Prediction of Visual Acuity in Pathologic Myopia with Myopic Choroidal Neovascularization Treated with Anti-Vascular Endothelial Growth Factor Using a Deep Neural Network Based on Optical Coherence Tomography Images
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Data Collection and Labelling
2.3. Data Preprocessing
2.4. Model Architecture
2.5. Experiment Setup
- LassoCV [25]: Linear regression method with an L1-norm penalty. It trains the weights to be close to zero, thereby identifying the most important features in the model and finding a generalized model;
- LR + RF [26]: Combination of LR and RF into an ensemble algorithm using a stacking approach. LR refers to linear regression, and RF stands for random forest regressor.
3. Results
3.1. Prediction 1 Year from the Baseline
3.2. Prediction 2 Years from the Baseline
3.3. Prediction 3 Years from the Baseline
3.4. Comparison with Existing Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yoshida, T.; Ohno-Matsui, K.; Yasuzumi, K.; Kojima, A.; Shimada, N.; Futagami, S.; Tokoro, T.; Mochizuki, M. Myopic choroidal neovascularization: A 10-year follow-up. Ophthalmology 2003, 110, 1297–1305. [Google Scholar] [CrossRef] [PubMed]
- Ohno-Matsui, K.; Ikuno, Y.; Lai, T.Y.Y.; Gemmy Cheung, C.M. Diagnosis and treatment guideline for myopic choroidal neovascularization due to pathologic myopia. Prog. Retin. Eye Res. 2018, 63, 92–106. [Google Scholar] [CrossRef] [PubMed]
- El Matri, L.; Chebil, A.; Kort, F. Current and emerging treatment options for myopic choroidal neovascularization. Clin. Ophthalmol. 2015, 9, 733–744. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.Y.; Wu, P.Y.; Sheu, S.J. Optical coherence tomography biomarkers for myopic choroidal neovascularization treated with anti-vascular endothelial growth factor. Kaohsiung J. Med. Sci. 2023, 39, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.K.; Yu, H.G. Outcomes of Antivascular Endothelial Growth Factor Treatment for Foveal Serous Retinal Detachment Associated with Inferior Staphyloma. Korean J. Ophthalmol. 2019, 33, 228–237. [Google Scholar] [CrossRef]
- Calvo-Gonzalez, C.; Reche-Frutos, J.; Donate, J.; Fernandez-Perez, C.; Garcia-Feijoo, J. Intravitreal ranibizumab for myopic choroidal neovascularization: Factors predictive of visual outcome and need for retreatment. Am. J. Ophthalmol. 2011, 151, 529–534. [Google Scholar] [CrossRef]
- Wang, H.Y.; Tao, M.Z.; Wang, X.X.; Li, M.H.; Zhang, Z.F.; Sun, D.J.; Zhu, J.T.; Wang, Y.S. Baseline characteristics of myopic choroidal neovascularization in patients above 50 years old and prognostic factors after intravitreal conbercept treatment. Sci. Rep. 2021, 11, 7337. [Google Scholar] [CrossRef]
- Guichard, M.M.; Peters, G.; Tuerksever, C.; Pruente, C.; Hatz, K. Outcome Predictors of SD-OCT-Driven Intravitreal Ranibizumab in Choroidal Neovascularization due to Myopia. Ophthalmologica 2020, 243, 154–162. [Google Scholar] [CrossRef]
- Hsu, C.R.; Lai, T.T.; Hsieh, Y.T.; Ho, T.C.; Yang, C.M.; Yang, C.H. Baseline predictors for good visual gains after anti-vascular endothelial growth factor therapy for myopic choroidal neovascularization. Sci. Rep. 2022, 12, 6800. [Google Scholar] [CrossRef]
- Li, Y.; Foo, L.L.; Wong, C.W.; Li, J.; Hoang, Q.V.; Schmetterer, L.; Ting, D.S.W.; Ang, M. Pathologic myopia: Advances in imaging and the potential role of artificial intelligence. Br. J. Ophthalmol. 2023, 107, 600–606. [Google Scholar] [CrossRef]
- Park, S.J.; Ko, T.; Park, C.K.; Kim, Y.C.; Choi, I.Y. Deep Learning Model Based on 3D Optical Coherence Tomography Images for the Automated Detection of Pathologic Myopia. Diagnostics 2022, 12, 742. [Google Scholar] [CrossRef]
- Li, Y.; Feng, W.; Zhao, X.; Liu, B.; Zhang, Y.; Chi, W.; Lu, M.; Lin, J.; Wei, Y.; Li, J.; et al. Development and validation of a deep learning system to screen vision-threatening conditions in high myopia using optical coherence tomography images. Br. J. Ophthalmol. 2022, 106, 633–639. [Google Scholar] [CrossRef]
- Choi, K.J.; Choi, J.E.; Roh, H.C.; Eun, J.S.; Kim, J.M.; Shin, Y.K.; Kang, M.C.; Chung, J.K.; Lee, C.; Lee, D.; et al. Deep learning models for screening of high myopia using optical coherence tomography. Sci. Rep. 2021, 11, 21663. [Google Scholar] [CrossRef]
- Han, J.; Choi, S.; Park, J.I.; Hwang, J.S.; Han, J.M.; Ko, J.; Yoon, J.; Hwang, D.D. Detecting Macular Disease Based on Optical Coherence Tomography Using a Deep Convolutional Network. J. Clin. Med. 2023, 12, 1005. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 2818–2826. [Google Scholar]
- Shin, H.C.; Roth, H.R.; Gao, M.; Lu, L.; Xu, Z.; Nogues, I.; Yao, J.; Mollura, D.; Summers, R.M. Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. IEEE Trans. Med. Imaging 2016, 35, 1285–1298. [Google Scholar] [CrossRef]
- Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Xu, B.; Wang, N.; Chen, T.; Li, M.J. Empirical evaluation of rectified activations in convolutional network. arXiv 2015, arXiv:1505.00853. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Volume 30. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Kawczynski, M.G.; Bengtsson, T.; Dai, J.; Hopkins, J.J.; Gao, S.S.; Willis, J.R. Development of Deep Learning Models to Predict Best-Corrected Visual Acuity from Optical Coherence Tomography. Transl. Vis. Sci. Technol. 2020, 9, 51. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Identity mappings in deep residual networks. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part IV 14. pp. 630–645. [Google Scholar]
- Rohm, M.; Tresp, V.; Muller, M.; Kern, C.; Manakov, I.; Weiss, M.; Sim, D.A.; Priglinger, S.; Keane, P.A.; Kortuem, K. Predicting Visual Acuity by Using Machine Learning in Patients Treated for Neovascular Age-Related Macular Degeneration. Ophthalmology 2018, 125, 1028–1036. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, F.; Lin, Z.; Wang, J.; Huang, C.; Wei, M.; Zhai, W.; Li, J. Prediction of Visual Acuity after anti-VEGF Therapy in Diabetic Macular Edema by Machine Learning. J. Diabetes Res. 2022, 2022, 5779210. [Google Scholar] [CrossRef]
- Inoda, S.; Takahashi, H.; Arai, Y.; Tampo, H.; Matsui, Y.; Kawashima, H.; Yanagi, Y. An AI model to estimate visual acuity based solely on cross-sectional OCT imaging of various diseases. Graefes Arch. Clin. Exp. Ophthalmol. 2023, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Fu, D.J.; Faes, L.; Wagner, S.K.; Moraes, G.; Chopra, R.; Patel, P.J.; Balaskas, K.; Keenan, T.D.L.; Bachmann, L.M.; Keane, P.A. Predicting Incremental and Future Visual Change in Neovascular Age-Related Macular Degeneration Using Deep Learning. Ophthalmol. Retina 2021, 5, 1074–1084. [Google Scholar] [CrossRef] [PubMed]
- Aslam, T.M.; Zaki, H.R.; Mahmood, S.; Ali, Z.C.; Ahmad, N.A.; Thorell, M.R.; Balaskas, K. Use of a Neural Net to Model the Impact of Optical Coherence Tomography Abnormalities on Vision in Age-related Macular Degeneration. Am. J. Ophthalmol. 2018, 185, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Schmidt-Erfurth, U.; Bogunovic, H.; Sadeghipour, A.; Schlegl, T.; Langs, G.; Gerendas, B.S.; Osborne, A.; Waldstein, S.M. Machine Learning to Analyze the Prognostic Value of Current Imaging Biomarkers in Neovascular Age-Related Macular Degeneration. Ophthalmol. Retina 2018, 2, 24–30. [Google Scholar] [CrossRef]
Horizontal/Vertical Cut Images | Volume Scan Images | |||||
---|---|---|---|---|---|---|
After 1 Year | After 2 Years | After 3 Years | After 1 Year | After 2 Years | After 3 Years | |
Images, n | 8444 | 5302 | 3290 | 107,975 | 67,850 | 42,375 |
Patients, n | 279 | 192 | 142 | 279 | 192 | 142 |
Data | |
---|---|
After 1 year | - VA and SD-OCT images at baseline and next visit - The number of injections in 1 year - Age and sex |
After 2 years | - VA and SD-OCT images at baseline and after 1 year - The number of injections in 1 year and 2 years - Age and sex |
After 3 years | - VA and SD-OCT images at baseline and after 1 and 2 year(s) - The number of injections in 1, 2, and 3 years - Age and sex |
H/V Cut | Volume Scan Image | |||
---|---|---|---|---|
RMSE | R2 | RMSE | R2 | |
OCT at baseline | 0.50346 | −0.00979 | 0.47105 | 0.01619 |
VA at baseline | 0.19883 | 0.84251 | 0.19626 | 0.84937 |
OV(B) a | 0.19448 | 0.84931 | 0.19354 | 0.85352 |
OV(B) + sex + age | 0.22167 | 0.80785 | 0.20682 | 0.82959 |
OV(B) + Inject(1) b | 0.20599 | 0.83096 | 0.20234 | 0.83989 |
OV(B) + OV(N) c | 0.15446 | 0.90496 | 0.15069 | 0.91120 |
OV(B) + OV(N) + Inject(1) | 0.16023 | 0.89772 | 0.15662 | 0.90407 |
H/V Cut | Volume Scan Image | |||
---|---|---|---|---|
RMSE | R2 | RMSE | R2 | |
OCT at baseline | 0.72555 | −0.03815 | 0.71943 | 0.04066 |
VA at baseline | 0.37775 | 0.71859 | 0.37080 | 0.72102 |
OV(B) a | 0.37366 | 0.72886 | 0.33639 | 0.75303 |
OV(B) + sex + age | 0.44571 | 0.64150 | 0.41487 | 0.69102 |
OV(B) + Inject(1) b | 0.43218 | 0.66193 | 0.42637 | 0.67138 |
OV(B) + OV(1) c | 0.37321 | 0.72532 | 0.33949 | 0.80934 |
OV(B) + OV(1) + Inject(1) | 0.30815 | 0.81273 | 0.27233 | 0.87732 |
OV(B) + OV(1) + Inject(1) + Inject(2) d | 0.28549 | 0.83927 | 0.25370 | 0.89353 |
H/V Cut | Volume Scan Image | |||
---|---|---|---|---|
RMSE | R2 | RMSE | R2 | |
OCT at baseline | 0.71571 | −0.06554 | 0.69769 | 0.02714 |
VA at baseline | 0.44776 | 0.57128 | 0.44478 | 0.57310 |
OV(B) a | 0.45006 | 0.57866 | 0.43333 | 0.60151 |
OV(B) + sex + age | 0.46143 | 0.55710 | 0.45674 | 0.55581 |
OV(B) + Inject(1) b | 0.47352 | 0.53359 | 0.46282 | 0.54390 |
OV(B) + OV(1) c | 0.39429 | 0.67661 | 0.35941 | 0.72495 |
OV(B) + OV(1) + Inject(1) | 0.36825 | 0.71792 | 0.33943 | 0.75469 |
OV(B) + OV(1) + OV(2) d | 0.32497 | 0.78032 | 0.27473 | 0.83928 |
OV(B) + OV(1) + OV(2) Inject(1) + Inject(2) e | 0.30425 | 0.80744 | 0.24435 | 0.87287 |
OV(B) + OV(1) + OV(2) Inject(1) + Inject(2) + Inject(3) f | 0.29614 | 0.81758 | 0.22661 | 0.89066 |
RMSE | R2 | ||
---|---|---|---|
O(B) a | ResNet-50 v2 [23] | 0.55545 | −0.12990 |
V(B) b + Inject(1) c | LassoCV [25] | 0.23657 | 0.79503 |
LR + RF [26] | 0.25328 | 0.76507 | |
OV(B) d + Inject(1) | Ours | 0.20234 | 0.83989 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, M.; Han, J.; Park, J.I.; Hwang, J.S.; Han, J.M.; Yoon, J.; Choi, S.; Hwang, G.; Hwang, D.D.-J. Prediction of Visual Acuity in Pathologic Myopia with Myopic Choroidal Neovascularization Treated with Anti-Vascular Endothelial Growth Factor Using a Deep Neural Network Based on Optical Coherence Tomography Images. Biomedicines 2023, 11, 2238. https://doi.org/10.3390/biomedicines11082238
Yang M, Han J, Park JI, Hwang JS, Han JM, Yoon J, Choi S, Hwang G, Hwang DD-J. Prediction of Visual Acuity in Pathologic Myopia with Myopic Choroidal Neovascularization Treated with Anti-Vascular Endothelial Growth Factor Using a Deep Neural Network Based on Optical Coherence Tomography Images. Biomedicines. 2023; 11(8):2238. https://doi.org/10.3390/biomedicines11082238
Chicago/Turabian StyleYang, Migyeong, Jinyoung Han, Ji In Park, Joon Seo Hwang, Jeong Mo Han, Jeewoo Yoon, Seong Choi, Gyudeok Hwang, and Daniel Duck-Jin Hwang. 2023. "Prediction of Visual Acuity in Pathologic Myopia with Myopic Choroidal Neovascularization Treated with Anti-Vascular Endothelial Growth Factor Using a Deep Neural Network Based on Optical Coherence Tomography Images" Biomedicines 11, no. 8: 2238. https://doi.org/10.3390/biomedicines11082238
APA StyleYang, M., Han, J., Park, J. I., Hwang, J. S., Han, J. M., Yoon, J., Choi, S., Hwang, G., & Hwang, D. D.-J. (2023). Prediction of Visual Acuity in Pathologic Myopia with Myopic Choroidal Neovascularization Treated with Anti-Vascular Endothelial Growth Factor Using a Deep Neural Network Based on Optical Coherence Tomography Images. Biomedicines, 11(8), 2238. https://doi.org/10.3390/biomedicines11082238