The Beneficial Role of Apigenin against Cognitive and Neurobehavioural Dysfunction: A Systematic Review of Preclinical Investigations
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Selection
2.2. Data Extraction
3. Results
3.1. Study Characteristics
3.2. Learning and Memory
3.3. Locomotor Activity
3.4. Depressive-like Behaviour
3.5. Anxiety-like Behaviour Test
3.6. Sensorimotor Behaviour and Coordination Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dumurgier, J.; Tzourio, C. Epidemiology of neurological diseases in older adults. Rev. Neurol. 2020, 176, 642–648. [Google Scholar] [CrossRef] [PubMed]
- Van Schependom, J.; D’Haeseleer, M. Advances in Neurodegenerative Diseases. J. Clin. Med. 2023, 12, 1709. [Google Scholar] [CrossRef]
- Morris, J.C. Neurodegenerative disorders of aging: The down side of rising longevity. Mo. Med. 2013, 110, 393–394. [Google Scholar] [PubMed]
- Gómez-Gómez, M.E.; Zapico, S.C. Frailty, Cognitive Decline, Neurodegenerative Diseases and Nutrition Interventions. Int. J. Mol. Sci. 2019, 20, 2842. [Google Scholar] [CrossRef] [PubMed]
- Levenson, R.W.; Sturm, V.E.; Haase, C.M. Emotional and behavioral symptoms in neurodegenerative disease: A model for studying the neural bases of psychopathology. Annu. Rev. Clin. Psychol. 2014, 10, 581–606. [Google Scholar] [CrossRef] [PubMed]
- Ayeni, E.A.; Aldossary, A.M.; Ayejoto, D.A.; Gbadegesin, L.A.; Alshehri, A.A.; Alfassam, H.A.; Afewerky, H.K.; Almughem, F.A.; Bello, S.M.; Tawfik, E.A. Neurodegenerative Diseases: Implications of Environmental and Climatic Influences on Neurotransmitters and Neuronal Hormones Activities. Int. J. Environ. Res. Public Health 2022, 19, 12495. [Google Scholar] [CrossRef] [PubMed]
- Migliaccio, R.; Tanguy, D.; Bouzigues, A.; Sezer, I.; Dubois, B.; Le Ber, I.; Batrancourt, B.; Godefroy, V.; Levy, R. Cognitive and behavioural inhibition deficits in neurodegenerative dementias. Cortex 2020, 131, 265–283. [Google Scholar] [CrossRef]
- Calina, D.; Buga, A.M.; Mitroi, M.; Buha, A.; Caruntu, C.; Scheau, C.; Bouyahya, A.; El Omari, N.; El Menyiy, N.; Docea, A.O. The Treatment of Cognitive, Behavioural and Motor Impairments from Brain Injury and Neurodegenerative Diseases through Cannabinoid System Modulation-Evidence from In Vivo Studies. J. Clin. Med. 2020, 9, 2395. [Google Scholar] [CrossRef]
- Cirmi, S.; Ferlazzo, N.; Lombardo, G.E.; Ventura-Spagnolo, E.; Gangemi, S.; Calapai, G.; Navarra, M. Neurodegenerative Diseases: Might Citrus Flavonoids Play a Protective Role? Molecules 2016, 21, 1312. [Google Scholar] [CrossRef]
- Popović, M.; Caballero-Bleda, M.; Benavente-García, O.; Castillo, J. The flavonoid apigenin delays forgetting of passive avoidance conditioning in rats. J. Psychopharmacol. 2014, 28, 498–501. [Google Scholar] [CrossRef]
- Olayinka, J.N.; Akawa, O.B.; Ogbu, E.K.; Eduviere, A.T.; Ozolua, R.I.; Soliman, M. Apigenin attenuates depressive-like behavior via modulating monoamine oxidase A enzyme activity in chronically stressed mice. Curr. Res. Pharmacol. Drug Discov. 2023, 5, 100161. [Google Scholar] [CrossRef] [PubMed]
- Al-Yamani, M.J.; Mohammed Basheeruddin Asdaq, S.; Alamri, A.S.; Alsanie, W.F.; Alhomrani, M.; Alsalman, A.J.; Al Mohaini, M.; Al Hawaj, M.A.; Alanazi, A.A.; Alanzi, K.D.; et al. The role of serotonergic and catecholaminergic systems for possible antidepressant activity of apigenin. Saudi J. Biol. Sci. 2022, 29, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Bu, H.; Jiang, Y.; Sun, G.; Jiang, R.; Huang, X.; Duan, H.; Huang, Z.; Wu, Q. The antidepressant effects of apigenin are associated with the promotion of autophagy via the mTOR/AMPK/ULK1 pathway. Mol. Med. Rep. 2019, 20, 2867–2874. [Google Scholar] [CrossRef] [PubMed]
- Alghamdi, A.; Almuqbil, M.; Alrofaidi, M.A.; Burzangi, A.S.; Alshamrani, A.A.; Alzahrani, A.R.; Kamal, M.; Imran, M.; Alshehri, S.; Mannasaheb, B.A.; et al. Potential Antioxidant Activity of Apigenin in the Obviating Stress-Mediated Depressive Symptoms of Experimental Mice. Molecules 2022, 27, 9055. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Lu, R.R.; Xu, R.H.; Wang, H.H.; Feng, W.S.; Zheng, X.K. Naringenin and apigenin ameliorates corticosterone-induced depressive behaviors. Heliyon 2023, 9, e15618. [Google Scholar] [CrossRef] [PubMed]
- Yi, L.T.; Li, H.M.; Li, Y.C.; Pan, Y.; Xu, Q.; Kong, L.D. Antidepressant-like behavioral and neurochemical effects of the citrus-associated chemical apigenin. Life Sci. 2008, 82, 741–751. [Google Scholar] [CrossRef] [PubMed]
- Nabavi, S.F.; Khan, H.; D’Onofrio, G.; Šamec, D.; Shirooie, S.; Dehpour, A.R.; Argüelles, S.; Habtemariam, S.; Sobarzo-Sanchez, E. Apigenin as neuroprotective agent: Of mice and men. Pharmacol. Res. 2018, 128, 359–365. [Google Scholar] [CrossRef]
- Gaur, K.; Siddique, Y.H. Effect of apigenin on neurodegenerative diseases. In CNS & Neurological Disorders-Drug Targets; Bentham Science Publishers: Hilversum, The Netherlands, 2023. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef]
- Chen, L.; Xie, W.; Xie, W.; Zhuang, W.; Jiang, C.; Liu, N. Apigenin attenuates isoflurane-induced cognitive dysfunction via epigenetic regulation and neuroinflammation in aged rats. Arch. Gerontol. Geriatr. 2017, 73, 29–36. [Google Scholar] [CrossRef]
- Chesworth, R.; Gamage, R.; Ullah, F.; Sonego, S.; Millington, C.; Fernandez, A.; Liang, H.; Karl, T.; Münch, G.; Niedermayer, G. Spatial memory and microglia activation in a mouse model of chronic neuroinflammation and the anti-inflammatory effects of apigenin. Front. Neurosci. 2021, 15, 699329. [Google Scholar] [CrossRef]
- Bijani, S.; Dizaji, R.; Sharafi, A.; Hosseini, M.J. Neuroprotective Effect of Apigenin on Depressive-Like Behavior: Mechanistic Approach. Neurochem. Res. 2022, 47, 644–655. [Google Scholar] [CrossRef]
- Anusha, C.; Sumathi, T. Protective role of apigenin against rotenone induced model of parkinson’s disease: Behavioral study. Int. J. Toxicol. Pharmacol. Res. 2016, 8, 79–82. [Google Scholar]
- Anusha, C.; Sumathi, T.; Joseph, L.D. Protective role of apigenin on rotenone induced rat model of Parkinson’s disease: Suppression of neuroinflammation and oxidative stress mediated apoptosis. Chem.-Biol. Interact. 2017, 269, 67–79. [Google Scholar] [CrossRef] [PubMed]
- Amin, F.; Ibrahim, M.A.A.; Rizwan-ul-Hasan, S.; Khaliq, S.; Gabr, G.A.; Muhammad; Khan, A.; Sidhom, P.A.; Tikmani, P.; Shawky, A.M.; et al. Interactions of Apigenin and Safranal with the 5HT1A and 5HT2A Receptors and Behavioral Effects in Depression and Anxiety: A Molecular Docking, Lipid-Mediated Molecular Dynamics, and In Vivo Analysis. Molecules 2022, 27, 8658. [Google Scholar] [CrossRef]
- Ahmedy, O.A.; Abdelghany, T.M.; El-Shamarka, M.E.A.; Khattab, M.A.; El-Tanbouly, D.M. Apigenin attenuates LPS-induced neurotoxicity and cognitive impairment in mice via promoting mitochondrial fusion/mitophagy: Role of SIRT3/PINK1/Parkin pathway. Psychopharmacology 2022, 239, 3903–3917. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, P.; Fahanik Babaei, J.; Vazifekhah, S.; Nikbakht, F. Evaluation of the neuroprotective, anticonvulsant, and cognition-improvement effects of apigenin in temporal lobe epilepsy: Involvement of the mitochondrial apoptotic pathway. Iran. J. Basic Med. Sci. 2019, 22, 752–758. [Google Scholar]
- Jameie, S.B.; Pirasteh, A.; Naseri, A.; Jameie, M.S.; Farhadi, M.; Babaee, J.F.; Elyasi, L. β-Amyloid Formation, Memory, and Learning Decline Following Long-term Ovariectomy and Its Inhibition by Systemic Administration of Apigenin and β-Estradiol. Basic Clin. Neurosci. 2021, 12, 383–394. [Google Scholar]
- Kim, Y.; Kim, J.; He, M.; Lee, A.; Cho, E. Apigenin Ameliorates Scopolamine-Induced Cognitive Dysfunction and Neuronal Damage in Mice. Molecules 2021, 26, 5192. [Google Scholar] [CrossRef]
- Mao, X.Y.; Yu, J.; Liu, Z.Q.; Zhou, H.H. Apigenin attenuates diabetes-associated cognitive decline in rats via suppressing oxidative stress and nitric oxide synthase pathway. Int. J. Clin. Exp. Med. 2015, 8, 15506–15513. [Google Scholar]
- Nikbakht, F.; Khadem, Y.; Haghani, S.; Hoseininia, H.; Moein Sadat, A.; Heshemi, P.; Jamali, N. Protective Role of Apigenin Against Aβ 25-35 Toxicity Via Inhibition of Mitochondrial Cytochrome c Release. Basic Clin. Neurosci. 2019, 10, 557–566. [Google Scholar]
- Li, R.; Wang, X.; Qin, T.; Qu, R.; Ma, S. Apigenin ameliorates chronic mild stress-induced depressive behavior by inhibiting interleukin-1β production and NLRP3 inflammasome activation in the rat brain. Behav. Brain Res. 2016, 296, 318–325. [Google Scholar] [CrossRef]
- Li, R.; Zhao, D.; Qu, R.; Fu, Q.; Ma, S. The effects of apigenin on lipopolysaccharide-induced depressive-like behavior in mice. Neurosci. Lett. 2015, 594, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Zhang, T.; Yang, H.; Lan, X.; Ying, J.; Du, G. The flavonoid apigenin protects brain neurovascular coupling against amyloid-β25–35-induced toxicity in mice. J. Alzheimers Dis. 2011, 24, 85–100. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.; Singh, S. Apigenin Attenuates Functional and Structural Alterations via Targeting NF-kB/Nrf2 Signaling Pathway in LPS-Induced Parkinsonism in Experimental Rats: Apigenin Attenuates LPS-Induced Parkinsonism in Experimental Rats. Neurotox. Res. 2022, 40, 941–960. [Google Scholar] [CrossRef] [PubMed]
- Patil, C.S.; Singh, V.P.; Satyanarayan, P.S.; Jain, N.K.; Singh, A.; Kulkarni, S.K. Protective effect of flavonoids against aging- and lipopolysaccharide-induced cognitive impairment in mice. Pharmacology 2003, 69, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Salgueiro, J.B.; Ardenghi, P.; Dias, M.; Ferreira, M.B.; Izquierdo, I.; Medina, J.H. Anxiolytic natural and synthetic flavonoid ligands of the central benzodiazepine receptor have no effect on memory tasks in rats. Pharmacol. Biochem. Behav. 1997, 58, 887–891. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Sharma, S.; Singh, D. Apigenin reverses behavioural impairments and cognitive decline in kindled mice via CREB-BDNF upregulation in the hippocampus. Nutr. Neurosci. 2020, 23, 118–127. [Google Scholar] [CrossRef]
- Taha, M.; Eldemerdash, O.M.; Elshaffei, I.M.; Yousef, E.M.; Soliman, A.S.; Senousy, M.A. Apigenin Attenuates Hippocampal Microglial Activation and Restores Cognitive Function in Methotrexate-Treated Rats: Targeting the miR-15a/ROCK-1/ERK1/2 Pathway. Mol. Neurobiol. 2023, 60, 3770–3787. [Google Scholar] [CrossRef]
- Tu, F.; Pang, Q.; Huang, T.; Zhao, Y.; Liu, M.; Chen, X. Apigenin ameliorates post-stroke cognitive deficits in rats through histone acetylation- mediated neurochemical alterations. Med. Sci. Monit. 2017, 23, 4004–4013. [Google Scholar] [CrossRef]
- Weng, L.; Guo, X.; Li, Y.; Yang, X.; Han, Y. Apigenin reverses depression-like behavior induced by chronic corticosterone treatment in mice. Eur. J. Pharmacol. 2016, 774, 50–54. [Google Scholar] [CrossRef]
- Yadav, R.K.; Mehan, S.; Sahu, R.; Kumar, S.; Khan, A.; Makeen, H.A.; Al Bratty, M. Protective effects of apigenin on methylmercury-induced behavioral/neurochemical abnormalities and neurotoxicity in rats. Hum. Exp. Toxicol. 2022, 41, 9603271221084276. [Google Scholar] [CrossRef]
- Yarim, G.F.; Kazak, F.; Yarim, M.; Sozmen, M.; Genc, B.; Ertekin, A.; Gokceoglu, A. Apigenin alleviates neuroinflammation in a mouse model of Parkinson’s disease. Int. J. Neurosci. 2022. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Zanoli, P.; Avallone, R.; Baraldi, M. Behavioral characterisation of the flavonoids apigenin and chrysin. Fitoterapia 2000, 71, S117–S123. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Dang, Y.; Zhang, R.; Jing, G.; Liang, W.; Xie, L.; Li, Z. Apigenin attenuates acrylonitrile-induced neuro-inflammation in rats: Involved of inactivation of the TLR4/NF-κB signaling pathway. Int. Immunopharmacol. 2019, 75, 105697. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Wang, J.-L.; Liu, R.; Li, X.-X.; Li, J.-F.; Zhang, L. Neuroprotective, anti-amyloidogenic and neurotrophic effects of apigenin in an Alzheimer’s disease mouse model. Molecules 2013, 18, 9949–9965. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, F.; Zeng, Y. Effects of apigenin on learning and memory and synaptic plicity in SAMP8 mice. Chin. J. Gerontol. 2015, 35, 4113–4116. [Google Scholar]
- Bourtchuladze, R.; Frenguelli, B.; Blendy, J.; Cioffi, D.; Schutz, G.; Silva, A.J. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 1994, 79, 59–68. [Google Scholar] [CrossRef]
- Lyu, Y.; Ren, X.K.; Zhang, H.F.; Tian, F.J.; Mu, J.B.; Zheng, J.P. Sub-chronic administration of benzo[a]pyrene disrupts hippocampal long-term potentiation via inhibiting CaMK II/PKC/PKA-ERK-CREB signaling in rats. Environ. Toxicol. 2020, 35, 961–970. [Google Scholar] [CrossRef]
- Velmurugan, K.; Balamurugan, A.N.; Loganathan, G.; Ahmad, A.; Hering, B.J.; Pugazhenthi, S. Antiapoptotic actions of exendin-4 against hypoxia and cytokines are augmented by CREB. Endocrinology 2012, 153, 1116–1128. [Google Scholar] [CrossRef]
- Kalivarathan, J.; Chandrasekaran, S.P.; Kalaivanan, K.; Ramachandran, V.; Carani Venkatraman, A. Apigenin attenuates hippocampal oxidative events, inflammation and pathological alterations in rats fed high fat, fructose diet. Biomed. Pharmacother. 2017, 89, 323–331. [Google Scholar] [CrossRef]
- Miura, H.; Naoi, M.; Nakahara, D.; Ohta, T.; Nagatsu, T. Changes in monoamine levels in mouse brain elicited by forced-swimming stress, and the protective effect of a new monoamine oxidase inhibitor, RS-8359. J. Neural Transm. 1993, 95, 175–187. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhao, J.; Guo, W. Emotional Roles of Mono-Aminergic Neurotransmitters in Major Depressive Disorder and Anxiety Disorders. Front. Psychol. 2018, 9, 2201. [Google Scholar] [CrossRef] [PubMed]
- Cryan, J.F.; Page, M.E.; Lucki, I. Differential behavioral effects of the antidepressants reboxetine, fluoxetine, and moclobemide in a modified forced swim test following chronic treatment. Psychopharmacology 2005, 182, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Salim, S.; Chugh, G.; Asghar, M. Inflammation in anxiety. In Advances in Protein Chemistry and Structural Biology; Donev, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2012; Volume 88, pp. 1–25. [Google Scholar]
- Quesseveur, G.; David, D.J.; Gaillard, M.C.; Pla, P.; Wu, M.V.; Nguyen, H.T.; Nicolas, V.; Auregan, G.; David, I.; Dranovsky, A.; et al. BDNF overexpression in mouse hippocampal astrocytes promotes local neurogenesis and elicits anxiolytic-like activities. Transl. Psychiatry 2013, 3, e253. [Google Scholar] [CrossRef]
- Moore, A.H.; Bigbee, M.J.; Boynton, G.E.; Wakeham, C.M.; Rosenheim, H.M.; Staral, C.J.; Morrissey, J.L.; Hund, A.K. Non-Steroidal Anti-Inflammatory Drugs in Alzheimer’s Disease and Parkinson’s Disease: Reconsidering the Role of Neuroinflammation. Pharmaceuticals 2010, 3, 1812–1841. [Google Scholar] [CrossRef]
- Gardoni, F.; Bellone, C. Modulation of the glutamatergic transmission by Dopamine: A focus on Parkinson, Huntington and Addiction diseases. Front. Cell. Neurosci. 2015, 9, 25. [Google Scholar] [CrossRef]
Authors | Subjects | Dosage and Route of Administration | Duration of Experiment | Study Description | Cognitive and Behavioural Parameters Studies |
---|---|---|---|---|---|
Chen et al. [20] | 100 male Sprague Dawley rats | 50 and 100 mg/kg/intraperitoneal | 7 days | Isoflurane-induced cognitive dysfunction and neuroinflammation | Morris Water Maze |
Chesworth et al. [21] | Male and female (C57BL/6) and GFAP-IL6 heterozygous mice | 110 mg/kg/oral | 22 months | Mouse model of chronic neuroinflammation | Barnes maze |
Bijani et al. [22] | Male mice of NMRI | 10, 20 and 40 mg/kg intraperitoneal | 4 days | Streptozotocin-induced depressive-like behaviour | Open field test Forced swimming test Splash test |
Anusha and Sumathi [23] | Male Wistar rats | 10 and 20 mg/kg intraperitoneal | 14 days | Rotenone-induced model of Parkinson’s disease | Rotarod activity Catalepsy Rearing behaviour |
Anusha et al. [24] | Male Sprague Dawley rats | 10 and 20 mg/kg intraperitoneal | Rotenone-induced model of Parkinson’s disease | Rotarod test | |
Amin et al. [25] | Sprague Dawley rats | 50 mg/kg oral | 21 days | Diabetes-induced depression and anxiety | Elevated plus maze Forced swimming test |
Ahmedy et al. [26] | Male Swiss Albino mice | 40 mg/kg oral | 7 days | Lipopolysaccharide-induced cognitive impairment in mice | Morris Water Maze Y Maze |
Hashemi et al. [27] | Male Wistar rats | 50 mg/kg | 5 days | Kainite temporal lobe epilepsy model | Morris Water Maze Y Maze |
Jameie et al. [28] | Female Wistar rats | 2 mg intraperitoneal | 5 weeks | Longterm ovariectomy-induced cognitive decline | Morris Water Maze |
Kim et al. [29] | Male ICR mice | 10 and 20 mg/kg oral | 14 days | Scopolamine-induced cognitive dysfunction | T-maze Morris Water Maze Novel object recognition test |
Mao et al. [30] | Male Wistar rats | 10, 20 and 40 mg/kg intraperitoneal | 7 weeks | Diabetes-induced cognitive deficit | Morris water maze |
Nikbakht et al. [31] | Wistar rats | 50 mg/kg oral | 28 days | Aβ25-35-induced neurotoxicity | Y-Maze |
Li et al. [32] | Male Sprague Dawley rats | 20 mg/kg intragastric | 3 weeks | Chronic mild stress-induced depressive behaviour | Sucrose preference test Open field test |
Li et al. [33] | Male ICR mice | 25 and 50 mg/kg intraperitoneal | 7 days | Lipopolysaccharide-induced depressive behaviour | Tail suspension test Sucrose preference test Open field test |
Liu et al. [34] | Male Kunming mice | 10 and 20 mg/kg oral | 8 days | Amyloid-25-35-induced toxicity in mice | Morris Water Maze |
Olayinka et al. [11] | Male Mice | 12.5 and 25 mg/kg intraperitoneal | 14 days | Chronic stress-induced depressive-like behaviour in mice | Sucrose splash test Elevated plus maze Forced swim test Tail suspension test |
Patel and Singh [35] | Male Wistar rats | 25 and 50 mg P.O. | 14 days | LPS-induced parkinsonism | Open field test Rotarod Grip strength test |
Patil et al. [36] | Swiss Mice | 5, 10 and 20 mg/kg intraperitoneal | 7 dats | LPS-induced cognitive impairment | Passive avoidance test Elevated plus maze Locomotor activity Rotarod |
Popovic et al. [10] | Male Wistar rats | 20 mg/kg intraperitoneal | 56 days | Scopolamine-induced memory impairment | Passive avoidance test |
Salgueiro et al. [37] | Male Wistar rats | 10 mg/kg intraperitoneal | Normal rats | Inhibitory avoidance Open field test Shuttle avoidance | |
Sharma et al. [38] | Swiss Albino male mice | 10 and 20 mg/kg P.O. | 20 days | Pentylenetetrazole-kindling-associated cognitive and behavioural impairment | T-maze Elevated plus maze Tail suspension test Forced swimming test |
Taha et al. [39] | Male Sprague Dawley rats | 20 mg/kg P.O. | 30 days | Methotrexate-induced cognitive dysfunction | Novel object recognition Morris Water Maze |
Tu et al. [40] | Male Sprague Dawley rats | 20 and 40 mg/kg intraperitoneal | 28 days | Post-stroke cognitive deficit in rats | Morris Water Maze |
Weng et al. [41] | Male ICR mice | 20 and 40 mg/kg oral | 21 days | Corticosterone-induced depression-like behaviour | Sucrose preference test Forced swimming test |
Yadav et al. [42] | Wistar rats | 40 and 80 mg/kg P.O. | Methylmercury-induced behavioural impairment | Morris Water Maze Grip strength test Open field test Forced swim test | |
Yarim et al. [43] | Male C57BL/6 mice | 50 mg/kg intraperitoneal | 10 days | 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson’s disease | Sensorimotor test
|
Yi et al. [16] | Male ICR mice and Wistar rats | 10 and 20 mg/kg gastric gavage 7 and 14 mg/kg oral | 2 weeks 4 weeks | Chronic mild stress-induced depressive-like behaviour | Forced swimming test Sucrose preference test |
Zanoli et al. [44] | Male Sprague Dawley rats | 25 mg/kg and 50 mg/kg intraperitoneal | <1 h | Behavioural characterization of apigenin | Open field test Dark-light model of anxiety Pentobarbital sleeping time |
Zhang et al. [15] | C57BL/6 male mice | 10, 20 and 40 mg/kg/P.O. | 3 weeks | Corticosterone-induced depressive-like behaviour | Sucrose preference test Tail suspension test Open field test |
Zhao [45] | Male Sprague Dawley rats | 117, 234, 351 mg/kg intragastric | 28 days | Acetonitrile-induced neuroinflammation in rats | Open field Test |
Zhao et al. [46] | APP/PS1 double-transgenic mice and wild-type littermates | 40 mg/kg oral gavage | 12 weeks | AβPPswe Alzheimer’s disease mouse model | Morris Water Maze |
Zhao et al. [47] | Mice | 10, 20 and 40 mg/kg | Senescence-accelerated mouse prone 8 (SAMP8) mouse model | Morris Water Maze |
Study | Behavioural Paradigm | Results |
---|---|---|
Chen et al. [20] | Morris Water Maze |
|
Chesworth et al. [21] | Barnes maze |
|
Ahmedy et al. [26] | Morris Water Maze Y-maze |
|
Hashemi et al. [27] | Morris Water Maze Y-maze |
|
Jameie et al. [28] | Morris Water Maze |
|
Kim et al. [29] | Morris Water Maze Tmaze Novel object recognition |
|
Mao et al. [30] | Morris Water Maze |
|
Liu et al. [34] | Morris Water Maze |
|
Patil et al. [36] | Passive avoidance test |
|
Popovic et al. [10] | Passive avoidance test |
|
Salgueiro et al. [37] | Inhibitory avoidance Passive avoidance performance |
|
Sharma et al. [38] | T-maze |
|
Taha et al. [39] | Novel object recognition Morris Water Maze |
|
Tu et al. [40] | Morris Water Maze |
|
Yadav et al. [42] | Morris Water Maze |
|
Zhao et al. [46] | Morris Water Maze |
|
Zhao et al. [47] | Morris Water Maze |
|
Nikbakht et al. [31] | Y-maze |
|
Study | Behavioural Paradigm | Results |
---|---|---|
Bijani et al. [22] | Open field test |
|
Li et al. [32] | Open field test |
|
Li et al. [33] | Open field test |
|
Patel and Singh [35] | Open field test |
|
Patil et al. [36] | Locomotor activity |
|
Salgueiro et al. [37] | Open field test |
|
Yadav et al. [42] | Open field test |
|
Zanoli et al. [44] | Open field test |
|
Zhang et al. [15] | Open field test |
|
Zhao et al. [45] | Open field test |
|
Study | Behavioural Paradigm | Results |
---|---|---|
Bijani et al. [22] | Forced swimming test Splash test |
|
Amin et al. [25] | Forced swimming test |
|
Li et al. [32] | Sucrose preference test |
|
Li et al. [33] | Tail suspension test Sucrose preference test |
|
Olayinka et al. [11] | Sucrose splash test Forced swim test Tail suspension test |
|
Sharma et al. [38] | Tail suspension test Forced swimming test |
|
Weng et al. [41] | Sucrose preference test Forced swimming test |
|
Yadav et al. [42] | Forced swim test |
|
Yi et al. [16] | Forced swimming test Sucrose preference test |
|
Zhang et al. [15] | Sucrose preference test Tail suspension test |
|
Study | Behavioural Paradigm | Results |
---|---|---|
Amin et al. [25] | Elevated plus maze |
|
Olayinka et al. [11] | Elevated plus maze |
|
Patil et al. [36] | Elevated plus maze |
|
Sharma et al. [38] | Elevated plus maze |
|
Zanoli et al. [44] | Dark–light model of anxiety |
|
Study | Behavioural Paradigm | Results |
---|---|---|
Anusha and Sumathi [23] | Rotarod activity Grip strength Catalepsy |
|
Anusha et al. [24] | Rotarod |
|
Patel and Singh [35] | Rotarod Grip strength test SG mount |
|
Patil et al. [36] | Rotarod |
|
Yadav et al. [42] | Grip strength test |
|
Yarim et al. [43] | Sensorimotor test
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olasehinde, T.A.; Olaokun, O.O. The Beneficial Role of Apigenin against Cognitive and Neurobehavioural Dysfunction: A Systematic Review of Preclinical Investigations. Biomedicines 2024, 12, 178. https://doi.org/10.3390/biomedicines12010178
Olasehinde TA, Olaokun OO. The Beneficial Role of Apigenin against Cognitive and Neurobehavioural Dysfunction: A Systematic Review of Preclinical Investigations. Biomedicines. 2024; 12(1):178. https://doi.org/10.3390/biomedicines12010178
Chicago/Turabian StyleOlasehinde, Tosin A., and Oyinlola O. Olaokun. 2024. "The Beneficial Role of Apigenin against Cognitive and Neurobehavioural Dysfunction: A Systematic Review of Preclinical Investigations" Biomedicines 12, no. 1: 178. https://doi.org/10.3390/biomedicines12010178
APA StyleOlasehinde, T. A., & Olaokun, O. O. (2024). The Beneficial Role of Apigenin against Cognitive and Neurobehavioural Dysfunction: A Systematic Review of Preclinical Investigations. Biomedicines, 12(1), 178. https://doi.org/10.3390/biomedicines12010178