PCR Test Positivity and Viral Loads during Three SARS-CoV-2 Viral Waves in Mumbai, India
Abstract
:1. Introduction
2. Methods
2.1. Data Sources
2.2. Laboratory Methods
2.3. Statistical Methods
2.4. Ethics Statement
3. Results
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coronavirus.app. The Coronavirus App [Internet]. Taipei, Taiwan: Coronavirus.app. 2022. Available online: https://coronavirus.app/map (accessed on 24 August 2022).
- Jha, P.; Deshmukh, Y.; Tumbe, C.; Suraweera, W.; Bhowmick, A.; Sharma, S.; Novosad, P.; Fu, S.H.; Newcombe, L.; Gelband, H.; et al. COVID mortality in India: National survey data and health facility deaths. Science 2022, 375, 667–671. [Google Scholar] [CrossRef] [PubMed]
- Cherian, S.; Potdar, V.; Jadhav, S.; Yadav, P.; Gupta, N.; Das, M.; Rakshit, P.; Singh, S.; Abraham, P.; Panda, S. Convergent evolution of SARS-CoV-2 spike mutations. L452R, E484Q and P681R, in the second wave of COVID-19 in Maharashtra, India. Microorganisms 2021, 9, 1542. [Google Scholar] [CrossRef] [PubMed]
- Mlcochova, P.; Kemp, S.A.; Dhar, M.S.; Papa, G.; Meng, B.; Ferreira, I.A.T.M.; Datir, R.; Collier, D.A.; Albecka, A.; Singh, S.; et al. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature 2021, 599, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Walker, A.S.; Pritchard, E.; House, T.; Robotham, J.V.; Birrell, P.J.; Bell, I.; Bell, J.I.; Newton, J.N.; Farrar, J.; Diamond, I.; et al. Ct threshold values, a proxy for viral load in community SARS-CoV-2 cases, demonstrate wide variation across populations and over time. eLife 2021, 10, e64683. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Seth, P.; Tiwary, H. How does Covid-19 aggravate the multidimensional vulnerability of slums in India? A Commentary. Soc. Sci. Humanit. Open 2020, 2, 100068. [Google Scholar] [CrossRef]
- Velumani, A.; Nikam, C.; Suraweera, W.; Fu, S.H.; Gelband, H.; Brown, P.; Bogoch, I.; Nagelkerke, N.; Jha, P. SARS-CoV-2 seroprevalence in 12 cities of India from July–December 2020. medRxiv, 2021; preprint. [Google Scholar] [CrossRef]
- Government of Maharashtra (Gov-MH). COVID-19 Dashboard by Government of Maharashtra. 2022. Available online: https://www.covid19maharashtragov.in/mh-covid/dashboard (accessed on 31 January 2022).
- Municipal Corporation of Greater Mumbai (MCGM). MCGM COVID-19 Dashboard. 2022. Available online: https://stopcoronavirus.mcgm.gov.in/key-updates-trends (accessed on 31 January 2022).
- NITI-Aayog; Municipal Corporation Greater Mumbai (MCGM); Tata Institute of Fundamental Research (TIFR); Partner Organizations. SARS-CoV-2 Serological Survey in Mumbai—Preliminary Report of Round 2. 2020. Available online: https://www.tifr.res.in/TSN/article/Mumbai-Serosurvey%20Technical%20report-NITI_BMC-Round-2%20for%20TIFR%20webs (accessed on 11 February 2022).
- He, X.; Lau, E.H.Y.; Wu, P.; Deng, X.; Wang, J.; Hao, X.; Lau, Y.C.; Wong, J.Y.; Guan, Y.; Tan, X.; et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat. Med. 2020, 26, 672–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Indian Council of Medical Research (ICMR). List of Government (Green) and Private (Blue) Laboratories that can test COVID-19. 2020. Available online: https://covid-19-info.hbcse.tifr.res.in/wp-content/uploads/2020/03/ICMR-approved-Labs-Govt-Private-25march2020.pdf (accessed on 3 March 2021).
- Municipal Corporation of Greater Mumbai (MCGM). Demographics and Vital Statistics Report. 2022. Available online: https://www.mcgm.gov.in/irj/portal/anonymous/qlvitalstatsreport?guest_user=english (accessed on 3 March 2021).
- Banaji, M. India ACM Data Depository in GitHub—Data on Mumbai’s COVID-19 Epidemic. 2022. Available online: https://github.com/muradbanaji/IndiaACMdata (accessed on 11 February 2022).
- Das, P.; Mondal, S.; Pal, S.; Roy, S.; Vidyadharan, A.; Dadwal, R.; Bhattacharya, S.; Mishra, D.K.; Chandy, M. COVID diagnostics by molecular methods: A systematic review of nucleic acid based testing systems. Indian J. Med. Microbiol. 2021, 39, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Public Health England (PHE). Understanding Cycle Threshold (Ct) in SARS-CoV-2 RT-PCR. A Guide for Health Protection Teams. 2020. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/926410/Understanding_Cycle_Threshold__Ct__in_SARS-CoV-2_RT-PCR_.pdf (accessed on 11 February 2022).
- Service, R.F. One Number Could Help Reveal How Infectious a COVID-19 Patient Is. Should Test Results Include It? Science Insider Health. 2022. Available online: https://www.science.org/content/article/one-number-could-help-reveal-how-infectious-covid-19-patient-should-test-results (accessed on 11 February 2022).
- Bayat, A.S.; Mundodan, J.; Hasnain, S.; Sallam, M.; Khogali, H.; Ali, D.; Alateeg, S.; Osama, M.; Elberdiny, A.; Al-Romaihi, H.; et al. Can the cycle threshold (Ct) value of RT-PCR test for SARS-CoV-2 predict infectivity among close contacts? J. Infect. Public Health 2021, 14, 1201–1205. [Google Scholar] [CrossRef] [PubMed]
- Hay, J.A.; Kennedy-Shaffer, L.; Kanjilal, S.; Lennon, N.J.; Gabriel, S.B.; Lipsitch, M.; Mina, M.J. Estimating epidemiologic dynamics from cross-sectional viral load distributions. Science 2021, 373, eabh0635. [Google Scholar] [CrossRef]
- Wood, S.N. Generalized Additive Models: An Introduction with R; Chapman and Hall/CRC: New York, NY, USA, 2017. [Google Scholar]
- Andriamandimby, S.F.; Brook, C.E.; Razanajatovo, N.; Randriambolamanantsoa, T.H.; Rakotondramanga, J.-M.; Rasambainarivo, F.; Raharimanga, V.; Razanajatovo, I.M.; Mangahasimbola, R.; Razafindratsimandresy, R.; et al. Cross-sectional cycle threshold values reflect epidemic dynamics of COVID-19 in Madagascar. Epidemics 2022, 38, 100533. [Google Scholar] [CrossRef]
- Office of the Registrar General & Census Commissioner (ORGCC), India. Population Census 2011—Table C-14: Population in Five Year Age Group by Residence and Sex, India—2011. 2021. Available online: https://censusindia.gov.in/nada/index.php/catalog/1541 (accessed on 21 January 2022).
- R Core Team. R: A Language and Environment for Statistical Computing. 2017. Available online: https://www.R-project.org/ (accessed on 30 June 2022).
- SAS Institute Inc. SAS/STAT® 14.1 User’s Guide. SAS Institute Inc.: Cary, NC, USA, 2015. Available online: https://support.sas.com/documentation/onlinedoc/stat/141/qreg.pdf (accessed on 24 August 2022).
- IDFC Institute. Data from BMC’s COVID-19 Response War Room–GitHub Data Depository. 2022. Available online: https://github.com/IDFC-Institute/mumbai-covid-data (accessed on 30 June 2022).
- Choudhary, O.P.; Choudhary, P.; Singh, I. India’s COVID-19 vaccination drive: Key challenges and resolutions. Lancet Infect. Dis. 2021, 21, 1483–1484. [Google Scholar] [CrossRef]
- Brown, P.E.; Fu, S.H.; Bansal, A.; Newcombe, L.; Colwill, K.; Mailhot, G.; Delgado-Brand, M.; Gingras, A.C.; Slutsky, A.S.; Pasic, M.; et al. Omicron BA.1/1.1 SARS-CoV-2 Infection among Vaccinated Canadian Adults. N. Engl. J. Med. 2022, 386, 2337–2339. [Google Scholar] [CrossRef] [PubMed]
- Foy, B.H.; Wahl, B.; Mehta, K.; Shet, A.; Menon, G.I.; Britto, C. Comparing COVID-19 vaccine allocation strategies in India: A mathematical modelling study. Int. J. Infect. Dis. 2021, 103, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A. 11% of 69 Crore Eligible People Have Taken Covid Precaution Dose, Says Govt, Blames Waning Fear. The Print 2022. Available online: https://theprint.in/health/11-of-69-crore-eligible-people-have-taken-covid-precaution-dose-says-govt-blames-waning-fear/1055999/ (accessed on 24 August 2022).
- Nr, R.M.; Brahmajosyula, A.; Khamar, A.; Acharya, N.; Bilichod, L.P.; Kondath, D. Coverage of Coronavirus Disease-2019 (COVID-19) Booster Dose (Precautionary) in the Adult Population: An Online Survey. Cureus 2022, 14, e26912. [Google Scholar]
- Rehman, T.; Keepanasseril, A.; Maurya, D.K.; Kar, S.S. Factors Associated with Maternal Referral System in South India: A Hospital Based Cross sectional Analytical Study. J. Nat. Sci. Biol. Med. 2020, 11, 158–163. [Google Scholar]
- Tom, M.R.; Mina, M.J. To interpret the SARS-CoV-2 test, consider the cycle threshold value. Clin. Infect. Dis. 2020, 71, 2252–2254. [Google Scholar] [CrossRef] [PubMed]
- Cava, F.; Román, J.S.; Barreiro, P.; Candel, F.J.; Álvarez-Timón, F.J.; Melero, D.; Coya, N.; Guillén, R.; Cantarero-Prieto, D.; Lera-Torres, J.; et al. Temporal Series Analysis of Population Cycle Threshold Counts as a Predictor of Surge in Cases and Hospitalizations during the SARS-CoV-2 Pandemic. Viruses 2023, 15, 421. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A. Modeling Geographical Spread of COVID-19 in India Using Network-Based Approach. medRxiv, 2020; preprint. [Google Scholar] [CrossRef]
- Abu-Raddad, L.J.; Chemaitelly, H.; Ayoub, H.H.; Tang, P.; Coyle, P.; Hasan, M.R.; Yassine, H.M.; Benslimane, F.M.; Al-Khatib, H.A.; Al-Kanaani, Z.; et al. Relative infectiousness of SARS-CoV-2 vaccine breakthrough infections, reinfections, and primary infections. Nat. Commun. 2022, 13, 532. [Google Scholar] [CrossRef] [PubMed]
Data Source/ Characteristics | Overall Period April 2020 to January 2022 (22 Months) | Pandemic Periods | ||||
---|---|---|---|---|---|---|
Non-Outbreak Periods (11 Months) | Aleph Wave (January–November 2020) 6 Months | Delta Wave (March–January 2021) 4 Months | Omicron Wave (January 2022) 1 Month | |||
Official PCR confirmed cases (MCGM dashboard) | ||||||
Total PCR positive | 1,022,979 | 160,288 | 232,484 | 376,528 | 253,679 | |
Case rate per 1000 population * | 191.6 | 12.8 | 33.9 | 82.4 | 222.1 | |
Age < 40 years | 130.5 | 7.6 | 18.1 | 54.3 | 159.1 | |
Age ≥ 40 years | 334.9 | 24.8 | 71.0 | 148.4 | 369.9 | |
Female | n.a. | n.a. | 29.0 | 76.1 | 191.6 | |
Male | n.a. | n.a. | 38.1 | 87.8 | 248.1 | |
Low slum areas | 261.2 | 16.4 | 45.1 | 123.5 | 262.5 | |
Medium slum areas | 173.8 | 13.1 | 32.8 | 77.4 | 195.7 | |
High slums | 151.5 | 8.2 | 25.9 | 68.8 | 164.3 | |
Community-level PCR testing (Thyrocare data) | ||||||
Total No. tested in 000 | 2717.3 | 2181.7 | 64.2 | 445.1 | 26.2 | |
Test positive in 000 | 155.0 | 78.8 | 17.9 | 46.6 | 11.7 | |
Overall PCR Positivity (%) † | ||||||
All ages | 5.3 | 3.4 | 23.2 | 9.9 ‡ | 42.8 | |
Age < 40 years | 5.1 | 3.4 | 18.8 | 9.5 | 41.3 | |
Age ≥ 40 years | 6.5 | 3.9 | 36.9 | 11.7 | 49.2 | |
Female | 5.75 | 3.75 | 25.87 | 11.46 | 44.06 | |
Male | 4.98 | 3.2 | 21.91 | 8.98 | 41.82 | |
Low slum areas § | 4.2 | 3.3 | 20.4 | 7.2 | 44.3 | |
Medium slum areas § | 21.7 | 8.3 | 28.8 | 25.3 | 42.2 | |
High slum areas § | 17.7 | 5.2 | 25.8 | 19.9 | 42.8 | |
Median Ct value † | ||||||
Overall | 24.0 | 25.0 | 26.0 | 23.0 | 23.2 | |
Inter quartile range (Q1, Q3) | (19.0, 28.0) | (20.0, 28.0) | (21.0, 31.0) | (18.0, 28.0) | (19.5, 27.6) | |
Age < 40 years | 24.0 | 25.0 | 25.0 | 23.0 | 23.1 | |
Age ≥ 40 years | 24.0 | 24.0 | 26.0 | 22.0 | 21.9 | |
Female | 24.0 | 25 | 25.0 | 23.0 | 23.1 | |
Male | 24.0 | 24 | 26.0 | 23.0 | 23.2 | |
Low slum areas § | 24.0 | 25.0 | 26.0 | 24.0 | 22.9 | |
Medium slum areas § | 22.3 | 23.0 | 25.0 | 21.0 | 23.0 | |
High slum areas § | 23.0 | 23.1 | 26.0 | 22.0 | 23.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikam, C.; Suraweera, W.; Fu, S.H.; Brown, P.E.; Nagelkerke, N.; Jha, P. PCR Test Positivity and Viral Loads during Three SARS-CoV-2 Viral Waves in Mumbai, India. Biomedicines 2023, 11, 1939. https://doi.org/10.3390/biomedicines11071939
Nikam C, Suraweera W, Fu SH, Brown PE, Nagelkerke N, Jha P. PCR Test Positivity and Viral Loads during Three SARS-CoV-2 Viral Waves in Mumbai, India. Biomedicines. 2023; 11(7):1939. https://doi.org/10.3390/biomedicines11071939
Chicago/Turabian StyleNikam, Chaitali, Wilson Suraweera, Sze Hang (Hana) Fu, Patrick E. Brown, Nico Nagelkerke, and Prabhat Jha. 2023. "PCR Test Positivity and Viral Loads during Three SARS-CoV-2 Viral Waves in Mumbai, India" Biomedicines 11, no. 7: 1939. https://doi.org/10.3390/biomedicines11071939
APA StyleNikam, C., Suraweera, W., Fu, S. H., Brown, P. E., Nagelkerke, N., & Jha, P. (2023). PCR Test Positivity and Viral Loads during Three SARS-CoV-2 Viral Waves in Mumbai, India. Biomedicines, 11(7), 1939. https://doi.org/10.3390/biomedicines11071939