Neuroprotective Potential of Raloxifene via G-Protein-Coupled Estrogen Receptors in Aβ-Oligomer-Induced Neuronal Injury
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Cells
2.2. Aggregation Kinetics of Aβ1–42 and Aβ1–40
2.3. Separation and Collection of Aβ Molecular Species with HPLC
2.4. SH-SY5Y Cell Culture and the Reagent Treatment Method
2.5. Effect of Raloxifene and Estradiol on Aβo-Induced Cytotoxicity
2.5.1. Detection of Viability via the MTT Assay
2.5.2. Detection of Cell Viability and Cytotoxicity Using Calcein-AM/Ethidium Homodimer-1 (Live/Dead) Cell Assay
2.6. Detection of Oxidative Stress
2.6.1. Reactive Oxygen Species (ROS)
2.6.2. Mitochondrial ROS Production
2.6.3. Measurement of Phospholipid Peroxidation in Cell Membranes
2.7. Measurement of [Ca2+]i Changes
2.8. Statistical Analysis
3. Results
3.1. Effects of Raloxifene and Estradiol on Aβ1–42 and Aβ1–40 Aggregation
3.2. Effects of Raloxifene and Estradiol on Aβo-Induced Cytotoxicity
3.2.1. Detection of Cell Viability via the MTT Assay
3.2.2. Detection of Cell Viability and Cytotoxicity Using the Calcein-AM and Ethidium Homodimer-1 (Live/Dead) Cell Assay
3.3. Effects of Raloxifene and Estradiol on Aβo-Induced Oxidative Stress
3.3.1. Measurement of ROS Production
3.3.2. Mitochondrial ROS
3.3.3. Detection of Cell-Membrane Phospholipid Peroxidation Capacity
3.4. Changes in [Ca2+]i Levels following Treatment with Raloxifene and Estradiol
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD 2019 Dementia Forecasting Collaborators. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: An analysis for the Global Burden of Disease Study 2019. Lancet Public Health 2022, 7, e105–e125. [Google Scholar] [CrossRef]
- Fiest, K.M.; Roberts, J.I.; Maxwell, C.J.; Hogan, D.B.; Smith, E.E.; Frolkis, A.; Cohen, A.; Kirk, A.; Pearson, D.; Pringsheim, T.; et al. The prevalence and incidence of dementia due to Alzheimer’s disease: A systematic review and meta-analysis. Can. J. Neurol. Sci. 2016, 43 (Suppl. S1), S51–S82. [Google Scholar] [CrossRef] [PubMed]
- Mölsä, P.K.; Marttila, R.J.; Rinne, U.K. Long-term survival and predictors of mortality in Alzheimer’s disease and multi-infarct dementia. Acta Neurol. Scand. 1995, 91, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Selkoe, D.J. Normal and abnormal biology of the beta-amyloid precursor protein. Annu. Rev. Neurosci. 1994, 17, 489–517. [Google Scholar] [CrossRef] [PubMed]
- Haass, C.; Selkoe, D.J. Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer’s amyloid β-peptide. Nat. Rev. Mol. Cell Biol. 2007, 8, 101–112. [Google Scholar] [CrossRef]
- Tucker, S.; Möller, C.; Tegerstedt, K.; Lord, A.; Laudon, H.; Sjödahl, J.; Söderberg, L.; Spens, E.; Sahlin, C.; Waara, E.R.; et al. The murine version of BAN2401 (mAb158) selectively reduces amyloid-β protofibrils in brain and cerebrospinal fluid of tg-ArcSwe mice. J. Alzheimers. Dis. 2015, 43, 575–588. [Google Scholar] [CrossRef]
- Niu, H.; Álvarez-Álvarez, I.; Guillén-Grima, F.; Aguinaga-Ontoso, I. Prevalence and incidence of Alzheimer’s disease in Europe: A meta-analysis. Neurologia 2017, 32, 523–532. [Google Scholar] [CrossRef]
- Lan, Y.L.; Zou, S.; Zhang, C.; Li, J.; Xu, Y.; Li, S. Update on the effect of estradiol in postmenopause women with Alzheimer’s disease: A systematic review. Acta Neurol. Belg. 2016, 116, 249–257. [Google Scholar] [CrossRef]
- Skoog, I.; Gustafson, D. HRT and dementia. J. Epidemiol. Biostat. 1999, 4, 227–251. [Google Scholar]
- Weller, I.; Schatzker, J. Hip fractures and Alzheimer’s disease in elderly institutionalized Canadians. Ann. Epidemiol. 2004, 14, 319–324. [Google Scholar] [CrossRef]
- Zhou, R.; Deng, J.; Zhang, M.; Zhou, H.D.; Wang, Y.J. Association between bone mineral density and the risk of Alzheimer’s disease. J. Alzheimers Dis. 2011, 24, 101–108. [Google Scholar] [CrossRef]
- Li, S.; Yang, B.; Teguh, D.; Zhou, L.; Xu, J.; Rong, L. Amyloid β peptide enhances RANKL-induced osteoclast activation through NF-κB, ERK, and calcium oscillation signaling. Int. J. Mol. Sci. 2016, 17, 1683. [Google Scholar] [CrossRef] [Green Version]
- Albright, F.; Smith, P.H.; Richardson, A.M. Postmenopausal osteoporosis: Its clinical features. J. Am. Med. Assoc. 1941, 116, 2465–2474. [Google Scholar] [CrossRef]
- Ziel, H.K.; Finkle, W.D. Increased risk of endometrial carcinoma among users of conjugated estrogens. N. Engl. J. Med. 1975, 293, 1167–1170. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Qin, W.; Chen, D.; Feng, Y.; Su, H.; Shao, W.; Zhou, B.; Bu, X. Raloxifene alleviates amyloid-β-induced cytotoxicity in HT22 neuronal cells via inhibiting oligomeric and fibrillar species formation. J. Biochem. Mol. Toxicol. 2019, 33, e22395. [Google Scholar] [CrossRef]
- Jacobsen, D.E.; Samson, M.M.; Emmelot-Vonk, M.H.; Verhaar, H.J. Raloxifene improves verbal memory in late postmenopausal women: A randomized, double-blind, placebo-controlled trial. Menopause 2010, 17, 309–314. [Google Scholar] [CrossRef]
- Kara, F.; Lohse, C.M.; Castillo, A.M.; Tosakulwong, N.; Lesnick, T.G.; Jack, C.R.; Petersen, R.C.; Olson, J.E.; Couch, F.J.; Ruddy, K.J.; et al. Association of raloxifene and tamoxifen therapy with cognitive performance, odds of mild cognitive impairment, and brain MRI markers of neurodegeneration. Cancer Med. 2023, 12, 2805–2817. [Google Scholar] [CrossRef]
- Henderson, V.W.; Ala, T.; Sainani, K.L.; Bernstein, A.L.; Stephenson, B.S.; Rosen, A.C.; Farlow, M.R. Raloxifene for women with Alzheimer disease: A randomized controlled pilot trial. Neurology 2015, 85, 1937–1944. [Google Scholar] [CrossRef] [Green Version]
- Jack, C.R., Jr.; Knopman, D.S.; Jagust, W.J.; Shaw, L.M.; Aisen, P.S.; Weiner, M.W.; Petersen, R.C.; Trojanowski, J.Q. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010, 9, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Momma, Y.; Tsuji, M.; Oguchi, T.; Ohashi, H.; Nohara, T.; Ito, N.; Yamamoto, K.; Nagata, M.; Kimura, M.A.; Nakamura, S.; et al. The Curcumin Derivative GT863 Protects Cell Membranes in Cytotoxicity by Aβ Oligomers. Int. J. Mol. Sci. 2023, 24, 3089. [Google Scholar] [CrossRef]
- Nakayama, T.; Tsuji, M.; Umeda, K.; Oguchi, T.; Konno, H.; Shinohara, M.; Kiuchi, Y.; Kodera, N.; David, B.T.; Ono, K. Structural Dynamics of Amyloid-β Protofibrils and Actions of Anti-Amyloid-β Antibodies as Observed by High-Speed Atomic Force Microscopy. Nano Lett. 2023, 23, 6259–6268. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Guo, C.; Kong, J. Oxidative stress in neurodegenerative diseases. Neural Regen. Res. 2012, 7, 376–385. [Google Scholar] [CrossRef] [PubMed]
- Sayre, L.M.; Perry, G.; Smith, M.A. Oxidative stress and neurotoxicity. Chem. Res. Toxicol. 2008, 21, 172–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardy, J.; Selkoe, D.J. The amyloid hypothesis of Alzheilnerls disease: Progress and problems on the road to therapeutics. Science 2002, 297, 353–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yasumoto, T.; Takamura, Y.; Tsuji, M.; Watanabe-Nakayama, T.; Imamura, K.; Inoue, H.; Nakamura, S.; Inoue, T.; Kimura, A.; Yano, S.; et al. High-molecular-weight amyloid β1–42 oligomers induce neurotoxicity via plasma membrane damage. FASEB J. 2019, 38, 9220–9234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoover, R.; Gray, L.A.; Cole, P.; MacMahon, B. Menopausal estrogens and breast cancer. N. Engl. J. Med. 1976, 295, 401–405. [Google Scholar] [CrossRef] [PubMed]
- Eastell, R.; Rosen, C.J.; Black, D.M.; Cheung, A.M.; Murad, M.H.; Shoback, D. Pharmacological management of osteoporosis in postmenopausal women: An Endocrine Society* clinical practice guideline. J. Clin. Endocrinol. Metab. 2019, 104, 1595–1622. [Google Scholar] [CrossRef] [Green Version]
- Honig, M.G.; Del Mar, N.A.; Henderson, D.L.; Ragsdale, T.D.; Doty, J.B.; Driver, J.H.; Li, C.; Fortugno, A.P.; Mitchell, W.M.; Perry, A.M.; et al. Amelioration of visual deficits and visual system pathology after mild TBI via the cannabinoid Type-2 receptor inverse agonism of raloxifene. Exp. Neurol. 2019, 322, 113063. [Google Scholar] [CrossRef]
- Dickler, M.N.; Norton, L. The MORE trial: Multiple outcomes for raloxifene evaluation--breast cancer as a secondary end point: Implications for prevention. Ann. N. Y. Acad. Sci. 2001, 949, 134–142. [Google Scholar] [CrossRef]
- Pupo, M.; Pisano, A.; Abonante, S.; Maggiolini, M.; Musti, A.M. GPER activates Notch signaling in breast cancer cells and cancer-associated fibroblasts (CAFs). Int. J. Biochem. Cell Biol. 2014, 46, 56–67. [Google Scholar] [CrossRef]
- Pupo, M.; Maggiolini, M.; Musti, A.M. GPER mediates non-genomic effects of estrogen. Methods Mol. Biol. 2016, 1366, 471–488. [Google Scholar] [CrossRef]
- Whitcomb, V.; Wauson, E.; Christian, D.; Clayton, S.; Giles, J.; Tran, Q.-K. Regulation of beta adrenoceptor-mediated myocardial contraction and calcium dynamics by the G protein-coupled estrogen receptor 1. Biochem. Pharmacol. 2020, 171, 113727. [Google Scholar] [CrossRef]
- Masuda, Y.; Uemura, S.; Ohashi, R.; Nakanishi, A.; Takegoshi, K.; Shimizu, T.; Shirasawa, T.; Irie, K. Identification of physiological and toxic conformations in Abeta42 aggregates. ChemBioChem 2009, 10, 287–295. [Google Scholar] [CrossRef]
- Porat, Y.; Mazor, Y.; Efrat, S.; Gazit, E. Inhibition of islet amyloid polypeptide fibril formation: A potential role for heteroaromatic interactions. Biochemistry 2004, 43, 14454–14462. [Google Scholar] [CrossRef]
- Humpel, C. Identifying and validating biomarkers for Alzheimer’s disease. Trends Biotechnol. 2011, 29, 26–32. [Google Scholar] [CrossRef] [Green Version]
- Näslund, J.; Haroutunian, V.; Mohs, R.; Davis, K.L.; Davies, P.; Greengard, P.; Buxbaum, J.D. Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline. JAMA 2000, 283, 1571–1577. [Google Scholar] [CrossRef]
- Pérez-Edo, L. Selective estrogen receptor modulators (SERM). Rev. Esp. Reumatol. 2004, 31, 13–17. [Google Scholar]
- Demuro, A.; Mina, E.; Kayed, R.; Milton, S.C.; Parker, I.; Glabe, C.G. Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J. Biol. Chem. 2005, 280, 17294–17300. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Bhatia, R.; Lal, R. Amyloid β protein forms ion channels: Implications for Alzheimer’s disease pathophysiology. FASEB J. 2001, 15, 2433–2444. [Google Scholar] [CrossRef] [Green Version]
- Caballero, E.; Hernando-Pérez, E.; Tapias, V.; Calvo-Rodríguez, M.; Villalobos, C.; Núñez, L. Amyloid beta oligomers-induced Ca2+ entry pathways: Role of neuronal networks, NMDA receptors and amyloid channel formation. Biomedicines 2022, 10, 1153. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, Y.L.; Lai, B.; Zheng, P.; Zhu, Y.C.; Yao, T. Raloxifene acutely reduces glutamate-induced intracellular calcium increase in cultured rat cortical neurons via inhibition of high-voltage-activated calcium current. Neuroscience 2007, 147, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Stutzmann, G.E. The pathogenesis of Alzheimers disease is it a lifelong “calciumopathy”? Neuroscientist 2007, 13, 546–559. [Google Scholar] [CrossRef] [PubMed]
- Konyalioglu, S.; Durmaz, G.; Yalcin, A. The potential antioxidant effect of raloxifene treatment: A study on heart, liver and brain cortex of ovariectomized female rats. Cell Biochem. Funct. 2007, 25, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Saeed, K.; Jo, M.H.; Park, J.S.; Alam, S.I.; Khan, I.; Ahmad, R.; Khan, A.; Ullah, R.; Kim, M.O. 17β-estradiol abrogates oxidative stress and neuroinflammation after cortical stab wound injury. Antioxidants 2021, 10, 1682. [Google Scholar] [CrossRef]
- Subramaniam, R.; Roediger, F.; Jordan, B.; Mattson, M.P.; Keller, J.N.; Waeg, G.; Butterfield, D.A. The lipid peroxidation product, 4-hydroxy-2-trans-nonenal, alters the conformation of cortical synaptosomal membrane proteins. J. Neurochem. 1997, 69, 1161–1169. [Google Scholar] [CrossRef] [Green Version]
- Hebda, J.A.; Miranker, A.D. The interplay of catalysis and toxicity by amyloid intermediates on lipid bilayers: Insights from type II diabetes. Annu. Rev. Biophys. 2009, 38, 125–152. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nohara, T.; Tsuji, M.; Oguchi, T.; Momma, Y.; Ohashi, H.; Nagata, M.; Ito, N.; Yamamoto, K.; Murakami, H.; Kiuchi, Y. Neuroprotective Potential of Raloxifene via G-Protein-Coupled Estrogen Receptors in Aβ-Oligomer-Induced Neuronal Injury. Biomedicines 2023, 11, 2135. https://doi.org/10.3390/biomedicines11082135
Nohara T, Tsuji M, Oguchi T, Momma Y, Ohashi H, Nagata M, Ito N, Yamamoto K, Murakami H, Kiuchi Y. Neuroprotective Potential of Raloxifene via G-Protein-Coupled Estrogen Receptors in Aβ-Oligomer-Induced Neuronal Injury. Biomedicines. 2023; 11(8):2135. https://doi.org/10.3390/biomedicines11082135
Chicago/Turabian StyleNohara, Tetsuhito, Mayumi Tsuji, Tatsunori Oguchi, Yutaro Momma, Hideaki Ohashi, Miki Nagata, Naohito Ito, Ken Yamamoto, Hidetomo Murakami, and Yuji Kiuchi. 2023. "Neuroprotective Potential of Raloxifene via G-Protein-Coupled Estrogen Receptors in Aβ-Oligomer-Induced Neuronal Injury" Biomedicines 11, no. 8: 2135. https://doi.org/10.3390/biomedicines11082135
APA StyleNohara, T., Tsuji, M., Oguchi, T., Momma, Y., Ohashi, H., Nagata, M., Ito, N., Yamamoto, K., Murakami, H., & Kiuchi, Y. (2023). Neuroprotective Potential of Raloxifene via G-Protein-Coupled Estrogen Receptors in Aβ-Oligomer-Induced Neuronal Injury. Biomedicines, 11(8), 2135. https://doi.org/10.3390/biomedicines11082135