Pathophysiology of Work-Related Neuropathies
Abstract
:1. Introduction
2. Epidemiology
3. Risk Factors
4. Pathophysiology
- Activation of the immune response, resulting in the production of cytokines, including TNFα, LIF Il-1α, Il-1β, LIF, and MCP-1 that attract macrophages.
- Upregulation of proteins that support neuronal survival and facilitate axonal regeneration (GDNF, Ar-temin, BDNF, NT3, NGF, VEGF, erythropoietin, pleiotrophin, p75NTR, and N-cadherin).
- Structural reorganization as Schwann cells become extremely elongated, developing about threefold longer than myelin and Remak cells. These new cells are descendents of Schwann and Remak cells and revert to their original form following regeneration.
- Breakdown of the myelin sheath by Schwann cells.
Seddon | Sunderland | Injury | Recovery | Surgery |
---|---|---|---|---|
Neuropraxia | I | Intact basal lamina, no axonal damage | Complete and immediate | No |
II | Axonal damage, endoneurium intact Wallerian degeneration | Complete but over months | No | |
Axonotmesis | III | Endo-neural disruption Wallerian degeneration | Partial over months | Maybe |
IV | Endo- and perineural disruption Wallerian degeneration | None | Yes | |
Neurotmesis | V | Complete nerve disruption Wallerian degeneration | None | Yes |
Mackinson type VI | Combination of the above | Variable | Yes |
5. Evaluation
6. Management
7. Conclusions
Funding
Conflicts of Interest
References
- Atroshi, I.; Gummesson, C.; Johnsson, R.; Ornstein, E.; Ranstam, J.; Rosén, I. Prevalence of Carpal Tunnel Syndrome in a General Population. JAMA 1999, 282, 153–158. [Google Scholar] [CrossRef]
- An, T.W.; Evanoff, B.A.; Boyer, M.I.; Osei, D.A. The Prevalence of Cubital Tunnel Syndrome: A Cross-Sectional Study in a U.S. Metropolitan Cohort. J. Bone Jt. Surg. 2017, 99, 408–416. [Google Scholar] [CrossRef] [Green Version]
- Latinovic, R.; Gulliford, M.C.; Hughes, R.A.C. Incidence of common compressive neuropathies in primary care. J. Neurol. Neurosurg. Psychiatry 2006, 77, 263–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minieka, M.M.; Nishida, T.; Benzon, H. Entrapment neuropathies. In Essentials of Pain Medicine, 3rd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2011; pp. 395–403. [Google Scholar]
- Dellon, A.L. Susceptibility of nerve in diabetes to compression: Implications for pain treatment. Plast. Reconstr. Surg. 2014, 134 (Suppl. S2), 142S–150S. [Google Scholar] [CrossRef]
- Granata, G.; Padua, L.; Celletti, C.; Castori, M.; Saraceni, V.; Camerota, F. Entrapment neuropathies and polyneuropathies in joint hypermobility syndrome/Ehlers–Danlos syndrome. Clin. Neurophysiol. 2013, 124, 1689–1694. [Google Scholar] [CrossRef]
- Seddon, H.J.; Medawar, P.B.; Smith, H. Rate of regeneration of peripheral nerves in man. J. Physiol. 1943, 102, 191–215. [Google Scholar] [CrossRef]
- Jessen, K.R.; Mirsky, R. Negative regulation of myelination: Relevance for development, injury, and demyelinating disease. Glia 2008, 56, 1552–1565. [Google Scholar] [CrossRef]
- Le, N.; Nagarajan, R.; Wang, J.Y.; Araki, T.; Schmidt, R.E.; Milbrandt, J. Analysis of congenital hypomyelinating Egr2Lo/Lo nerves identifies Sox2 as an inhibitor of Schwann cell differentiation and myelination. Proc. Natl. Acad. Sci. USA 2005, 102, 2596–2601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arthur-Farraj, P.J.; Latouche, M.; Wilton, D.K.; Quintes, S.; Chabrol, E.; Banerjee, A.; Woodhoo, A.; Jenkins, B.; Rahman, M.; Turmaine, M.; et al. c-Jun Reprograms Schwann Cells of Injured Nerves to Generate a Repair Cell Essential for Regeneration. Neuron 2012, 75, 633–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benito, C.; Davis, C.M.; Gomez-Sanchez, J.A.; Turmaine, M.; Meijer, D.; Poli, V.; Mirsky, R.; Jessen, K.R. STAT3 Controls the Long-Term Survival and Phenotype of Repair Schwann Cells during Nerve Regeneration. J. Neurosci. 2017, 37, 4255–4269. [Google Scholar] [CrossRef] [Green Version]
- Lu, Q.; Yuk, D.-I.; A Alberta, J.; Zhu, Z.; Pawlitzky, I.; Chan, J.; McMahon, A.P.; Stiles, C.D.; Rowitch, D.H. Sonic Hedgehog–Regulated Oligodendrocyte Lineage Genes Encoding bHLH Proteins in the Mammalian Central Nervous System. Neuron 2000, 25, 317–329. [Google Scholar] [CrossRef] [Green Version]
- Stratton, J.A.; Shah, P.T. Macrophage polarization in nerve injury: Do Schwann cells play a role? Neural Regen. Res. 2016, 11, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Arthur-Farraj, P.J.; Morgan, C.C.; Adamowicz, M.; Gomez-Sanchez, J.A.; Fazal, S.V.; Beucher, A.; Aitman, T.J. Changes in the coding and non-coding transcriptome and DNA methylome that define the Schwann cell repair phenotype after nerve injury. Cell Rep. 2017, 20, 2719–2734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boerboom, A.; Dion, V.; Chariot, A.; Franzen, R. Molecular mechanisms involved in Schwann cell plasticity. Front. Mol. Neurosci. 2017, 10, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jessen, K.R.; Mirsky, R. The repair Schwann cell and its function in regenerating nerves. J. Physiol. 2016, 594, 3521–3531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomez-Sanchez, J.A.; Pilch, K.S.; Van Der Lans, M.; Fazal, S.V.; Benito, C.; Wagstaff, L.J.; Mirsky, R.; Jessen, K.R. After Nerve Injury, Lineage Tracing Shows That Myelin and Remak Schwann Cells Elongate Extensively and Branch to Form Repair Schwann Cells, Which Shorten Radically on Remyelination. J. Neurosci. 2017, 37, 9086–9099. [Google Scholar] [CrossRef] [Green Version]
- Martini, R.; Fischer, S.; López-Vales, R.; David, S. Interactions between Schwann cells and macrophages in injury and inherited demyelinating disease. Glia 2008, 56, 1566–1577. [Google Scholar] [CrossRef]
- Negro, S.; Stazi, M.; Marchioretto, M.; Tebaldi, T.; Rodella, U.; Duregotti, E.; Viero, G. Hydrogen peroxide is a neuronal alarm in that triggers specific RNAs, local translation of Annexin A2, and cytoskeletal remodeling in Schwann cells. RNA 2018, 24, 915–925. [Google Scholar] [CrossRef]
- Arthur-Farraj, P.; Wanek, K.; Hantke, J.; Davis, C.M.; Jayakar, A.; Parkinson, D.B.; Jessen, K.R. Mouse Schwann cells need both NRG1 and cyclic AMP to myelinate. Glia 2011, 59, 720–733. [Google Scholar] [CrossRef] [Green Version]
- Brügger, V.; Duman, M.; Bochud, M.; Münger, E.; Heller, M.; Ruff, S.; Jacob, C. Delaying histone deacetylase response to injury accelerates conversion into repair Schwann cells and nerve regeneration. Nat. Commun. 2017, 8, 14272. [Google Scholar] [CrossRef] [Green Version]
- Fischer, S.; Weishaupt, A.; Troppmair, J.; Martini, R. Increase of MCP-1 (CCL2) in myelin mutant Schwann cells is mediated by MEK-ERK signaling pathway. Glia 2008, 56, 836–843. [Google Scholar] [CrossRef] [PubMed]
- Clements, M.P.; Byrne, E.; Guerrero, L.F.C.; Cattin, A.L.; Zakka, L.; Ashraf, A.; Parrinello, S. The wound microenvironment reprograms Schwann cells to invasive mesenchymal-like cells to drive peripheral nerve regeneration. Neuron 2017, 96, 98–114. [Google Scholar] [CrossRef] [Green Version]
- Mackinnon, S.; Dellon, A. Classification of nerve injuries as the basis for treatment. In Surgery of the Peripheral Nerve; Thieme: New York, NY, USA, 1988; pp. 35–63. [Google Scholar]
- Parrinello, S.; Napoli, I.; Ribeiro, S.; Digby, P.W.; Fedorova, M.; Parkinson, D.B.; Doddrell, R.D.; Nakayama, M.; Adams, R.H.; Lloyd, A.C. EphB signaling directs peripheral nerve regeneration through Sox2-dependent Schwann cell sorting. Cell 2010, 143, 145–155. [Google Scholar] [CrossRef] [Green Version]
- Cattin, A.-L.; Burden, J.J.; Van Emmenis, L.; Mackenzie, F.E.; Hoving, J.J.; Calavia, N.G.; Guo, Y.; McLaughlin, M.; Rosenberg, L.H.; Quereda, V.; et al. Macrophage-induced blood vessels guide Schwann cell-mediated regeneration of peripheral nerves. Cell 2015, 162, 1127–1139. [Google Scholar] [CrossRef] [Green Version]
- Pham, K.; Gupta, R. Understanding the mechanisms of entrapment neuropathies. Neurosurg. Focus 2009, 26, E7. [Google Scholar] [CrossRef] [Green Version]
- Mackinnon, S.E.; Dellon, A.L.; Hudson, A.R.; Hunter, D.A. Chronic human nerve compression—A histological assessment. Neuropathol. Appl. Neurobiol. 1986, 12, 547–565. [Google Scholar] [CrossRef]
- Berger, B.L.; Gupta, R. Demyelination secondary to chronic nerve compression injury alters Schmidt-Lanterman incisures. J. Anat. 2006, 209, 111–118. [Google Scholar] [CrossRef]
- Gupta, R.; Steward, O. Chronic nerve compression induces concurrent apoptosis and proliferation of Schwann cells. J. Comp. Neurol. 2003, 461, 174–186. [Google Scholar] [CrossRef]
- Gupta, R.; Rummler, L.S.; Palispis, W.; Truong, L.; Chao, T.; Rowshan, K.; Mozaffar, T.; Steward, O. Local down-regulation of myelin-associated glycoprotein permits axonal sprouting with chronic nerve compression injury. Exp. Neurol. 2006, 200, 418–429. [Google Scholar] [CrossRef] [PubMed]
- Chao, T.; Pham, K.; Steward, O.; Gupta, R. Chronic nerve compression injury induces a phenotypic switch of neurons within the dorsal root ganglia. J. Comp. Neurol. 2008, 506, 180–193. [Google Scholar] [CrossRef] [PubMed]
- Molliver, D.C.; Wright, D.E.; Leitner, M.L.; Parsadanian, A.S.; Doster, K.; Wen, D.; Yan, Q.; Snider, W.D. IB4-binding DRG neurons switch from NGF to GDNF dependence in early postnatal life. Neuron 1997, 19, 849–861. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.; Channual, J.C. Spatiotemporal pattern of macrophage recruitment after chronic nerve compression injury. J. Neurotrauma 2006, 23, 216–226. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Truong, L.; Bear, D.; Chafik, D.; Modafferi, E.; Hung, C.T. Shear stress alters the expression of myelin-associated glycoprotein (MAG) and myelin basic protein (MBP) in Schwann cells. J. Orthop. Res. 2005, 23, 1232–1239. [Google Scholar] [CrossRef]
- Kashuk, K. Proximal peripheral nerve entrapment syndromes in the lower extremity. J. Am. Podiatry Assoc. 1977, 67, 529–544. [Google Scholar]
- Rydevik, B.; Lundborg, G.; Bagge, U. Effects of graded compression on intraneural blood blow. An in vivo study on rabbit tibial nerve. J. Hand Surg. Am. 1981, 6, 3–12. [Google Scholar]
- Rydevik, B.; McLean, W.G.; Sjöstrand, J.; Lundborg, G. Blockage of axonal transport induced by acute, graded compression of the rabbit vagus nerve. J. Neurol. Neurosurg. Psychiatry 1980, 43, 690–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powell, H.C.; Myers, R.R. Pathology of experimental nerve compression. Lab. Investig. 1986, 55, 91–100. [Google Scholar]
- Wall, E.J.; Massie, J.B.; Kwan, M.K.; Rydevik, B.L.; Myers, R.R.; Garfin, S.R. Experimental stretch neuropathy. Changes in nerve conduction under tension. J. Bone Jt. Surg. Br. 1992, 74, 126–129. [Google Scholar] [CrossRef] [PubMed]
- Schmid, A.B.; Fundaun, J.; Tampin, B. Entrapment neuropathies: A contemporary approach to pathophysiology, clinical assessment, and management. PAIN Rep. 2020, 5, e829. [Google Scholar] [CrossRef]
- Unwin, A.; Scott, J. Nerve palsy after hip replacement: Medico-legal implications. Int. Orthop. 1999, 23, 133–137. [Google Scholar] [CrossRef] [Green Version]
- Mackinnon, S.E. Pathophysiology of nerve compression. Hand Clin. 2002, 18, 231–241. [Google Scholar] [CrossRef]
- Martinoli, C.; Bianchi, S.; Pugliese, F.; Bacigalupo, L.; Gauglio, C.; Valle, M.; Derchi, L.E. Sonography of entrapment neuropathies in the upper limb (wrist excluded). J. Clin. Ultrasound 2004, 32, 438–450. [Google Scholar] [CrossRef]
- Page, M.J.; Massy-Westropp, N.; O’Connor, D.; Pitt, V. Splinting for carpal tunnel syndrome. Cochrane Database Syst. Rev. 2012, 7, CD010003. [Google Scholar] [CrossRef]
- Page, M.J.; O’Connor, D.; Pitt, V.; Massy-Westropp, N. Exercise and mobilisation interventions for carpal tunnel syndrome. Cochrane Database Syst. Rev. 2012, 6, CD009899. [Google Scholar] [CrossRef] [PubMed]
- Huisstede, B.M.; van den Brink, J.; Randsdorp, M.S.; Geelen, S.J.; Koes, B.W. Effectiveness of surgical and postsurgical interventions for carpal tunnel syndrome—A systematic review. Arch. Phys. Med. Rehabil. 2018, 99, 1660–1680.e21. [Google Scholar] [CrossRef] [PubMed]
- Bernard, B.P. Musculoskeletal Disorders and Workplace Factors—A Critical Review of Epidemiologic Evidence for Work-Related Musculoskeletal Disorders of the Neck, Upper Extremity, and Low Back. National Institute of Occupational Safety and Health (NIOSH); 1997. Available online: https://www.cdc.gov/niosh/docs/97-141/pdfs/97-141.pdf (accessed on 28 May 2023).
- Available online: https://www.osha.gov/annotated-pels/note#:~:text=ACGIH%C2%AE%20publishes%20guidelines%20known,agents%20found%20in%20the%20workplace (accessed on 28 May 2023).
- Kozak, A.; Schedlbauer, G.; Wirth, T.; Euler, U.; Westermann, C.; Nienhaus, A. Association between work-related biomechanical risk factors and the occurrence of carpal tunnel syndrome: An overview of systematic reviews and a meta-analysis of current research. BMC Musculoskelet. Disord. 2015, 16, 231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trillos-Chacón, M.-C.; Castillo-M, J.A.; Tolosa-Guzman, I.; Medina, A.F.S.; Ballesteros, S.M. Strategies for the prevention of carpal tunnel syndrome in the workplace: A systematic review. Appl. Ergon. 2021, 93, 103353. [Google Scholar] [CrossRef]
Men | Women | |
---|---|---|
Carpal tunnel syndrome | 87.8 | 192.8 |
Morton’s metatarsalgia | 50.2 | 87.5 |
Ulnar neuropathy | 25.2 | 18.9 |
Meralgia paresthetica | 10.7 | 13.2 |
Radial neuropathy | 2.97 | 1.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malik, T.; Malik, A.; Abd-Elsayed, A. Pathophysiology of Work-Related Neuropathies. Biomedicines 2023, 11, 1745. https://doi.org/10.3390/biomedicines11061745
Malik T, Malik A, Abd-Elsayed A. Pathophysiology of Work-Related Neuropathies. Biomedicines. 2023; 11(6):1745. https://doi.org/10.3390/biomedicines11061745
Chicago/Turabian StyleMalik, Tariq, Ahmed Malik, and Alaa Abd-Elsayed. 2023. "Pathophysiology of Work-Related Neuropathies" Biomedicines 11, no. 6: 1745. https://doi.org/10.3390/biomedicines11061745
APA StyleMalik, T., Malik, A., & Abd-Elsayed, A. (2023). Pathophysiology of Work-Related Neuropathies. Biomedicines, 11(6), 1745. https://doi.org/10.3390/biomedicines11061745