Association between Psoriasis and Renal Functions: An Integration Study of Observational Study and Mendelian Randomization
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Epidemiological Observational Study
2.2.1. Data Source
2.2.2. Measurements and Definitions
2.2.3. Covariates
2.3. Mendelian Randomization Analysis
2.3.1. Summary-Level GWAS Data
2.3.2. Selection of Instrument Variables
2.4. Statistical Analyses
2.4.1. Cross-Sectional Study
2.4.2. TSMR and MVMR Analyses
3. Result
3.1. Population-Based Study
3.2. MR Framework Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boehncke, W.H.; Schön, M.P. Psoriasis. Lancet 2015, 386, 983–994. [Google Scholar] [CrossRef] [PubMed]
- Damiani, G.; Bragazzi, N.L.; Karimkhani Aksut, C.; Wu, D.; Alicandro, G.; McGonagle, D.; Guo, C.; Dellavalle, R.; Grada, A.; Wong, P. The global, regional, and national burden of psoriasis: Results and insights from the global burden of disease 2019 study. Front. Med. 2021, 8, 743180. [Google Scholar] [CrossRef] [PubMed]
- Ritchlin, C.T.; Colbert, R.A.; Gladman, D.D. Psoriatic arthritis. N. Engl. J. Med. 2017, 376, 957–970. [Google Scholar] [CrossRef]
- Freuer, D.; Linseisen, J.; Meisinger, C. Association Between Inflammatory Bowel Disease and Both Psoriasis and Psoriatic Arthritis: A Bidirectional 2-Sample Mendelian Randomization Study. JAMA Dermatol. 2022, 158, 1262–1268. [Google Scholar] [CrossRef] [PubMed]
- Miller, I.M.; Ellervik, C.; Yazdanyar, S.; Jemec, G.B. Meta-analysis of psoriasis, cardiovascular disease, and associated risk factors. J. Am. Acad. Dermatol. 2013, 69, 1014–1024. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, A.B.; Chao, C.; Dann, F. Psoriasis comorbidities. J. Dermatol. Treat. 2008, 19, 5–21. [Google Scholar] [CrossRef] [PubMed]
- Biswas, P.S. IL-17 in renal immunity and autoimmunity. J. Immunol. 2018, 201, 3153–3159. [Google Scholar] [CrossRef]
- Singh, N.; Prakash, A.; Kubba, S.; Ganguli, A.; Singh, A.K.; Sikdar, S.; Dinda, A.K.; Grover, C.; Agarwal, S.K. Psoriatic nephropathy—Does an entity exist? Ren. Fail. 2005, 27, 123–127. [Google Scholar]
- Bae, E.H.; Kim, B.; Song, S.H.; Oh, T.R.; Suh, S.H.; Choi, H.S.; Kim, C.S.; Ma, S.K.; Han, K.D.; Kim, S.W. Proteinuria and Psoriasis Risk: A Nationwide Population-Based Study. J. Clin. Med. 2021, 10, 2356. [Google Scholar] [CrossRef]
- Chi, C.-C.; Wang, J.; Chen, Y.-F.; Wang, S.-H.; Chen, F.-L.; Tung, T.-H. Risk of incident chronic kidney disease and end-stage renal disease in patients with psoriasis: A nationwide population-based cohort study. J. Dermatol. Sci. 2015, 78, 232–238. [Google Scholar] [CrossRef]
- Ren, F.; Zhang, M.; Zhang, C.; Sang, H. Psoriasis-like Inflammation Induced Renal Dysfunction through the TLR/NF-κB Signal Pathway. BioMed Res. Int. 2020, 2020, 3535264. [Google Scholar] [CrossRef] [PubMed]
- Visconti, L.; Leonardi, G.; Buemi, M.; Santoro, D.; Cernaro, V.; Ricciardi, C.A.; Lacquaniti, A.; Coppolino, G. Kidney disease and psoriasis: Novel evidences beyond old concepts. Clin. Rheumatol. 2016, 35, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-F.; Chen, T.-H.; Tsai, S.-H.; Chen, P.-E.; Chi, C.-C.; Tung, T.-H. Risk of chronic kidney disease and end-stage renal disease in patients with psoriasis: A systematic review and meta-analysis of cohort studies. Dermatol. Sin. 2021, 39, 19. [Google Scholar]
- Wan, J.; Wang, S.; Haynes, K.; Denburg, M.R.; Shin, D.B.; Gelfand, J.M. Risk of moderate to advanced kidney disease in patients with psoriasis: Population based cohort study. BMJ 2013, 347, f5961. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Han, J.H.; Bang, C.H.; Yoo, S.A.; Han, K.D.; Kim, H.N.; Park, Y.M.; Lee, J.Y.; Lee, J.H. Risk of End-Stage Renal Disease in Psoriatic Patients: Real-World Data from a Nationwide Population-Based Cohort Study. Sci. Rep. 2019, 9, 16581. [Google Scholar] [CrossRef]
- Friedland, R.; Kridin, K.; Cohen, A.D.; Landau, D.; Ben-Amitai, D. Psoriasis and Renal Disorders: A Large-Scale Population-Based Study in Children and Adults. Dermatology 2022, 238, 904–909. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Zhou, Z.; Wu, J.; Wang, X.; Lin, T. Psoriasis and risk of chronic kidney diseases: A population-based cross-sectional study and Mendelian randomization analysis. Nephrology 2023, 28, 611–619. [Google Scholar] [CrossRef]
- Sanderson, E.; Glymour, M.M.; Holmes, M.V.; Kang, H.; Morrison, J.; Munafò, M.R.; Palmer, T.; Schooling, C.M.; Wallace, C.; Zhao, Q.; et al. Mendelian randomization. Nat. Rev. Methods Primers 2022, 2, 6. [Google Scholar] [CrossRef]
- Morrison, J.; Knoblauch, N.; Marcus, J.H.; Stephens, M.; He, X. Mendelian randomization accounting for correlated and uncorrelated pleiotropic effects using genome-wide summary statistics. Nat. Genet. 2020, 52, 740–747. [Google Scholar] [CrossRef]
- Zipf, G.; Chiappa, M.; Porter, K.S.; Ostchega, Y.; Lewis, B.G.; Dostal, J. National health and nutrition examination survey: Plan and operations, 1999–2010. Vital Health Stat. 2013, 1, 1–37. [Google Scholar]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.; Castro, A.F., III; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Fu, Y.; Huang, F.; Wen, L.; Weng, X.; Yao, H.; Liang, H.; Kuang, M.; Jing, C. Association between blood metal exposures and hyperuricemia in the US general adult: A subgroup analysis from NHANES. Chemosphere 2023, 318, 137873. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Eckardt, K.-U.; Tsukamoto, Y.; Levin, A.; Coresh, J.; Rossert, J.; Zeeuw, D.D.; Hostetter, T.H.; Lameire, N.; Eknoyan, G. Definition and classification of chronic kidney disease: A position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2005, 67, 2089–2100. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 16. Diabetes Care in the Hospital: Standards of Medical Care in Diabetes-2022. Diabetes Care 2022, 45, S244–S253. [Google Scholar] [CrossRef] [PubMed]
- Kurki, M.I.; Karjalainen, J.; Palta, P.; Sipilä, T.P.; Kristiansson, K.; Donner, K.M.; Reeve, M.P.; Laivuori, H.; Aavikko, M.; Kaunisto, M.A.; et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 2023, 613, 508–518. [Google Scholar] [CrossRef]
- Wuttke, M.; Li, Y.; Li, M.; Sieber, K.B.; Feitosa, M.F.; Gorski, M.; Tin, A.; Wang, L.; Chu, A.Y.; Hoppmann, A.; et al. A catalog of genetic loci associated with renal function from analyses of a million individuals. Nat. Genet. 2019, 51, 957–972. [Google Scholar] [CrossRef] [PubMed]
- Teumer, A.; Li, Y.; Ghasemi, S.; Prins, B.P.; Wuttke, M.; Hermle, T.; Giri, A.; Sieber, K.B.; Qiu, C.; Kirsten, H.; et al. Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria. Nat. Commun. 2019, 10, 4130. [Google Scholar] [CrossRef]
- Zhang, Z. Multiple imputation with multivariate imputation by chained equation (MICE) package. Ann. Transl. Med. 2016, 4, 30. [Google Scholar]
- Hu, B.; Yang, X.R.; Xu, Y.; Sun, Y.F.; Sun, C.; Guo, W.; Zhang, X.; Wang, W.M.; Qiu, S.J.; Zhou, J.; et al. Systemic immune-inflammation index predicts prognosis of patients after curative resection for hepatocellular carcinoma. Clin. Cancer Res. 2014, 20, 6212–6222. [Google Scholar] [CrossRef]
- Burgess, S.; Labrecque, J.A. Mendelian randomization with a binary exposure variable: Interpretation and presentation of causal estimates. Eur. J. Epidemiol. 2018, 33, 947–952. [Google Scholar] [CrossRef]
- Burgess, S.; Bowden, J.; Fall, T.; Ingelsson, E.; Thompson, S.G. Sensitivity analyses for robust causal inference from Mendelian randomization analyses with multiple genetic variants. Epidemiology 2017, 28, 30. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Stringer, S.; Frei, O.; Umićević Mirkov, M.; de Leeuw, C.; Polderman, T.J.C.; van der Sluis, S.; Andreassen, O.A.; Neale, B.M.; Posthuma, D. A global overview of pleiotropy and genetic architecture in complex traits. Nat. Genet. 2019, 51, 1339–1348. [Google Scholar] [CrossRef] [PubMed]
- Klimentidis, Y.C.; Raichlen, D.A.; Bea, J.; Garcia, D.O.; Wineinger, N.E.; Mandarino, L.J.; Alexander, G.E.; Chen, Z.; Going, S.B. Genome-wide association study of habitual physical activity in over 377,000 UK Biobank participants identifies multiple variants including CADM2 and APOE. Int. J. Obes. 2018, 42, 1161–1176. [Google Scholar] [CrossRef]
- Kurki, M.I.; Karjalainen, J.; Palta, P.; Sipilä, T.P.; Kristiansson, K.; Donner, K.; Reeve, M.P.; Laivuori, H.; Aavikko, M.; Kaunisto, M.A.; et al. FinnGen: Unique genetic insights from combining isolated population and national health register data. medRxiv 2022. [Google Scholar] [CrossRef]
- Lin, Z.; Xue, H.; Pan, W. Robust multivariable Mendelian randomization based on constrained maximum likelihood. Am. J. Hum. Genet. 2023, 110, 592–605. [Google Scholar] [CrossRef]
- Conti, A.; Giovannini, L.; Mandel, V.D.; Odorici, G.; Lasagni, C.; Bigi, L.; Pellacani, G.; Cappelli, G. Chronic kidney disease in psoriasis: A cohort study. J. Dtsch. Dermatol. Ges. 2020, 18, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Davey Smith, G.; Holmes, M.V.; Davies, N.M.; Ebrahim, S. Mendel’s laws, Mendelian randomization and causal inference in observational data: Substantive and nomenclatural issues. Eur. J. Epidemiol. 2020, 35, 99–111. [Google Scholar] [CrossRef]
- Ramseyer, V.D.; Garvin, J.L. Tumor necrosis factor-α: Regulation of renal function and blood pressure. Am. J. Physiol. Ren. Physiol. 2013, 304, F1231–F1242. [Google Scholar] [CrossRef]
- Shahid, M.; Francis, J.; Majid, D.S. Tumor necrosis factor-alpha induces renal vasoconstriction as well as natriuresis in mice. Am. J. Physiol. Ren. Physiol. 2008, 295, F1836–F1844. [Google Scholar] [CrossRef]
- Mazor, R.; Itzhaki, O.; Sela, S.; Yagil, Y.; Cohen-Mazor, M.; Yagil, C.; Kristal, B. Tumor necrosis factor-alpha: A possible priming agent for the polymorphonuclear leukocyte-reduced nicotinamide-adenine dinucleotide phosphate oxidase in hypertension. Hypertension 2010, 55, 353–362. [Google Scholar] [CrossRef]
- Yu, Z.; Rebholz, C.M.; Wong, E.; Chen, Y.; Matsushita, K.; Coresh, J.; Grams, M.E. Association Between Hypertension and Renal function Decline: The Atherosclerosis Risk in Communities (ARIC) Study. Am. J. Kidney Dis. 2019, 74, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Okada, R.; Yasuda, Y.; Tsushita, K.; Wakai, K.; Hamajima, N.; Matsuo, S. Glomerular hyperfiltration in prediabetes and prehypertension. Nephrol. Dial. Transplant. 2011, 27, 1821–1825. [Google Scholar] [CrossRef]
- Quaglino, P.; Bergallo, M.; Ponti, R.; Barberio, E.; Cicchelli, S.; Buffa, E.; Comessatti, A.; Costa, C.; Terlizzi, M.E.; Astegiano, S. Th1, Th2, Th17 and regulatory T cell pattern in psoriatic patients: Modulation of cytokines and gene targets induced by etanercept treatment and correlation with clinical response. Dermatology 2011, 223, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Brembilla, N.C.; Senra, L.; Boehncke, W.-H. The IL-17 family of cytokines in psoriasis: IL-17A and beyond. Front. Immunol. 2018, 9, 1682. [Google Scholar] [CrossRef]
- Yilmaz, S.B.; Cicek, N.; Coskun, M.; Yegin, O.; Alpsoy, E. Serum and tissue levels of IL-17 in different clinical subtypes of psoriasis. Arch. Dermatol. Res. 2012, 304, 465–469. [Google Scholar] [CrossRef]
- Summers, S.A.; Steinmetz, O.M.; Li, M.; Kausman, J.Y.; Semple, T.; Edgtton, K.L.; Borza, D.B.; Braley, H.; Holdsworth, S.R.; Kitching, A.R. Th1 and Th17 cells induce proliferative glomerulonephritis. J. Am. Soc. Nephrol. 2009, 20, 2518–2524. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.-E.; Paust, H.-J.; Steinmetz, O.M.; Panzer, U. The Th17 immune response in renal inflammation. Kidney Int. 2010, 77, 1070–1075. [Google Scholar] [CrossRef]
- Zhang, Z.; Kyttaris, V.C.; Tsokos, G.C. The role of IL-23/IL-17 axis in lupus nephritis. J. Immunol. 2009, 183, 3160–3169. [Google Scholar] [CrossRef]
- Haridasan, S.; Rathi, M.; Sharma, A.; Nada, R.; Kumar, S.; Ramachandran, R.; Kohli, H.S. Outcome of biopsy-proven lupus nephritis with low glomerular filtration rate at presentation. Int. J. Rheum. Dis. 2020, 23, 1201–1209. [Google Scholar] [CrossRef]
- Moroni, G.; Calatroni, M.; Ponticelli, C. Severe lupus nephritis in the present days. Front. Nephrol. 2022, 2, 984613. [Google Scholar] [CrossRef]
- Veronesi, G.; Guglielmo, A.; Gardini, A.; Sacchelli, L.; Loi, C.; Patrizi, A.; Bardazzi, F. Biological therapy in patients with psoriasis: What we know about the effects on renal function. Dermatol. Ther. 2022, 35, e15202. [Google Scholar] [CrossRef] [PubMed]
Overall | Psoriasis | p-Value | ||
---|---|---|---|---|
No | Yes | |||
N | 20,944 | 20,395 (97.4) | 549 (2.6) | |
Age, n (%) | 0.223 | |||
20~60 | 16,739 (79.9) | 16,312 (80.0) | 427 (77.8) | |
≥60 | 4205 (20.1) | 4083 (20.0) | 122 (22.2) | |
Gender, n (%) | 0.731 | |||
Male | 10,738 (51.3) | 10,461 (51.3) | 277 (50.5) | |
Female | 10,206 (48.7) | 9934 (48.7) | 272 (49.5) | |
BMI | <0.001 | |||
Mean (SD) | 28.92 (6.91) | 28.89 (6.91) | 30.00 (6.99) | |
Race/Ethnicity, n (%) | <0.001 | |||
White | 8735 (41.7) | 8410 (41.2) | 325 (59.2) | |
Black | 4761 (22.7) | 4687 (23.0) | 74 (13.5) | |
Mexican American | 3425 (16.4) | 3379 (16.6) | 46 (8.4) | |
Other Race | 4023 (19.2) | 3919 (19.2) | 104 (18.9) | |
Ratio of family income to poverty, n (%) | 0.435 | |||
<1.0 | 4344 (22.5) | 4237 (22.5) | 107 (21.0) | |
≥1.0 | 14,961 (77.5) | 14,558 (77.5) | 403 (79.0) | |
Education level, n (%) | 0.052 | |||
Less Than 9th Grade | 2066 (9.9) | 2029 (10.0) | 37 (6.7) | |
9–11th/12th grade with no diploma | 3129 (15.0) | 3054 (15.0) | 75 (13.7) | |
High School Grad/GED or Equivalent | 4810 (23.0) | 4686 (23.0) | 124 (22.6) | |
Some College or AA degree | 6281 (30.0) | 6107 (30.0) | 174 (31.7) | |
College Graduate or above | 4633 (22.1) | 4494 (22.1) | 139 (25.3) | |
Marital status, n (%) | 0.068 | |||
Married/Living with partner | 12,289 (58.7) | 11,958 (58.7) | 331 (60.3) | |
Widowed/Divorced/Separated | 4153 (19.8) | 4032 (19.8) | 121 (22.0) | |
Never married | 4490 (21.5) | 4393 (21.6) | 97 (17.7) | |
Smoking status, n (%) | 0.641 | |||
NO | 14,087 (72.9) | 13,722 (72.9) | 365 (71.9) | |
Yes | 5248 (27.1) | 5105 (27.1) | 143 (28.1) | |
Alcohol use per day | 0.221 | |||
median [IQR] | 0.10 [0.01, 0.57] | 0.10 [0.01, 0.57] | 0.07 [0.01, 0.57] | |
Hypertension, n (%) | 0.001 | |||
NO | 10,268 (53.6) | 10,038 (53.8) | 230 (46.2) | |
Yes | 8875 (46.4) | 8607 (46.2) | 268 (53.8) | |
Diabetes, n (%) | 0.035 | |||
No | 17,845 (85.2) | 17,395 (85.3) | 450 (82.0) | |
Yes | 3097 (14.8) | 2998 (14.7) | 99 (18.0) | |
eGFR | 0.001 | |||
mean (SD) | 96.94 (21.25) | 97.02 (21.24) | 93.96 (21.52) | |
UACR | 0.147 | |||
median [IQR] | 6.49 [4.19, 12.13] | 6.48 [4.19, 12.07] | 6.81 [4.28, 13.94] | |
BUN | 0.016 | |||
mean (SD) | 12.68 (5.47) | 12.67 (5.45) | 13.26 (6.18) | |
CKD, n (%) | 0.351 | |||
No | 17,438 (86.1) | 16,991 (86.2) | 447 (84.7) | |
Yes | 2806 (13.9) | 2725 (13.8) | 81 (15.3) |
Exposure | MR Methods | IVs | Estimate | SE | p-Value |
---|---|---|---|---|---|
eGFR | |||||
MR-PRESSO (Raw) | 31 | −0.0016 | 0.0006 | 0.023 | |
MR-PRESSO (Removed outliers) | 25 | −0.0012 | 0.0006 | 0.035 | |
UACR | |||||
MR PRESSO (Raw) | 31 | −0.0049 | 0.0032 | 0.132 | |
MR-PRESSO (Removed outliers) | 26 | −0.002 | 0.0031 | 0.520 | |
BUN | |||||
MR-PRESSO (Raw) | 31 | 0.0011 | 0.0012 | 0.370 | |
MR-PRESSO (Removed outliers) | - | - | - | - | |
CKD | |||||
MR-PRESSO (Raw) | 31 | 0.0137 | 0.0132 | 0.307 | |
MR-PRESSO (Removed outliers) | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, Y.; Huang, Z.; Li, H.; Yao, H.; Fu, Y.; Wu, X.; Lin, C.; Lai, Z.; Yang, G.; Jing, C. Association between Psoriasis and Renal Functions: An Integration Study of Observational Study and Mendelian Randomization. Biomedicines 2024, 12, 249. https://doi.org/10.3390/biomedicines12010249
Tan Y, Huang Z, Li H, Yao H, Fu Y, Wu X, Lin C, Lai Z, Yang G, Jing C. Association between Psoriasis and Renal Functions: An Integration Study of Observational Study and Mendelian Randomization. Biomedicines. 2024; 12(1):249. https://doi.org/10.3390/biomedicines12010249
Chicago/Turabian StyleTan, Yuxuan, Zhizhuo Huang, Haiying Li, Huojie Yao, Yingyin Fu, Xiaomei Wu, Chuhang Lin, Zhengtian Lai, Guang Yang, and Chunxia Jing. 2024. "Association between Psoriasis and Renal Functions: An Integration Study of Observational Study and Mendelian Randomization" Biomedicines 12, no. 1: 249. https://doi.org/10.3390/biomedicines12010249
APA StyleTan, Y., Huang, Z., Li, H., Yao, H., Fu, Y., Wu, X., Lin, C., Lai, Z., Yang, G., & Jing, C. (2024). Association between Psoriasis and Renal Functions: An Integration Study of Observational Study and Mendelian Randomization. Biomedicines, 12(1), 249. https://doi.org/10.3390/biomedicines12010249