Neuroprotective Potential of Raloxifene via G-Protein-Coupled Estrogen Receptors in Aβ-Oligomer-Induced Neuronal Injury
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Cells
2.2. Aggregation Kinetics of Aβ1–42 and Aβ1–40
2.3. Separation and Collection of Aβ Molecular Species with HPLC
2.4. SH-SY5Y Cell Culture and the Reagent Treatment Method
2.5. Effect of Raloxifene and Estradiol on Aβo-Induced Cytotoxicity
2.5.1. Detection of Viability via the MTT Assay
2.5.2. Detection of Cell Viability and Cytotoxicity Using Calcein-AM/Ethidium Homodimer-1 (Live/Dead) Cell Assay
2.6. Detection of Oxidative Stress
2.6.1. Reactive Oxygen Species (ROS)
2.6.2. Mitochondrial ROS Production
2.6.3. Measurement of Phospholipid Peroxidation in Cell Membranes
2.7. Measurement of [Ca2+]i Changes
2.8. Statistical Analysis
3. Results
3.1. Effects of Raloxifene and Estradiol on Aβ1–42 and Aβ1–40 Aggregation
3.2. Effects of Raloxifene and Estradiol on Aβo-Induced Cytotoxicity
3.2.1. Detection of Cell Viability via the MTT Assay
3.2.2. Detection of Cell Viability and Cytotoxicity Using the Calcein-AM and Ethidium Homodimer-1 (Live/Dead) Cell Assay
3.3. Effects of Raloxifene and Estradiol on Aβo-Induced Oxidative Stress
3.3.1. Measurement of ROS Production
3.3.2. Mitochondrial ROS
3.3.3. Detection of Cell-Membrane Phospholipid Peroxidation Capacity
3.4. Changes in [Ca2+]i Levels following Treatment with Raloxifene and Estradiol
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD 2019 Dementia Forecasting Collaborators. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: An analysis for the Global Burden of Disease Study 2019. Lancet Public Health 2022, 7, e105–e125. [Google Scholar] [CrossRef]
- Fiest, K.M.; Roberts, J.I.; Maxwell, C.J.; Hogan, D.B.; Smith, E.E.; Frolkis, A.; Cohen, A.; Kirk, A.; Pearson, D.; Pringsheim, T.; et al. The prevalence and incidence of dementia due to Alzheimer’s disease: A systematic review and meta-analysis. Can. J. Neurol. Sci. 2016, 43 (Suppl. S1), S51–S82. [Google Scholar] [CrossRef] [PubMed]
- Mölsä, P.K.; Marttila, R.J.; Rinne, U.K. Long-term survival and predictors of mortality in Alzheimer’s disease and multi-infarct dementia. Acta Neurol. Scand. 1995, 91, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Selkoe, D.J. Normal and abnormal biology of the beta-amyloid precursor protein. Annu. Rev. Neurosci. 1994, 17, 489–517. [Google Scholar] [CrossRef] [PubMed]
- Haass, C.; Selkoe, D.J. Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer’s amyloid β-peptide. Nat. Rev. Mol. Cell Biol. 2007, 8, 101–112. [Google Scholar] [CrossRef]
- Tucker, S.; Möller, C.; Tegerstedt, K.; Lord, A.; Laudon, H.; Sjödahl, J.; Söderberg, L.; Spens, E.; Sahlin, C.; Waara, E.R.; et al. The murine version of BAN2401 (mAb158) selectively reduces amyloid-β protofibrils in brain and cerebrospinal fluid of tg-ArcSwe mice. J. Alzheimers. Dis. 2015, 43, 575–588. [Google Scholar] [CrossRef]
- Niu, H.; Álvarez-Álvarez, I.; Guillén-Grima, F.; Aguinaga-Ontoso, I. Prevalence and incidence of Alzheimer’s disease in Europe: A meta-analysis. Neurologia 2017, 32, 523–532. [Google Scholar] [CrossRef]
- Lan, Y.L.; Zou, S.; Zhang, C.; Li, J.; Xu, Y.; Li, S. Update on the effect of estradiol in postmenopause women with Alzheimer’s disease: A systematic review. Acta Neurol. Belg. 2016, 116, 249–257. [Google Scholar] [CrossRef]
- Skoog, I.; Gustafson, D. HRT and dementia. J. Epidemiol. Biostat. 1999, 4, 227–251. [Google Scholar]
- Weller, I.; Schatzker, J. Hip fractures and Alzheimer’s disease in elderly institutionalized Canadians. Ann. Epidemiol. 2004, 14, 319–324. [Google Scholar] [CrossRef]
- Zhou, R.; Deng, J.; Zhang, M.; Zhou, H.D.; Wang, Y.J. Association between bone mineral density and the risk of Alzheimer’s disease. J. Alzheimers Dis. 2011, 24, 101–108. [Google Scholar] [CrossRef]
- Li, S.; Yang, B.; Teguh, D.; Zhou, L.; Xu, J.; Rong, L. Amyloid β peptide enhances RANKL-induced osteoclast activation through NF-κB, ERK, and calcium oscillation signaling. Int. J. Mol. Sci. 2016, 17, 1683. [Google Scholar] [CrossRef]
- Albright, F.; Smith, P.H.; Richardson, A.M. Postmenopausal osteoporosis: Its clinical features. J. Am. Med. Assoc. 1941, 116, 2465–2474. [Google Scholar] [CrossRef]
- Ziel, H.K.; Finkle, W.D. Increased risk of endometrial carcinoma among users of conjugated estrogens. N. Engl. J. Med. 1975, 293, 1167–1170. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Qin, W.; Chen, D.; Feng, Y.; Su, H.; Shao, W.; Zhou, B.; Bu, X. Raloxifene alleviates amyloid-β-induced cytotoxicity in HT22 neuronal cells via inhibiting oligomeric and fibrillar species formation. J. Biochem. Mol. Toxicol. 2019, 33, e22395. [Google Scholar] [CrossRef]
- Jacobsen, D.E.; Samson, M.M.; Emmelot-Vonk, M.H.; Verhaar, H.J. Raloxifene improves verbal memory in late postmenopausal women: A randomized, double-blind, placebo-controlled trial. Menopause 2010, 17, 309–314. [Google Scholar] [CrossRef]
- Kara, F.; Lohse, C.M.; Castillo, A.M.; Tosakulwong, N.; Lesnick, T.G.; Jack, C.R.; Petersen, R.C.; Olson, J.E.; Couch, F.J.; Ruddy, K.J.; et al. Association of raloxifene and tamoxifen therapy with cognitive performance, odds of mild cognitive impairment, and brain MRI markers of neurodegeneration. Cancer Med. 2023, 12, 2805–2817. [Google Scholar] [CrossRef]
- Henderson, V.W.; Ala, T.; Sainani, K.L.; Bernstein, A.L.; Stephenson, B.S.; Rosen, A.C.; Farlow, M.R. Raloxifene for women with Alzheimer disease: A randomized controlled pilot trial. Neurology 2015, 85, 1937–1944. [Google Scholar] [CrossRef]
- Jack, C.R., Jr.; Knopman, D.S.; Jagust, W.J.; Shaw, L.M.; Aisen, P.S.; Weiner, M.W.; Petersen, R.C.; Trojanowski, J.Q. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010, 9, 119–128. [Google Scholar] [CrossRef]
- Momma, Y.; Tsuji, M.; Oguchi, T.; Ohashi, H.; Nohara, T.; Ito, N.; Yamamoto, K.; Nagata, M.; Kimura, M.A.; Nakamura, S.; et al. The Curcumin Derivative GT863 Protects Cell Membranes in Cytotoxicity by Aβ Oligomers. Int. J. Mol. Sci. 2023, 24, 3089. [Google Scholar] [CrossRef]
- Nakayama, T.; Tsuji, M.; Umeda, K.; Oguchi, T.; Konno, H.; Shinohara, M.; Kiuchi, Y.; Kodera, N.; David, B.T.; Ono, K. Structural Dynamics of Amyloid-β Protofibrils and Actions of Anti-Amyloid-β Antibodies as Observed by High-Speed Atomic Force Microscopy. Nano Lett. 2023, 23, 6259–6268. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Guo, C.; Kong, J. Oxidative stress in neurodegenerative diseases. Neural Regen. Res. 2012, 7, 376–385. [Google Scholar] [CrossRef] [PubMed]
- Sayre, L.M.; Perry, G.; Smith, M.A. Oxidative stress and neurotoxicity. Chem. Res. Toxicol. 2008, 21, 172–188. [Google Scholar] [CrossRef] [PubMed]
- Hardy, J.; Selkoe, D.J. The amyloid hypothesis of Alzheilnerls disease: Progress and problems on the road to therapeutics. Science 2002, 297, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Yasumoto, T.; Takamura, Y.; Tsuji, M.; Watanabe-Nakayama, T.; Imamura, K.; Inoue, H.; Nakamura, S.; Inoue, T.; Kimura, A.; Yano, S.; et al. High-molecular-weight amyloid β1–42 oligomers induce neurotoxicity via plasma membrane damage. FASEB J. 2019, 38, 9220–9234. [Google Scholar] [CrossRef] [PubMed]
- Hoover, R.; Gray, L.A.; Cole, P.; MacMahon, B. Menopausal estrogens and breast cancer. N. Engl. J. Med. 1976, 295, 401–405. [Google Scholar] [CrossRef] [PubMed]
- Eastell, R.; Rosen, C.J.; Black, D.M.; Cheung, A.M.; Murad, M.H.; Shoback, D. Pharmacological management of osteoporosis in postmenopausal women: An Endocrine Society* clinical practice guideline. J. Clin. Endocrinol. Metab. 2019, 104, 1595–1622. [Google Scholar] [CrossRef]
- Honig, M.G.; Del Mar, N.A.; Henderson, D.L.; Ragsdale, T.D.; Doty, J.B.; Driver, J.H.; Li, C.; Fortugno, A.P.; Mitchell, W.M.; Perry, A.M.; et al. Amelioration of visual deficits and visual system pathology after mild TBI via the cannabinoid Type-2 receptor inverse agonism of raloxifene. Exp. Neurol. 2019, 322, 113063. [Google Scholar] [CrossRef]
- Dickler, M.N.; Norton, L. The MORE trial: Multiple outcomes for raloxifene evaluation--breast cancer as a secondary end point: Implications for prevention. Ann. N. Y. Acad. Sci. 2001, 949, 134–142. [Google Scholar] [CrossRef]
- Pupo, M.; Pisano, A.; Abonante, S.; Maggiolini, M.; Musti, A.M. GPER activates Notch signaling in breast cancer cells and cancer-associated fibroblasts (CAFs). Int. J. Biochem. Cell Biol. 2014, 46, 56–67. [Google Scholar] [CrossRef]
- Pupo, M.; Maggiolini, M.; Musti, A.M. GPER mediates non-genomic effects of estrogen. Methods Mol. Biol. 2016, 1366, 471–488. [Google Scholar] [CrossRef]
- Whitcomb, V.; Wauson, E.; Christian, D.; Clayton, S.; Giles, J.; Tran, Q.-K. Regulation of beta adrenoceptor-mediated myocardial contraction and calcium dynamics by the G protein-coupled estrogen receptor 1. Biochem. Pharmacol. 2020, 171, 113727. [Google Scholar] [CrossRef]
- Masuda, Y.; Uemura, S.; Ohashi, R.; Nakanishi, A.; Takegoshi, K.; Shimizu, T.; Shirasawa, T.; Irie, K. Identification of physiological and toxic conformations in Abeta42 aggregates. ChemBioChem 2009, 10, 287–295. [Google Scholar] [CrossRef]
- Porat, Y.; Mazor, Y.; Efrat, S.; Gazit, E. Inhibition of islet amyloid polypeptide fibril formation: A potential role for heteroaromatic interactions. Biochemistry 2004, 43, 14454–14462. [Google Scholar] [CrossRef]
- Humpel, C. Identifying and validating biomarkers for Alzheimer’s disease. Trends Biotechnol. 2011, 29, 26–32. [Google Scholar] [CrossRef]
- Näslund, J.; Haroutunian, V.; Mohs, R.; Davis, K.L.; Davies, P.; Greengard, P.; Buxbaum, J.D. Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline. JAMA 2000, 283, 1571–1577. [Google Scholar] [CrossRef]
- Pérez-Edo, L. Selective estrogen receptor modulators (SERM). Rev. Esp. Reumatol. 2004, 31, 13–17. [Google Scholar]
- Demuro, A.; Mina, E.; Kayed, R.; Milton, S.C.; Parker, I.; Glabe, C.G. Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J. Biol. Chem. 2005, 280, 17294–17300. [Google Scholar] [CrossRef]
- Lin, H.; Bhatia, R.; Lal, R. Amyloid β protein forms ion channels: Implications for Alzheimer’s disease pathophysiology. FASEB J. 2001, 15, 2433–2444. [Google Scholar] [CrossRef]
- Caballero, E.; Hernando-Pérez, E.; Tapias, V.; Calvo-Rodríguez, M.; Villalobos, C.; Núñez, L. Amyloid beta oligomers-induced Ca2+ entry pathways: Role of neuronal networks, NMDA receptors and amyloid channel formation. Biomedicines 2022, 10, 1153. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, Y.L.; Lai, B.; Zheng, P.; Zhu, Y.C.; Yao, T. Raloxifene acutely reduces glutamate-induced intracellular calcium increase in cultured rat cortical neurons via inhibition of high-voltage-activated calcium current. Neuroscience 2007, 147, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Stutzmann, G.E. The pathogenesis of Alzheimers disease is it a lifelong “calciumopathy”? Neuroscientist 2007, 13, 546–559. [Google Scholar] [CrossRef] [PubMed]
- Konyalioglu, S.; Durmaz, G.; Yalcin, A. The potential antioxidant effect of raloxifene treatment: A study on heart, liver and brain cortex of ovariectomized female rats. Cell Biochem. Funct. 2007, 25, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Saeed, K.; Jo, M.H.; Park, J.S.; Alam, S.I.; Khan, I.; Ahmad, R.; Khan, A.; Ullah, R.; Kim, M.O. 17β-estradiol abrogates oxidative stress and neuroinflammation after cortical stab wound injury. Antioxidants 2021, 10, 1682. [Google Scholar] [CrossRef]
- Subramaniam, R.; Roediger, F.; Jordan, B.; Mattson, M.P.; Keller, J.N.; Waeg, G.; Butterfield, D.A. The lipid peroxidation product, 4-hydroxy-2-trans-nonenal, alters the conformation of cortical synaptosomal membrane proteins. J. Neurochem. 1997, 69, 1161–1169. [Google Scholar] [CrossRef]
- Hebda, J.A.; Miranker, A.D. The interplay of catalysis and toxicity by amyloid intermediates on lipid bilayers: Insights from type II diabetes. Annu. Rev. Biophys. 2009, 38, 125–152. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nohara, T.; Tsuji, M.; Oguchi, T.; Momma, Y.; Ohashi, H.; Nagata, M.; Ito, N.; Yamamoto, K.; Murakami, H.; Kiuchi, Y. Neuroprotective Potential of Raloxifene via G-Protein-Coupled Estrogen Receptors in Aβ-Oligomer-Induced Neuronal Injury. Biomedicines 2023, 11, 2135. https://doi.org/10.3390/biomedicines11082135
Nohara T, Tsuji M, Oguchi T, Momma Y, Ohashi H, Nagata M, Ito N, Yamamoto K, Murakami H, Kiuchi Y. Neuroprotective Potential of Raloxifene via G-Protein-Coupled Estrogen Receptors in Aβ-Oligomer-Induced Neuronal Injury. Biomedicines. 2023; 11(8):2135. https://doi.org/10.3390/biomedicines11082135
Chicago/Turabian StyleNohara, Tetsuhito, Mayumi Tsuji, Tatsunori Oguchi, Yutaro Momma, Hideaki Ohashi, Miki Nagata, Naohito Ito, Ken Yamamoto, Hidetomo Murakami, and Yuji Kiuchi. 2023. "Neuroprotective Potential of Raloxifene via G-Protein-Coupled Estrogen Receptors in Aβ-Oligomer-Induced Neuronal Injury" Biomedicines 11, no. 8: 2135. https://doi.org/10.3390/biomedicines11082135
APA StyleNohara, T., Tsuji, M., Oguchi, T., Momma, Y., Ohashi, H., Nagata, M., Ito, N., Yamamoto, K., Murakami, H., & Kiuchi, Y. (2023). Neuroprotective Potential of Raloxifene via G-Protein-Coupled Estrogen Receptors in Aβ-Oligomer-Induced Neuronal Injury. Biomedicines, 11(8), 2135. https://doi.org/10.3390/biomedicines11082135