Potential Biomarkers for Differentiation of Benign Prostatic Hyperplasia and Prostate Cancer. Br. J. Biomed. Sci. 2010, 67, 109–112. [Google Scholar] [CrossRef] [PubMed]
  355. Moul, J.W.; Maygarden, S.J.; Ware, J.L.; Mohler, J.L.; Maher, P.D.; Schenkman, N.S.; Ho, C.K. Cathepsin D and Epidermal Growth Factor Receptor Immunohistochemistry Does Not Predict Recurrence of Prostate Cancer in Patients Undergoing Radical Prostatectomy. J. Urol. 1996, 155, 982–985. [Google Scholar] [CrossRef] [PubMed]
  356. Brubaker, K.D.; Vessella, R.L.; True, L.D.; Thomas, R.; Corey, E. Cathepsin K mRNA and Protein Expression in Prostate Cancer Progression. J. Bone Miner. Res. 2003, 18, 222–230. [Google Scholar] [CrossRef]
  357. Munari, E.; Cima, L.; Massari, F.; Bertoldo, F.; Porcaro, A.B.; Caliò, A.; Riva, G.; Ciocchetta, E.; Ciccarese, C.; Modena, A.; et al. Cathepsin K Expression in Castration-Resistant Prostate Carcinoma: A Therapeutical Target for Patients at Risk for Bone Metastases. Int. J. Biol. Markers 2017, 32, 243–247. [Google Scholar] [CrossRef]
  358. Nägler, D.K.; Krüger, S.; Kellner, A.; Ziomek, E.; Menard, R.; Buhtz, P.; Krams, M.; Roessner, A.; Kellner, U. Up-Regulation of Cathepsin X in Prostate Cancer and Prostatic Intraepithelial Neoplasia. Prostate 2004, 60, 109–119. [Google Scholar] [CrossRef]
  359. Batista, A.A.S.; Franco, B.M.; Perez, M.M.; Pereira, E.G.; Rodrigues, T.; Wroclawski, M.L.; Fonseca, F.L.A.; Suarez, E.R. Decreased Levels of Cathepsin Z MRNA Expressed by Immune Blood Cells: Diagnostic and Prognostic Implications in Prostate Cancer. Braz. J. Med. Biol. Res. 2021, 54, e11439. [Google Scholar] [CrossRef]
  360. Fraga, A.; Ribeiro, R.; Coelho, A.; Vizcaíno, J.R.; Coutinho, H.; Lopes, J.M.; Príncipe, P.; Lobato, C.; Lopes, C.; Medeiros, R. Genetic Polymorphisms in Key Hypoxia-Regulated Downstream Molecules and Phenotypic Correlation in Prostate Cancer. BMC Urol. 2017, 17, 12. [Google Scholar] [CrossRef]
  361. Ren, C.; Yang, G.; Timme, T.L.; Wheeler, T.M.; Thompson, T.C. Reduced Lysyl Oxidase Messenger RNA Levels in Experimental and Human Prostate Cancer. Cancer Res. 1998, 58, 1285–1290. [Google Scholar]
  362. Stewart, G.D.; Gray, K.; Pennington, C.J.; Edwards, D.R.; Riddick, A.C.P.; Ross, J.A.; Habib, F.K. Analysis of Hypoxia-Associated Gene Expression in Prostate Cancer: Lysyl Oxidase and Glucose Transporter-1 Expression Correlate with Gleason Score. Oncol. Rep. 2008, 20, 1561–1567. [Google Scholar] [CrossRef]
  363. Ozden, F.; Saygin, C.; Uzunaslan, D.; Onal, B.; Durak, H.; Aki, H. Expression of MMP-1, MMP-9 and TIMP-2 in Prostate Carcinoma and Their Influence on Prognosis and Survival. J. Cancer Res. Clin. Oncol. 2013, 139, 1373–1382. [Google Scholar] [CrossRef] [PubMed]
  364. Wang, J.; Liu, D.; Zhou, W.; Wang, M.; Xia, W.; Tang, Q. Prognostic Value of Matrix Metalloprotease-1/Protease-Activated Receptor-1 Axis in Patients with Prostate Cancer. Med. Oncol. 2014, 31, 968. [Google Scholar] [CrossRef] [PubMed]
  365. Trudel, D.; Fradet, Y.; Meyer, F.; Harel, F.; Têtu, B. Significance of MMP-2 Expression in Prostate Cancer: An Immunohistochemical Study. Cancer Res. 2003, 63, 8511–8515. [Google Scholar] [PubMed]
  366. Morgia, G.; Falsaperla, M.; Malaponte, G.; Madonia, M.; Indelicato, M.; Travali, S.; Mazzarino, M.C. Matrix Metalloproteinases as Diagnostic (MMP-13) and Prognostic (MMP-2, MMP-9) Markers of Prostate Cancer. Urol. Res. 2005, 33, 44–50. [Google Scholar] [CrossRef] [PubMed]
  367. Cicco, C.; Ravasi, L.; Zorzino, L.; Sandri, M.; Botteri, E.; Verweij, F.; Granchi, D.; Cobelli, O.; Paganelli, G. Circulating Levels of VCAM and MMP-2 May Help Identify Patients with More Aggressive Prostate Cancer. Curr. Cancer Drug Targets 2008, 8, 199–206. [Google Scholar] [CrossRef] [PubMed]
  368. Trudel, D.; Fradet, Y.; Meyer, F.; Harel, F.; Têtu, B. Membrane-Type-1 Matrix Metalloproteinase, Matrix Metalloproteinase 2, and Tissue Inhibitor of Matrix Proteinase 2 in Prostate Cancer: Identification of Patients with Poor Prognosis by Immunohistochemistry. Hum. Pathol. 2008, 39, 731–739. [Google Scholar] [CrossRef] [PubMed]
  369. Miyake, H.; Muramaki, M.; Kurahashi, T.; Takenaka, A.; Fujisawa, M. Expression of Potential Molecular Markers in Prostate Cancer: Correlation with Clinicopathological Outcomes in Patients Undergoing Radical Prostatectomy. Urol. Oncol. Semin. Orig. Investig. 2010, 28, 145–151. [Google Scholar] [CrossRef] [PubMed]
  370. Prior, C.; Guillen-Grima, F.; Robles, J.E.; Rosell, D.; Fernandez-Montero, J.M.; Agirre, X.; Catena, R.; Calvo, A. Use of a Combination of Biomarkers in Serum and Urine to Improve Detection of Prostate Cancer. World J. Urol. 2010, 28, 681–686. [Google Scholar] [CrossRef]
  371. Hetzl, A.C.; Fávaro, W.J.; Billis, A.; Ferreira, U.; Cagnon, V.H.A. Steroid Hormone Receptors, Matrix Metalloproteinases, Insulin-like Growth Factor, and Dystroglycans Interactions in Prostatic Diseases in the Elderly Men. Microsc. Res. Tech. 2012, 75, 1197–1205. [Google Scholar] [CrossRef]
  372. Reis, S.T.; Antunes, A.A.; Pontes-Junior, J.P.; de Sousa-Canavez, J.M.; Dall’Oglio, M.F.; Piantino, C.B.; da Cruz, J.A.S.; Reis Morais, D.; Srougi, M.; Leite, K.R.M. Underexpression of MMP-2 and Its Regulators, TIMP2, MT1-MMP and IL-8, Is Associated with Prostate Cancer. Int. Braz. J. Urol. 2012, 38, 167–174. [Google Scholar] [CrossRef]
  373. Srivastava, P.; Lone, T.A.; Kapoor, R.; Mittal, R.D. Association of Promoter Polymorphisms in MMP2 and TIMP2 with Prostate Cancer Susceptibility in North India. Arch. Med. Res. 2012, 43, 117–124. [Google Scholar] [CrossRef] [PubMed]
  374. Eryilmaz, I.E.; Aytac Vuruskan, B.; Kaygısız, O.; Egeli, U.; Tunca, B.; Kordan, Y.; Cecener, G. RNA-Based Markers in Biopsy Cores with Atypical Small Acinar Proliferation: Predictive Effect of T2E Fusion Positivity and MMP-2 Upregulation for a Subsequent Prostate Cancer Diagnosis. Prostate 2019, 79, 195–205. [Google Scholar] [CrossRef] [PubMed]
  375. Medina-González, A.; Eiró-Díaz, N.; Fernández-Gómez, J.M.; Ovidio-González, L.; Jalón-Monzón, A.; Casas-Nebra, J.; Escaf-Barmadah, S. Comparative Analysis of the Expression of Metalloproteases (MMP-2, MMP-9, MMP-11 and MMP-13) and the Tissue Inhibitor of Metalloprotease 3 (TIMP-3) between Previous Negative Biopsies and Radical Prostatectomies. Actas Urol. Esp. 2020, 44, 78–85. [Google Scholar] [CrossRef] [PubMed]
  376. Jaboin, J.J.; Hwang, M.; Lopater, Z.; Chen, H.; Ray, G.L.; Perez, C.; Cai, Q.; Wills, M.L.; Lu, B. The Matrix Metalloproteinase-7 Polymorphism RS10895304 Is Associated with Increased Recurrence Risk in Patients with Clinically Localized Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2011, 79, 1330–1335. [Google Scholar] [CrossRef] [PubMed]
  377. Białkowska, K.; Marciniak, W.; Muszyńska, M.; Baszuk, P.; Gupta, S.; Jaworska-Bieniek, K.; Sukiennicki, G.; Durda, K.; Gromowski, T.; Prajzendanc, K.; et al. Association of Zinc Level and Polymorphism in MMP-7 Gene with Prostate Cancer in Polish Population. PLoS ONE 2018, 13, e0201065. [Google Scholar] [CrossRef]
  378. Szarvas, T.; Sevcenco, S.; Módos, O.; Keresztes, D.; Nyirády, P.; Csizmarik, A.; Ristl, R.; Puhr, M.; Hoffmann, M.J.; Niedworok, C.; et al. Matrix Metalloproteinase 7, Soluble Fas and Fas Ligand Serum Levels for Predicting Docetaxel Resistance and Survival in Castration-Resistant Prostate Cancer. BJU Int. 2018, 122, 695–704. [Google Scholar] [CrossRef]
  379. Boxler, S.; Djonov, V.; Kessler, T.M.; Hlushchuk, R.; Bachmann, L.M.; Held, U.; Markwalder, R.; Thalmann, G.N. Matrix Metalloproteinases and Angiogenic Factors: Predictors of Survival after Radical Prostatectomy for Clinically Organ-Confined Prostate Cancer? Am. J. Pathol. 2010, 177, 2216–2224. [Google Scholar] [CrossRef]
  380. Oguić, R.; Mozetič, V.; Cini Tešar, E.; Fučkar Čupić, D.; Mustać, E.; Orević, G. Matrix Metalloproteinases 2 and 9 Immunoexpression in Prostate Carcinoma at the Positive Margin of Radical Prostatectomy Specimens. Pathol. Res. Int. 2014, 2014, 262195. [Google Scholar] [CrossRef]
  381. Marín-Aguilera, M.; Reig, Ò.; Lozano, J.J.; Jiménez, N.; García-Recio, S.; Erill, N.; Gaba, L.; Tagliapietra, A.; Ortega, V.; Carrera, G.; et al. Molecular Profiling of Peripheral Blood Is Associated with Circulating Tumor Cells Content and Poor Survival in Metastatic Castration-Resistant Prostate Cancer. Oncotarget 2015, 6, 10604–10616. [Google Scholar] [CrossRef]
  382. Pouyanfar, N.; Monabbati, A.; Sharifi, A.A.; Dianatpour, M. Expression Levels of MMP9 and PIWIL2 in Prostate Cancer: A Case-Control Study. Clin. Lab. 2016, 62, 651–657. [Google Scholar] [CrossRef]
  383. Baspinar, S.; Bircan, S.; Ciris, M.; Karahan, N.; Bozkurt, K.K. Expression of NGF, GDNF and MMP-9 in Prostate Carcinoma. Pathol. Res. Pract. 2017, 213, 483–489. [Google Scholar] [CrossRef] [PubMed]
  384. Larsson, P.; Syed Khaja, A.S.; Semenas, J.; Wang, T.; Sarwar, M.; Dizeyi, N.; Simoulis, A.; Hedblom, A.; Wai, S.N.; Ødum, N.; et al. The Functional Interlink between AR and MMP9/VEGF Signaling Axis Is Mediated through PIP5K1α/PAKT in Prostate Cancer. Int. J. Cancer 2020, 146, 1686–1699. [Google Scholar] [CrossRef] [PubMed]
  385. Ok Atılgan, A.; Özdemir, B.H.; Yılmaz Akçay, E.; Tepeoğlu, M.; Börcek, P.; Dirim, A. Association between Focal Adhesion Kinase and Matrix Metalloproteinase-9 Expression in Prostate Adenocarcinoma and Their Influence on the Progression of Prostatic Adenocarcinoma. Ann. Diagn. Pathol. 2020, 45, 151480. [Google Scholar] [CrossRef] [PubMed]
  386. Escaff, S.; Fernández, J.M.; González, L.O.; Suárez, A.; González-Reyes, S.; González, J.M.; Vizoso, F.J. Study of Matrix Metalloproteinases and Their Inhibitors in Prostate Cancer. Br. J. Cancer 2010, 102, 922–929. [Google Scholar] [CrossRef]
  387. Nonsrijun, N.; Mitchai, J.; Brown, K.; Leksomboon, R.; Tuamsuk, P. Overexpression of Matrix Metalloproteinase 11 in Thai Prostatic Adenocarcinoma Is Associated with Poor Survival. Asian Pac. J. Cancer Prev. 2013, 14, 3331–3335. [Google Scholar] [CrossRef]
  388. Hsieh, C.Y.; Chou, Y.E.; Lin, C.Y.; Wang, S.S.; Chien, M.H.; Tang, C.H.; Lin, J.C.; Wen, Y.C.; Yang, S.F. Impact of Matrix Metalloproteinase-11 Gene Polymorphisms on Biochemical Recurrence and Clinicopathological Characteristics of Prostate Cancer. Int. J. Environ. Res. Public Health 2020, 17, 8603. [Google Scholar] [CrossRef]
  389. Kalantari, E.; Abolhasani, M.; Roudi, R.; Farajollahi, M.M.; Farhad, S.; Madjd, Z.; Askarian-Amiri, S.; Mohsenzadegan, M. Co-Expression of TLR-9 and MMP-13 Is Associated with the Degree of Tumour Differentiation in Prostate Cancer. Int. J. Exp. Pathol. 2019, 100, 123–132. [Google Scholar] [CrossRef]
  390. Quaglia, F.; Krishn, S.R.; Wang, Y.; Goodrich, D.W.; McCue, P.; Kossenkov, A.V.; Mandigo, A.C.; Knudsen, K.E.; Weinreb, P.H.; Corey, E.; et al. Differential Expression of αvß3 and αvß6 Integrins in Prostate Cancer Progression. PLoS ONE 2021, 16, e0244985. [Google Scholar] [CrossRef]
  391. Davis, T.L.; Cress, A.E.; Dalkin, B.L.; Nagle, R.B. Unique Expression Pattern of the α6β4 Integrin and Laminin-5 in Human Prostate Carcinoma. Prostate 2001, 46, 240–248. [Google Scholar] [CrossRef]
  392. Walko, G.; Castañón, M.J.; Wiche, G. Molecular Architecture and Function of the Hemidesmosome. Cell Tissue Res. 2015, 360, 363–378. [Google Scholar] [CrossRef]
  393. Park, S.; Kang, M.; Kim, S.; An, H.T.; Gettemans, J.; Ko, J. α-Actinin-4 Promotes the Progression of Prostate Cancer Through the Akt/GSK-3β/β-Catenin Signaling Pathway. Front. Cell Dev. Biol. 2020, 8, 588544. [Google Scholar] [CrossRef] [PubMed]
  394. Ishizuya, Y.; Uemura, M.; Narumi, R.; Tomiyama, E.; Koh, Y.; Matsushita, M.; Nakano, K.; Hayashi, Y.; Wang, C.; Kato, T.; et al. The Role of Actinin-4 (ACTN4) in Exosomes as a Potential Novel Therapeutic Target in Castration-Resistant Prostate Cancer. Biochem. Biophys. Res. Commun. 2020, 523, 588–594. [Google Scholar] [CrossRef] [PubMed]
  395. Bedolla, R.G.; Wang, Y.; Asuncion, A.; Chamie, K.; Siddiqui, S.; Mudryj, M.M.; Prihoda, T.J.; Siddiqui, J.; Chinnaiyan, A.M.; Mehra, R.; et al. Nuclear versus Cytoplasmic Localization of Filamin a in Prostate Cancer: Immunohistochemical Correlation with Metastases. Clin. Cancer Res. 2009, 15, 788–796. [Google Scholar] [CrossRef] [PubMed]
  396. Mooso, B.A.; Vinall, R.L.; Tepper, C.G.; Savoy, R.M.; Cheung, J.P.; Singh, S.; Siddiqui, S.; Wang, Y.; Bedolla, R.G.; Martinez, A.; et al. Enhancing the Effectiveness of Androgen Deprivation in Prostate Cancer by Inducing Filamin A Nuclear Localization. Endocr. Relat. Cancer 2012, 19, 759–777. [Google Scholar] [CrossRef] [PubMed]
  397. Vanaja, D.K.; Ehrich, M.; Van Den Boom, D.; Cheville, J.C.; Karnes, R.J.; Tindall, D.J.; Cantor, C.R.; Young, C.Y.F. Hypermethylation of Genes for Diagnosis and Risk Stratification of Prostate Cancer. Cancer Investig. 2009, 27, 549–560. [Google Scholar] [CrossRef] [PubMed]
  398. Mahapatra, S.; Klee, E.W.; Young, C.Y.F.; Sun, Z.; Jimenez, R.E.; Klee, G.G.; Tindall, D.J.; Donkena, K.V. Global Methylation Profiling for Risk Prediction of Prostate Cancer. Clin. Cancer Res. 2012, 18, 2882–2895. [Google Scholar] [CrossRef] [PubMed]
  399. Chou, C.C.; Chuang, H.C.; Salunke, S.B.; Kulp, S.K.; Chen, C.S. A Novel HIF-1α-Integrin-Linked Kinase Regulatory Loop That Facilitates Hypoxia-Induced HIF-1α Expression and Epithelial-Mesenchymal Transition in Cancer Cells. Oncotarget 2015, 6, 8271–8285. [Google Scholar] [CrossRef]
  400. Buckup, M.; Rice, M.A.; Hsu, E.C.; Garcia-Marques, F.; Liu, S.; Aslan, M.; Bermudez, A.; Huang, J.; Pitteri, S.J.; Stoyanova, T. Plectin Is a Regulator of Prostate Cancer Growth and Metastasis. Oncogene 2020, 40, 663–676. [Google Scholar] [CrossRef]
  401. Wenta, T.; Schmidt, A.; Zhang, Q.; Devarajan, R.; Singh, P.; Yang, X.; Ahtikoski, A.; Vaarala, M.; Wei, G.H.; Manninen, A. Disassembly of α6β4-Mediated Hemidesmosomal Adhesions Promotes Tumorigenesis in PTEN-Negative Prostate Cancer by Targeting Plectin to Focal Adhesions. Oncogene 2022, 41, 3804–3820. [Google Scholar] [CrossRef]
  402. Ma, X.; Biswas, A.; Hammes, S.R. Paxillin Regulated Genomic Networks in Prostate Cancer. Steroids 2019, 151, 108463. [Google Scholar] [CrossRef]
  403. Sakamoto, S.; McCann, R.; Kyprianou, N. Talin1 Promotes Prostate Cancer Invasion and Metastasis via AKT Signaling and Anoikis Resistance. Nat. Preced. 2009, 70, 1885–1895. [Google Scholar] [CrossRef]
  404. Sakamoto, S.; McCann, R.O.; Dhir, R.; Kyprianou, N. Talin1 Promotes Tumor Invasion and Metastasis via Focal Adhesion Signaling and Anoikis Resistance. Cancer Res. 2010, 70, 1885–1895. [Google Scholar] [CrossRef] [PubMed]
  405. Zheng, X.; Xu, H.; Gong, L.; Cao, D.; Jin, T.; Wang, Y.; Pi, J.; Yang, Y.; Yi, X.; Liao, D.; et al. Vinculin Orchestrates Prostate Cancer Progression by Regulating Tumor Cell Invasion, Migration, and Proliferation. Prostate 2021, 81, 347–356. [Google Scholar] [CrossRef] [PubMed]
  406. Ramirez, N.E.; Zhang, Z.; Madamanchi, A.; Boyd, K.L.; O’Rear, L.D.; Nashabi, A.; Li, Z.; Dupont, W.D.; Zijlstra, A.; Zutter, M.M. The α2β1 Integrin Is a Metastasis Suppressor in Mouse Models and Human Cancer. J. Clin. Investig. 2011, 121, 226–237. [Google Scholar] [CrossRef] [PubMed]
  407. Colombel, M.; Eaton, C.L.; Hamdy, F.; Ricci, E.; Van Der Pluijm, G.; Cecchini, M.; Mege-Lechevallier, F.; Clezardin, P.; Thalmann, G. Increased Expression of Putative Cancer Stem Cell Markers in Primary Prostate Cancer Is Associated with Progression of Bone Metastases. Prostate 2012, 72, 713–720. [Google Scholar] [CrossRef]
  408. Ricci, E.; Mattei, E.; Dumontet, C.; Eaton, C.L.; Hamdy, F.; Van Der Pluije, G.; Cecchini, M.; Thalmann, G.; Clezardin, P.; Colombel, M. Increased Expression of Putative Cancer Stem Cell Markers in the Bone Marrow of Prostate Cancer Patients Is Associated with Bone Metastasis Progression. Prostate 2013, 73, 1738–1746. [Google Scholar] [CrossRef]
  409. Schmelz, M.; Cress, A.E.; Scott, K.M.; Bürgery, F.; Cui, H.; Sallam, K.; McDaniel, K.M.; Dalkin, B.L.; Nagle, R.B. Different Phenotypes in Human Prostate Cancer: α6 or α3 Integrin in Cell-Extracellular Adhesion Sites. Neoplasia 2002, 4, 243–254. [Google Scholar] [CrossRef]
  410. Pontes, J.; Reis, S.T.; De Oliveira, L.C.N.; Sant’Anna, A.C.; Dall’Oglio, M.F.; Antunes, A.A.; Ribeiro-Filho, L.A.; Carvalho, P.A.; Cury, J.; Srougi, M.; et al. Association between Integrin Expression and Prognosis in Localized Prostate Cancer. Prostate 2010, 70, 1189–1195. [Google Scholar] [CrossRef]
  411. Drivalos, A.; Chrisofos, M.; Efstathiou, E.; Kapranou, A.; Kollaitis, G.; Koutlis, G.; Antoniou, N.; Karanastasis, D.; Dimopoulos, M.A.; Bamias, A. Expression of α5-Integrin, α7-Integrin, Ε-Cadherin, and N-Cadherin in Localized Prostate Cancer. Urol. Oncol. Semin. Orig. Investig. 2016, 34, 165.e11–165.e18. [Google Scholar] [CrossRef]
  412. Drivalos, A.; Emmanouil, G.; Gavriatopoulou, M.; Terpos, E.; Sergentanis, T.N.; Psaltopoulou, T. Integrin Expression in Correlation to Clinicopathological Features and Prognosis of Prostate Cancer: A Systematic Review and Meta-Analysis. Urol. Oncol. Semin. Orig. Investig. 2021, 39, 221–232. [Google Scholar] [CrossRef]
  413. Hoogland, A.M.; Verhoef, E.I.; Roobol, M.J.; Schröder, F.H.; Wildhagen, M.F.; Van Der Kwast, T.H.; Jenster, G.; Van Leenders, G.J.L.H. Validation of Stem Cell Markers in Clinical Prostate Cancer: α6-Integrin Is Predictive for Non-Aggressive Disease. Prostate 2014, 74, 488–496. [Google Scholar] [CrossRef]
  414. Ren, B.; Yu, Y.P.; Tseng, G.C.; Wu, C.; Chen, K.; Rao, U.N.; Nelson, J.; Michalopoulos, G.K.; Luo, J.H. Analysis of Integrin α7 Mutations in Prostate Cancer, Liver Cancer, Glioblastoma Multiforme, and Leiomyosarcoma. J. Natl. Cancer Inst. 2007, 99, 868–880. [Google Scholar] [CrossRef] [PubMed]
  415. Heß, K.; Böger, C.; Behrens, H.M.; Röcken, C. Correlation between the Expression of Integrins in Prostate Cancer and Clinical Outcome in 1284 Patients. Ann. Diagn. Pathol. 2014, 18, 343–350. [Google Scholar] [CrossRef] [PubMed]
  416. Liu, J.; Huang, J.; He, Y.; Liu, J.; Liao, B.; Liao, G. Genetic Variants in the Integrin Gene Predicted MicroRNA-Binding Sites Were Associated with the Risk of Prostate Cancer. Mol. Carcinog. 2014, 53, 280–285. [Google Scholar] [CrossRef] [PubMed]
  417. Zemskova, M.Y.; Marinets, M.V.; Sivkov, A.V.; Pavlova, J.V.; Shibaev, A.N.; Sorokin, K.S. Integrin Alpha V in Urine: A Novel Noninvasive Marker for Prostate Cancer Detection. Front. Oncol. 2021, 10, 610647. [Google Scholar] [CrossRef] [PubMed]
  418. Pontes, J.; Reis, S.T.; Bernardes, F.S.; Oliveira, L.C.N.; de Barros, É.A.F.; Dall’Oglio, M.F.; Timosczuk, L.M.S.; Ribeiro-Filho, L.A.; Srougi, M.; Leite, K.R.M. Correlation between Beta1 Integrin Expression and Prognosis in Clinically Localized Prostate Cancer. Int. Braz. J. Urol. 2013, 39, 335–343. [Google Scholar] [CrossRef] [PubMed]
  419. Li, J.; Jiang, Y.; Chen, C.; Tan, W.; Li, P.; Chen, G.; Peng, Q.; Yin, W. Integrin β4 Is an Effective and Efficient Marker in Synchronously Highlighting Lymphatic and Blood Vascular Invasion, and Perineural Aggression in Malignancy. Am. J. Surg. Pathol. 2020, 44, 681–690. [Google Scholar] [CrossRef]
  420. He, Z.; Tang, F.; Lu, Z.; Huang, Y.; Lei, H.; Li, Z.; Zeng, G. Analysis of Differentially Expressed Genes, Clinical Value and Biological Pathways in Prostate Cancer. Am. J. Transl. Res. 2018, 10, 1444–1456. [Google Scholar]
  421. Röbeck, P.; Franzén, B.; Cantera-Ahlman, R.; Dragomir, A.; Auer, G.; Jorulf, H.; Jacobsson, S.P.; Viktorsson, K.; Lewensohn, R.; Häggman, M.; et al. Multiplex Protein Analysis and Ensemble Machine Learning Methods of Fine Needle Aspirates from Prostate Cancer Patients Reveal Potential Diagnostic Signatures Associated with Tumour Grade. Cytopathology 2023, 34, 286–294. [Google Scholar] [CrossRef]
  422. Shipitsin, M.; Small, C.; Choudhury, S.; Giladi, E.; Friedlander, S.; Nardone, J.; Hussain, S.; Hurley, A.D.; Ernst, C.; Huang, Y.E.; et al. Identification of Proteomic Biomarkers Predicting Prostate Cancer Aggressiveness and Lethality despite Biopsy-Sampling Error. Br. J. Cancer 2014, 111, 1201–1212. [Google Scholar] [CrossRef]
  423. Lam, J.S.; Seligson, D.B.; Yu, H.; Li, A.; Eeva, M.; Pantuck, A.J.; Zeng, G.; Horvath, S.; Belldegrun, A.S. Flap Endonuclease 1 Is Overexpressed in Prostate Cancer and Is Associated with a High Gleason Score. BJU Int. 2006, 98, 445–451. [Google Scholar] [CrossRef] [PubMed]
  424. Kahl, P.; Gullotti, L.; Heukamp, L.C.; Wolf, S.; Friedrichs, N.; Vorreuther, R.; Solleder, G.; Bastian, P.J.; Ellinger, J.; Metzger, E.; et al. Androgen Receptor Coactivators Lysine-Specific Histone Demethylase 1 and Four and a Half LIM Domain Protein 2 Predict Risk of Prostate Cancer Recurrence. Cancer Res. 2006, 66, 11341–11347. [Google Scholar] [CrossRef] [PubMed]
  425. McGrath, M.J.; Binge, L.C.; Sriratana, A.; Wang, H.; Robinson, P.A.; Pook, D.; Fedele, C.G.; Brown, S.; Dyson, J.M.; Cottle, D.L.; et al. Regulation of the Transcriptional Coactivator FHL2 Licenses Activation of the Androgen Receptor in Castrate-Resistant Prostate Cancer. Cancer Res. 2013, 73, 5066–5079. [Google Scholar] [CrossRef] [PubMed]
  426. Kiebish, M.A.; Tekumalla, P.; Ravipaty, S.; Dobi, A.; Srivastava, S.; Wu, W.; Patil, S.; Friss, T.; Klotz, A.; Srinivasan, A.; et al. Clinical Utility of a Serum Biomarker Panel in Distinguishing Prostate Cancer from Benign Prostate Hyperplasia. Sci. Rep. 2021, 11, 15052. [Google Scholar] [CrossRef] [PubMed]
  427. Narain, N.R.; Diers, A.R.; Lee, A.; Lao, S.; Chan, J.Y.; Schofield, S.; Andreazi, J.; Ouro-Djobo, R.; Jimenez, J.J.; Friss, T.; et al. Identification of Filamin-A and -B as Potential Biomarkers for Prostate Cancer. Future Sci. OA 2017, 3, FSO161. [Google Scholar] [CrossRef]
  428. Graff, J.R.; Konicek, B.W.; Deddens, J.A.; Colligan, B.M.; Hurst, B.M.; Carter, H.W.; Carter, J.H. Integrin-Linked Kinase Expression Increases with Prostate Tumor Grade. Clin. Cancer Res. 2001, 7, 1987–1991. [Google Scholar]
  429. Gu, Y.; Lin, X.; Kapoor, A.; Li, T.; Major, P.; Tang, D. Effective Prediction of Prostate Cancer Recurrence through the Iqgap1 Network. Cancers 2021, 13, 430. [Google Scholar] [CrossRef]
  430. Feng, D.; Li, L.; Li, D.; Wu, R.; Zhu, W.; Wang, J.; Ye, L.; Han, P. Prolyl 4-Hydroxylase Subunit Beta (P4HB) Could Serve as a Prognostic and Radiosensitivity Biomarker for Prostate Cancer Patients. Eur. J. Med. Res. 2023, 28, 245. [Google Scholar] [CrossRef]
  431. Shui, I.M.; Lindström, S.; Kibel, A.S.; Berndt, S.I.; Campa, D.; Gerke, T.; Penney, K.L.; Albanes, D.; Berg, C.; Bueno-De-Mesquita, H.B.; et al. Prostate Cancer (PCa) Risk Variants and Risk of Fatal PCa in the National Cancer Institute Breast and Prostate Cancer Cohort Consortium. Eur. Urol. 2014, 65, 1069–1075. [Google Scholar] [CrossRef]
  432. Piao, S.; Zheng, L.; Zheng, H.; Zhou, M.; Feng, Q.; Zhou, S.; Ke, M.; Yang, H.; Wang, X. High Expression of PDLIM2 Predicts a Poor Prognosis in Prostate Cancer and Is Correlated with Epithelial-Mesenchymal Transition and Immune Cell Infiltration. J. Immunol. Res. 2022, 2022, 2922832. [Google Scholar] [CrossRef]
  433. Liu, X.; Chen, L.; Huang, H.; Lv, J.M.; Chen, M.; Qu, F.J.; Pan, X.W.; Li, L.; Yin, L.; Cui, X.G.; et al. High Expression of PDLIM5 Facilitates Cell Tumorigenesis and Migration by Maintaining AMPK Activation in Prostate Cancer. Oncotarget 2017, 8, 98117–98134. [Google Scholar] [CrossRef] [PubMed]
  434. Sen, A.; De Castro, I.; DeFranco, D.B.; Deng, F.M.; Melamed, J.; Kapur, P.; Raj, G.V.; Rossi, R.; Hammes, S.R. Paxillin Mediates Extranuclear and Intranuclear Signaling in Prostate Cancer Proliferation. J. Clin. Investig. 2012, 122, 2469–2481. [Google Scholar] [CrossRef] [PubMed]
  435. Zheng, Q.S.; Chen, S.H.; Wu, Y.P.; Chen, H.J.; Chen, H.; Wei, Y.; Li, X.D.; Huang, J.B.; Xue, X.Y.; Xu, N. Increased Paxillin Expression in Prostate Cancer Is Associated with Advanced Pathological Features, Lymph Node Metastases and Biochemical Recurrence. J. Cancer 2018, 9, 959–967. [Google Scholar] [CrossRef] [PubMed]
  436. Luo, L.; Zhang, L.L.; Tao, W.; Xia, T.L.; Li, L.Y. Prediction of Potential Prognostic Biomarkers in Metastatic Prostate Cancer Based on a Circular RNA-Mediated Competing Endogenous RNA Regulatory Network. PLoS ONE 2021, 16, e0260983. [Google Scholar] [CrossRef] [PubMed]
  437. Li, C.; Pang, L.; Jin, F.; Song, Y.; Zhou, D.; Song, Y.; Li, Y.; Jin, S.; Zhang, L.; Liang, W.; et al. Integrated Network Analysis to Determine CNN1, MYL9, TAGLN, and SORBS1 as Potential Key Genes Associated with Prostate Cancer. Clin. Lab. 2023, 69, 1–5. [Google Scholar] [CrossRef] [PubMed]
  438. Abu el Maaty, M.A.; Terzic, J.; Keime, C.; Rovito, D.; Lutzing, R.; Yanushko, D.; Parisotto, M.; Grelet, E.; Namer, I.J.; Lindner, V.; et al. Hypoxia-Mediated Stabilization of HIF1A in Prostatic Intraepithelial Neoplasia Promotes Cell Plasticity and Malignant Progression. Sci. Adv. 2022, 8, eabo2295. [Google Scholar] [CrossRef] [PubMed]
  439. Atobatele, A.G.; Tonoli, E.; Vadakekolathu, J.; Savoca, M.P.; Barr, M.; Kataria, Y.; Rossanese, M.; Burhan, I.; McArdle, S.; Caccamo, D.; et al. Canonical and Truncated Transglutaminase-2 Regulate Mucin-1 Expression and Androgen Independency in Prostate Cancer Cell Lines. Cell Death Dis. 2023, 14, 317. [Google Scholar] [CrossRef]
  440. Xu, N.; Chen, H.J.; Chen, S.H.; Xue, X.Y.; Chen, H.; Zheng, Q.S.; Wei, Y.; Li, X.D.; Huang, J.B.; Cai, H.; et al. Upregulation of Talin-1 Expression Associates with Advanced Pathological Features and Predicts Lymph Node Metastases and Biochemical Recurrence of Prostate Cancer. Medicine 2016, 95, e4326. [Google Scholar] [CrossRef]
  441. Ruiz, C.; Holz, D.R.; Oeggerli, M.; Schneider, S.; Gonzales, I.M.; Kiefer, J.M.; Zellweger, T.; Bachmann, A.; Koivisto, P.A.; Helin, H.J.; et al. Amplification and Overexpression of Vinculin Are Associated with Increased Tumour Cell Proliferation and Progression in Advanced Prostate Cancer. J. Pathol. 2011, 223, 543–552. [Google Scholar] [CrossRef]
  442. Geisler, C.; Gaisa, N.T.; Pfister, D.; Fuessel, S.; Kristiansen, G.; Braunschweig, T.; Gostek, S.; Beine, B.; Diehl, H.C.; Jackson, A.M.; et al. Identification and Validation of Potential New Biomarkers for Prostate Cancer Diagnosis and Prognosis Using 2D-DIGE and MS. Biomed Res. Int. 2015, 2015, 454256. [Google Scholar] [CrossRef]
  443. Garbis, S.D.; Tyritzis, S.I.; Roumeliotis, T.; Zerefos, P.; Giannopoulou, E.G.; Vlahou, A.; Kossida, S.; Diaz, J.; Vourekas, S.; Tamvakopoulos, C.; et al. Search for Potential Markers for Prostate Cancer Diagnosis, Prognosis and Treatment in Clinical Tissue Specimens Using Amine-Specific Isobaric Tagging (ITRAQ) with Two-Dimensional Liquid Chromatography and Tandem Mass Spectrometry. J. Proteome Res. 2008, 7, 3146–3158. [Google Scholar] [CrossRef] [PubMed]
  444. Gao, Y.; Wang, Y.T.; Chen, Y.; Wang, H.; Young, D.; Shi, T.; Song, Y.; Schepmoes, A.A.; Kuo, C.; Fillmore, T.L.; et al. Proteomic Tissue-Based Classifier for Early Prediction of Prostate Cancer Progression. Cancers 2020, 12, 1268. [Google Scholar] [CrossRef] [PubMed]
  445. Meng, F.; Han, X.; Min, Z.; He, X.; Zhu, S. Prognostic Signatures Associated with High Infiltration of Tregs in Bone Metastatic Prostate Cancer. Aging 2021, 13, 17442–17461. [Google Scholar] [CrossRef] [PubMed]
  446. Zhao, H.B.; Zeng, Y.R.; Han, Z.D.; Zhuo, Y.J.; Liang, Y.K.; Hon, C.T.; Wan, S.; Wu, S.; Dahl, D.; De Zhong, W.; et al. Novel Immune-Related Signature for Risk Stratification and Prognosis in Prostatic Adenocarcinoma. Cancer Sci. 2021, 112, 4365–4376. [Google Scholar] [CrossRef] [PubMed]
  447. Treacy, P.J.; Martini, A.; Falagario, U.G.; Ratnani, P.; Wajswol, E.; Beksac, A.T.; Wiklund, P.; Nair, S.; Kyprianou, N.; Durand, M.; et al. Association between Expression of Connective Tissue Genes and Prostate Cancer Growth and Progression. Int. J. Mol. Sci. 2023, 24, 7520. [Google Scholar] [CrossRef] [PubMed]
  448. Söderdahl, F.; Xu, L.-D.; Bring, J.; Häggman, M. A Novel Risk Score (P-Score) Based on a Three-Gene Signature, for Estimating the Risk of Prostate Cancer-Specific Mortality. Res. Rep. Urol. 2022, 14, 203–217. [Google Scholar] [CrossRef] [PubMed]
  449. Saemundsson, A.; Xu, L.-D.; Meisgen, F.; Cao, R.; Ahlgren, G. Validation of the Prognostic Value of a Three-Gene Signature and Clinical Parameters-Based Risk Score in Prostate Cancer Patients. Prostate 2023, 83, 1133–1140. [Google Scholar] [CrossRef]
  450. Röbeck, P.; Xu, L.; Ahmed, D.; Dragomir, A.; Dahlman, P.; Häggman, M.; Ladjevardi, S. P-Score in Preoperative Biopsies Accurately Predicts P-Score in Final Pathology at Radical Prostatectomy in Patients with Localized Prostate Cancer. Prostate 2023, 83, 831–839. [Google Scholar] [CrossRef]
  451. O’Rourke, D.J.; DiJohnson, D.A.; Caiazzo, R.J.; Nelson, J.C.; Ure, D.; O’Leary, M.P.; Richie, J.P.; Liu, B.C.S. Autoantibody Signatures as Biomarkers to Distinguish Prostate Cancer from Benign Prostatic Hyperplasia in Patients with Increased Serum Prostate Specific Antigen. Clin. Chim. Acta 2012, 413, 561–567. [Google Scholar] [CrossRef]
  452. Dayyani, F.; Zurita, A.J.; Nogueras-González, G.M.; Slack, R.; Millikan, R.E.; Araujo, J.C.; Gallick, G.E.; Logothetis, C.J.; Corn, P.G. The Combination of Serum Insulin, Osteopontin, and Hepatocyte Growth Factor Predicts Time to Castration-Resistant Progression in Androgen Dependent Metastatic Prostate Cancer—An Exploratory Study. BMC Cancer 2016, 16, 721. [Google Scholar] [CrossRef]
  453. Muazzam, A.; Spick, M.; Cexus, O.N.F.; Geary, B.; Azhar, F.; Pandha, H.; Michael, A.; Reed, R.; Lennon, S.; Gethings, L.A.; et al. A Novel Blood Proteomic Signature for Prostate Cancer. Cancers 2023, 15, 1051. [Google Scholar] [CrossRef] [PubMed]
  454. Shephard, A.P.; Giles, P.; Mbengue, M.; Alraies, A.; Spary, L.K.; Kynaston, H.; Gurney, M.J.; Falcón-Pérez, J.M.; Royo, F.; Tabi, Z.; et al. Stroma-Derived Extracellular Vesicle MRNA Signatures Inform Histological Nature of Prostate Cancer. J. Extracell. Vesicles 2021, 10, e12150. [Google Scholar] [CrossRef] [PubMed]
  455. Kang, H.W.; Lee, H.Y.; Byun, Y.J.; Jeong, P.; Yoon, J.S.; Kim, D.H.; Kim, W.T.; Kim, Y.J.; Lee, S.C.; Yun, S.J.; et al. A Novel Urinary MRNA Signature Using the Droplet Digital Polymerase Chain Reaction Platform Improves Discrimination between Prostate Cancer and Benign Prostatic Hyperplasia within the Prostate-Specific Antigen Gray Zone. Investig. Clin. Urol. 2020, 61, 411–418. [Google Scholar] [CrossRef] [PubMed]
  456. Prestagiacomo, L.E.; Tradigo, G.; Aracri, F.; Gabriele, C.; Rota, M.A.; Alba, S.; Cuda, G.; Damiano, R.; Veltri, P.; Gaspari, M. Data-Independent Acquisition Mass Spectrometry of EPS-Urine Coupled to Machine Learning: A Predictive Model for Prostate Cancer. ACS Omega 2023, 8, 6244–6252. [Google Scholar] [CrossRef] [PubMed]
  457. Ravipaty, S.; Wu, W.; Dalvi, A.; Tanna, N.; Andreazi, J.; Friss, T.; Klotz, A.; Liao, C.; Garren, J.; Schofield, S.; et al. Clinical Validation of a Serum Protein Panel (FLNA, FLNB and KRT19) for Diagnosis of Prostate Cancer. J. Mol. Biomark Diagn. 2017, 8, 323. [Google Scholar] [CrossRef] [PubMed]
  458. Athanasiou, A.; Tennstedt, P.; Wittig, A.; Huber, R.; Straub, O.; Schiess, R.; Steuber, T. A Novel Serum Biomarker Quintet Reveals Added Prognostic Value When Combined with Standard Clinical Parameters in Prostate Cancer Patients by Predicting Biochemical Recurrence and Adverse Pathology. PLoS ONE 2021, 16, e0259093. [Google Scholar] [CrossRef] [PubMed]
  459. Knezevic, D.; Goddard, A.D.; Natraj, N.; Cherbavaz, D.B.; Clark-Langone, K.M.; Snable, J.; Watson, D.; Falzarano, S.M.; Magi-Galluzzi, C.; Klein, E.A.; et al. Analytical Validation of the Oncotype DX Prostate Cancer Assay—A Clinical RT-PCR Assay Optimized for Prostate Needle Biopsies. BMC Genom. 2013, 14, 690. [Google Scholar] [CrossRef] [PubMed]
  460. Endt, K.; Goepfert, J.; Omlin, A.; Athanasiou, A.; Tennstedt, P.; Guenther, A.; Rainisio, M.; Engeler, D.S.; Steuber, T.; Gillessen, S.; et al. Development and Clinical Testing of Individual Immunoassays for the Quantification of Serum Glycoproteins to Diagnose Prostate Cancer. PLoS ONE 2017, 12, e0181557. [Google Scholar] [CrossRef]
  461. Steuber, T.; Tennstedt, P.; Macagno, A.; Athanasiou, A.; Wittig, A.; Huber, R.; Golding, B.; Schiess, R.; Gillessen, S. Thrombospondin 1 and Cathepsin D Improve Prostate Cancer Diagnosis by Avoiding Potentially Unnecessary Prostate Biopsies. BJU Int. 2019, 123, 826–833. [Google Scholar] [CrossRef]
  462. Klocker, H.; Golding, B.; Weber, S.; Steiner, E.; Tennstedt, P.; Keller, T.; Schiess, R.; Gillessen, S.; Horninger, W.; Steuber, T. Development and Validation of a Novel Multivariate Risk Score to Guide Biopsy Decision for the Diagnosis of Clinically Significant Prostate Cancer. BJUI Compass 2020, 1, 15–20. [Google Scholar] [CrossRef]
  463. Cima, I.; Schiess, R.; Wild, P.; Kaelin, M.; Schüffler, P.; Lange, V.; Picotti, P.; Ossola, R.; Templeton, A.; Schubert, O.; et al. Cancer Genetics-Guided Discovery of Serum Biomarker Signatures for Diagnosis and Prognosis of Prostate Cancer. Proc. Natl. Acad. Sci. USA 2011, 108, 3342–3347. [Google Scholar] [CrossRef] [PubMed]
  464. Kälin, M.; Cima, I.; Schiess, R.; Fankhauser, N.; Powles, T.; Wild, P.; Templeton, A.; Cerny, T.; Aebersold, R.; Krek, W.; et al. Novel Prognostic Markers in the Serum of Patients with Castration-Resistant Prostate Cancer Derived from Quantitative Analysis of the Pten Conditional Knockout Mouse Proteome. Eur. Urol. 2011, 60, 1235–1243. [Google Scholar] [CrossRef] [PubMed]
  465. Macagno, A.; Athanasiou, A.; Wittig, A.; Huber, R.; Weber, S.; Keller, T.; Rhiel, M.; Golding, B.; Schiess, R. Analytical Performance of Thrombospondin-1 and Cathepsin D Immunoassays Part of a Novel CE-IVD Marked Test as an Aid in the Diagnosis of Prostate Cancer. PLoS ONE 2020, 15, e0233442. [Google Scholar] [CrossRef] [PubMed]
  466. Steuber, T.; Heidegger, I.; Kafka, M.; Roeder, M.A.; Chun, F.; Preisser, F.; Palisaar, R.J.; Hanske, J.; Budaeus, L.; Schiess, R.; et al. PROPOSe: A Real-Life Prospective Study of Proclarix, a Novel Blood-Based Test to Support Challenging Biopsy Decision-Making in Prostate Cancer. Eur. Urol. Oncol. 2022, 5, 321–327. [Google Scholar] [CrossRef] [PubMed]
  467. Morote, J.; Campistol, M.; Celma, A.; Regis, L.; de Torres, I.; Semidey, M.E.; Roche, S.; Mast, R.; Santamaría, A.; Planas, J.; et al. The Efficacy of Proclarix to Select Appropriate Candidates for Magnetic Resonance Imaging and Derived Prostate Biopsies in Men with Suspected Prostate Cancer. World J. Men’s Health 2022, 40, 270–279. [Google Scholar] [CrossRef] [PubMed]
  468. Morote, J.; Campistol, M.; Regis, L.; Celma, A.; de Torres, I.; Semidey, M.E.; Roche, S.; Mast, R.; Santamaria, A.; Planas, J.; et al. Who with Suspected Prostate Cancer Can Benefit from Proclarix after Multiparametric Magnetic Resonance Imaging? Int. J. Biol. Markers 2022, 37, 218–223. [Google Scholar] [CrossRef] [PubMed]
  469. Morote, J.; Campistol, M.; Triquell, M.; Celma, A.; Regis, L.; de Torres, I.; Semidey, M.E.; Mast, R.; Santamaria, A.; Planas, J.; et al. Improving the Early Detection of Clinically Significant Prostate Cancer in Men in the Challenging Prostate Imaging-Reporting and Data System 3 Category. Eur. Urol. Open Sci. 2022, 37, 38–44. [Google Scholar] [CrossRef] [PubMed]
  470. Campistol, M.; Morote, J.; Regis, L.; Celma, A.; Planas, J.; Trilla, E. Proclarix, A New Biomarker for the Diagnosis of Clinically Significant Prostate Cancer: A Systematic Review. Mol. Diagn. Ther. 2022, 26, 273–281. [Google Scholar] [CrossRef]
  471. Campistol, M.; Morote, J.; Triquell, M.; Regis, L.; Celma, A.; de Torres, I.; Semidey, M.E.; Mast, R.; Santamaría, A.; Planas, J.; et al. Comparison of Proclarix, PSA Density and MRI-ERSPC Risk Calculator to Select Patients for Prostate Biopsy after MpMRI. Cancers 2022, 14, 2702. [Google Scholar] [CrossRef]
  472. Kaufmann, B.; Fischer, S.; Athanasiou, A.; Lautenbach, N.; Wittig, A.; Bieri, U.; Schmid, F.A.; von Stauffenberg, F.; Scherer, T.; Eberli, D.; et al. Evaluation of Proclarix in the Diagnostic Work-up of Prostate Cancer. BJUI Compass 2023, in press. [Google Scholar] [CrossRef]
  473. Terracciano, D.; La Civita, E.; Athanasiou, A.; Liotti, A.; Fiorenza, M.; Cennamo, M.; Crocetto, F.; Tennstedt, P.; Schiess, R.; Haese, A.; et al. New Strategy for the Identification of Prostate Cancer: The Combination of Proclarix and the Prostate Health Index. Prostate 2022, 82, 1469–1476. [Google Scholar] [CrossRef] [PubMed]
  474. Gentile, F.; La Civita, E.; Della Ventura, B.; Ferro, M.; Bruzzese, D.; Crocetto, F.; Tennstedt, P.; Steuber, T.; Velotta, R.; Terracciano, D. A Neural Network Model Combining [-2]ProPSA, FreePSA, Total PSA, Cathepsin D, and Thrombospondin-1 Showed Increased Accuracy in the Identification of Clinically Significant Prostate Cancer. Cancers 2023, 15, 1355. [Google Scholar] [CrossRef] [PubMed]
  475. Morote, J.; Pye, H.; Campistol, M.; Celma, A.; Regis, L.; Semidey, M.; de Torres, I.; Mast, R.; Planas, J.; Santamaria, A.; et al. Accurate Diagnosis of Prostate Cancer by Combining Proclarix with Magnetic Resonance Imaging. BJU Int. 2023, 132, 188–195. [Google Scholar] [CrossRef] [PubMed]
  476. Campistol, M.; Triquell, M.; Regis, L.; Celma, A.; de Torres, I.; Semidey, M.E.; Mast, R.; Mendez, O.; Planas, J.; Trilla, E.; et al. Relationship between Proclarix and the Aggressiveness of Prostate Cancer. Mol. Diagn. Ther. 2023, 27, 487–498. [Google Scholar] [CrossRef] [PubMed]
  477. Møller, M.; Strand, S.H.; Mundbjerg, K.; Liang, G.; Gill, I.; Haldrup, C.; Borre, M.; Høyer, S.; Ørntoft, T.F.; Sørensen, K.D. Heterogeneous Patterns of DNA Methylation-Based Field Effects in Histologically Normal Prostate Tissue from Cancer Patients. Sci. Rep. 2017, 7, 40636. [Google Scholar] [CrossRef] [PubMed]
  478. Haldrup, C.; Mundbjerg, K.; Vestergaard, E.M.; Lamy, P.; Wild, P.; Schulz, W.A.; Arsov, C.; Visakorpi, T.; Borre, M.; Høyer, S.; et al. DNA Methylation Signatures for Prediction of Biochemical Recurrence after Radical Prostatectomy of Clinically Localized Prostate Cancer. J. Clin. Oncol. 2013, 31, 3250–3258. [Google Scholar] [CrossRef] [PubMed]
  479. Patel, P.G.; Wessel, T.; Kawashima, A.; Okello, J.B.A.; Jamaspishvili, T.; Guérard, K.P.; Lee, L.; Lee, A.Y.W.; How, N.E.; Dion, D.; et al. A Three-Gene DNA Methylation Biomarker Accurately Classifies Early Stage Prostate Cancer. Prostate 2019, 79, 1705–1714. [Google Scholar] [CrossRef] [PubMed]
  480. Strand, S.H.; Orntoft, T.F.; Sorensen, K.D. Prognostic DNA Methylation Markers for Prostate Cancer. Int. J. Mol. Sci. 2014, 15, 16544–16576. [Google Scholar] [CrossRef]
  481. Bjerre, M.T.; Nørgaard, M.; Larsen, O.H.; Jensen, S.Ø.; Strand, S.H.; Østergren, P.; Fode, M.; Fredsøe, J.; Ulhøi, B.P.; Mortensen, M.M.; et al. Epigenetic Analysis of Circulating Tumor DNA in Localized and Metastatic Prostate Cancer: Evaluation of Clinical Biomarker Potential. Cells 2020, 9, 1362. [Google Scholar] [CrossRef]
  482. Kern, S.E. Why Your New Cancer Biomarker May Never Work: Recurrent Patterns and Remarkable Diversity in Biomarker Failures. Cancer Res. 2012, 72, 6097–6101. [Google Scholar] [CrossRef]
  483. Pepe, M.S.; Etzioni, R.; Feng, Z.; Potter, J.D.; Thompson, M.L.; Thornquist, M.; Winget, M.; Yasui, Y. Phases of Biomarker Development for Early Detection of Cancer. J. Natl. Cancer Inst. 2001, 93, 1054–1061. [Google Scholar] [CrossRef] [PubMed]
  484. Teutsch, S.M.; Bradley, L.A.; Palomaki, G.E.; Haddow, J.E.; Piper, M.; Calonge, N.; Dotson, W.D.; Douglas, M.P.; Berg, A.O. The Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Initiative: Methods of the EGAPP Working Group. Genet. Med. 2009, 11, 3–14. [Google Scholar] [CrossRef] [PubMed]
  485. Henry, N.L.; Hayes, D.F. Cancer Biomarkers. Mol. Oncol. 2012, 6, 140–146. [Google Scholar] [CrossRef] [PubMed]
  486. Barbieri, C.E. Evolution of Novel Biomarkers for Detection of Prostate Cancer. J. Urol. 2013, 190, 1970–1971. [Google Scholar] [CrossRef]
  487. Boutros, P.C.; Fraser, M.; Harding, N.J.; De Borja, R.; Trudel, D.; Lalonde, E.; Meng, A.; Hennings-Yeomans, P.H.; McPherson, A.; Sabelnykova, V.Y.; et al. Spatial Genomic Heterogeneity within Localized, Multifocal Prostate Cancer. Nat. Genet. 2015, 47, 736–745. [Google Scholar] [CrossRef]
  488. Diamandis, E.P. The Failure of Protein Cancer Biomarkers to Reach the Clinic: Why, and What Can Be Done to Address the Problem? BMC Med. 2012, 10, 87. [Google Scholar] [CrossRef]
Figure 1. Protein–protein interaction network of a selection of ECM and IAC proteins with suggested roles in prostate cancer. The list is not exhaustive, and the most prominent ECM core proteins, ECM regulators, integrins, proteins of consensus, and the integrin αVβ5 adhesome were considered. The network was retrieved from the STRING database (version 12.0) [113] and visualized in Cytoscape (version 3.10.1) [114].
Figure 1. Protein–protein interaction network of a selection of ECM and IAC proteins with suggested roles in prostate cancer. The list is not exhaustive, and the most prominent ECM core proteins, ECM regulators, integrins, proteins of consensus, and the integrin αVβ5 adhesome were considered. The network was retrieved from the STRING database (version 12.0) [113] and visualized in Cytoscape (version 3.10.1) [114].
Biomedicines 12 00079 g001
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Samaržija, I. The Potential of Extracellular Matrix- and Integrin Adhesion Complex-Related Molecules for Prostate Cancer Biomarker Discovery. Biomedicines 2024, 12, 79. https://doi.org/10.3390/biomedicines12010079

AMA Style

Samaržija I. The Potential of Extracellular Matrix- and Integrin Adhesion Complex-Related Molecules for Prostate Cancer Biomarker Discovery. Biomedicines. 2024; 12(1):79. https://doi.org/10.3390/biomedicines12010079

Chicago/Turabian Style

Samaržija, Ivana. 2024. "The Potential of Extracellular Matrix- and Integrin Adhesion Complex-Related Molecules for Prostate Cancer Biomarker Discovery" Biomedicines 12, no. 1: 79. https://doi.org/10.3390/biomedicines12010079

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop