Exploring the Link between Chronic Kidney Disease and Alzheimer’s Disease: A Longitudinal Follow-Up Study Using the Korean National Health Screening Cohort
Abstract
:1. Introduction
2. Results
2.1. Baseline Characteristics
2.2. Association of Occurrence of AD between the CKD Group and Controls
2.3. Subgroup Analysis
3. Discussion
4. Materials and Methods
4.1. Ethics
4.2. Exposure (Chronic Kidney Disease)
4.3. Outcome (AD)
4.4. Participant Selection
4.5. Covariates
4.6. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Park, J.I.; Baek, H.; Jung, H.H. Prevalence of Chronic Kidney Disease in Korea: The Korean National Health and Nutritional Examination Survey 2011–2013. J. Korean Med. Sci. 2016, 31, 915–923. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Kang, M.J.; Lee, O.J.; Lee, H.H.; Kwak, M.Y.; Yoo, W.S.; Suh, J.W.; Ko, I.S. Korean Dementia Observatory 2020 (NIDR-2002–0031); National Institute of Dementia, National Medical Center: Seoul, Republic of Korea, 2021; pp. 1–90. [Google Scholar]
- Kovesdy, C.P. Epidemiology of chronic kidney disease: An update 2022. Kidney Int. Suppl. 2022, 12, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). Chronic Kidney Disease in the United States; CDC: Atlanta, GA, USA, 2021. [Google Scholar]
- Chen, T.K.; Knicely, D.H.; Grams, M.E. Chronic Kidney Disease Diagnosis and Management: A Review. JAMA 2019, 322, 1294–1304. [Google Scholar] [CrossRef]
- Jankowski, J.; Floege, J.; Fliser, D.; Bohm, M.; Marx, N. Cardiovascular Disease in Chronic Kidney Disease: Pathophysiological Insights and Therapeutic Options. Circulation 2021, 143, 1157–1172. [Google Scholar] [CrossRef]
- GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef]
- Scheuner, D.; Eckman, C.; Jensen, M.; Song, X.; Citron, M.; Suzuki, N.; Bird, T.D.; Hardy, J.; Hutton, M.; Kukull, W.; et al. Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat. Med. 1996, 2, 864–870. [Google Scholar] [CrossRef]
- Gomez-Isla, T.; Hollister, R.; West, H.; Mui, S.; Growdon, J.H.; Petersen, R.C.; Parisi, J.E.; Hyman, B.T. Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann. Neurol. 1997, 41, 17–24. [Google Scholar] [CrossRef]
- Baek, J.Y.; Lee, E.; Jung, H.W.; Jang, I.Y. Geriatrics Fact Sheet in Korea 2021. Ann. Geriatr. Med. Res. 2021, 25, 65–71. [Google Scholar] [CrossRef]
- Sasaki, Y.; Marioni, R.; Kasai, M.; Ishii, H.; Yamaguchi, S.; Meguro, K. Chronic kidney disease: A risk factor for dementia onset: A population-based study. The Osaki-Tajiri Project. J. Am. Geriatr. Soc. 2011, 59, 1175–1181. [Google Scholar] [CrossRef]
- Cheng, K.C.; Chen, Y.L.; Lai, S.W.; Mou, C.H.; Tsai, P.Y.; Sung, F.C. Patients with chronic kidney disease are at an elevated risk of dementia: A population-based cohort study in Taiwan. BMC Nephrol. 2012, 13, 129. [Google Scholar] [CrossRef]
- Singh-Manoux, A.; Oumarou-Ibrahim, A.; Machado-Fragua, M.D.; Dumurgier, J.; Brunner, E.J.; Kivimaki, M.; Fayosse, A.; Sabia, S. Association between kidney function and incidence of dementia: 10-year follow-up of the Whitehall II cohort study. Age Ageing 2022, 51, afab259. [Google Scholar] [CrossRef] [PubMed]
- Kurella, M.; Chertow, G.M.; Fried, L.F.; Cummings, S.R.; Harris, T.; Simonsick, E.; Satterfield, S.; Ayonayon, H.; Yaffe, K. Chronic kidney disease and cognitive impairment in the elderly: The health, aging, and body composition study. J. Am. Soc. Nephrol. 2005, 16, 2127–2133. [Google Scholar] [CrossRef]
- Feng, L.; Yap, K.B.; Yeoh, L.Y.; Ng, T.P. Kidney function and cognitive and functional decline in elderly adults: Findings from the Singapore longitudinal aging study. J. Am. Geriatr. Soc. 2012, 60, 1208–1214. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Ozgur, B.; Campese, V.M. Renal afferent impulses, the posterior hypothalamus, and hypertension in rats with chronic renal failure. Kidney Int. 1997, 51, 722–727. [Google Scholar] [CrossRef] [PubMed]
- Solano-Flores, L.P.; Rosas-Arellano, M.P.; Ciriello, J. Fos induction in central structures after afferent renal nerve stimulation. Brain. Res. 1997, 753, 102–119. [Google Scholar] [CrossRef]
- Zhao, Q.; Yan, T.; Chopp, M.; Venkat, P.; Chen, J. Brain-kidney interaction: Renal dysfunction following ischemic stroke. J. Cereb. Blood Flow. Metab. 2020, 40, 246–262. [Google Scholar] [CrossRef]
- Li, X.; Yuan, F.; Zhou, L. Organ Crosstalk in Acute Kidney Injury: Evidence and Mechanisms. J. Clin. Med. 2022, 11, 6637. [Google Scholar] [CrossRef]
- Nishi, E.E.; Bergamaschi, C.T.; Campos, R.R. The crosstalk between the kidney and the central nervous system: The role of renal nerves in blood pressure regulation. Exp. Physiol. 2015, 100, 479–484. [Google Scholar] [CrossRef]
- Kelly, D.M.; Rothwell, P.M. Disentangling the Relationship Between Chronic Kidney Disease and Cognitive Disorders. Front. Neurol. 2022, 13, 830064. [Google Scholar] [CrossRef]
- Zhang, C.Y.; He, F.F.; Su, H.; Zhang, C.; Meng, X.F. Association between chronic kidney disease and Alzheimer’s disease: An update. Metab. Brain. Dis. 2020, 35, 883–894. [Google Scholar] [CrossRef]
- Hiramatsu, R.; Iwagami, M.; Nitsch, D. Association between chronic kidney disease and incident diagnosis of dementia in England: A cohort study in Clinical Practice Research Datalink. BMJ Open 2020, 10, e033811. [Google Scholar] [CrossRef] [PubMed]
- Helmer, C.; Stengel, B.; Metzger, M.; Froissart, M.; Massy, Z.A.; Tzourio, C.; Berr, C.; Dartigues, J.F. Chronic kidney disease, cognitive decline, and incident dementia: The 3C Study. Neurology 2011, 77, 2043–2051. [Google Scholar] [CrossRef]
- Gabin, J.M.; Romundstad, S.; Saltvedt, I.; Holmen, J. Moderately increased albuminuria, chronic kidney disease and incident dementia: The HUNT study. BMC Nephrol. 2019, 20, 261. [Google Scholar] [CrossRef] [PubMed]
- Stocker, H.; Beyer, L.; Trares, K.; Perna, L.; Rujescu, D.; Holleczek, B.; Beyreuther, K.; Gerwert, K.; Schottker, B.; Brenner, H. Association of Kidney Function with Development of Alzheimer Disease and Other Dementias and Dementia-Related Blood Biomarkers. JAMA Netw. Open 2023, 6, e2252387. [Google Scholar] [CrossRef] [PubMed]
- Etgen, T.; Chonchol, M.; Forstl, H.; Sander, D. Chronic kidney disease and cognitive impairment: A systematic review and meta-analysis. Am. J. Nephrol. 2012, 35, 474–482. [Google Scholar] [CrossRef] [PubMed]
- Miwa, K.; Tanaka, M.; Okazaki, S.; Furukado, S.; Yagita, Y.; Sakaguchi, M.; Mochizuki, H.; Kitagawa, K. Chronic kidney disease is associated with dementia independent of cerebral small-vessel disease. Neurology 2014, 82, 1051–1057. [Google Scholar] [CrossRef]
- Rahman, M.; White, E.M.; Mills, C.; Thomas, K.S.; Jutkowitz, E. Rural-urban differences in diagnostic incidence and prevalence of Alzheimer’s disease and related dementias. Alzheimers. Dement. 2021, 17, 1213–1230. [Google Scholar] [CrossRef]
- Linden, A.H.; Honekopp, J. Heterogeneity of Research Results: A New Perspective from Which to Assess and Promote Progress in Psychological Science. Perspect. Psychol. Sci. 2021, 16, 358–376. [Google Scholar] [CrossRef]
- Xu, H.; Garcia-Ptacek, S.; Trevisan, M.; Evans, M.; Lindholm, B.; Eriksdotter, M.; Carrero Pharm, J.J. Kidney Function, Kidney Function Decline, and the Risk of Dementia in Older Adults: A Registry-Based Study. Neurology 2021, 96, e2956–e2965. [Google Scholar] [CrossRef]
- Bugnicourt, J.M.; Godefroy, O.; Chillon, J.M.; Choukroun, G.; Massy, Z.A. Cognitive disorders and dementia in CKD: The neglected kidney-brain axis. J. Am. Soc. Nephrol. 2013, 24, 353–363. [Google Scholar] [CrossRef]
- Tian, D.Y.; Cheng, Y.; Zhuang, Z.Q.; He, C.Y.; Pan, Q.G.; Tang, M.Z.; Hu, X.L.; Shen, Y.Y.; Wang, Y.R.; Chen, S.H.; et al. Physiological clearance of amyloid-beta by the kidney and its therapeutic potential for Alzheimer’s disease. Mol. Psychiatry 2021, 26, 6074–6082. [Google Scholar] [CrossRef] [PubMed]
- Shea, Y.F.; Chu, L.W.; Mok, M.Y.; Lam, M.F. Amyloid beta 1-42 and tau in the cerebrospinal fluid of renal failure patients for the diagnosis of Alzheimer’s disease. J. Nephrol. 2014, 27, 217–220. [Google Scholar] [CrossRef]
- Chu, N.M.; Gross, A.L.; Shaffer, A.A.; Haugen, C.E.; Norman, S.P.; Xue, Q.L.; Sharrett, A.R.; Carlson, M.C.; Bandeen-Roche, K.; Segev, D.L.; et al. Frailty and Changes in Cognitive Function after Kidney Transplantation. J. Am. Soc. Nephrol. 2019, 30, 336–345. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Wu, T.; Zhao, J.; Ji, L.; Song, A.; Zhang, M.; Huang, G. Plasma Homocysteine and Serum Folate and Vitamin B(12) Levels in Mild Cognitive Impairment and Alzheimer’s Disease: A Case-Control Study. Nutrients 2017, 9, 725. [Google Scholar] [CrossRef]
- Park, E.J.; Je, J.; Dusabimana, T.; Yun, S.P.; Kim, H.J.; Kim, H.; Park, S.W. The Uremic Toxin Homocysteine Exacerbates the Brain Inflammation Induced by Renal Ischemia-Reperfusion in Mice. Biomedicines 2022, 10, 3048. [Google Scholar] [CrossRef]
- Lipton, S.A.; Kim, W.K.; Choi, Y.B.; Kumar, S.; D’Emilia, D.M.; Rayudu, P.V.; Arnelle, D.R.; Stamler, J.S. Neurotoxicity associated with dual actions of homocysteine at the N-methyl-D-aspartate receptor. Proc. Natl. Acad. Sci. USA 1997, 94, 5923–5928. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Tong, S.; Chu, X.; Feng, T.; Geng, M. Chronic Kidney Disease and Cognitive Impairment: The Kidney-Brain Axis. Kidney Dis. 2022, 8, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Campbell, A. The role of aluminum and copper on neuroinflammation and Alzheimer’s disease. J. Alzheimers. Dis. 2006, 10, 165–172. [Google Scholar] [CrossRef]
- Kaur, S.; Raj, K.; Gupta, Y.K.; Singh, S. Allicin ameliorates aluminium- and copper-induced cognitive dysfunction in Wistar rats: Relevance to neuro-inflammation, neurotransmitters and Abeta(1-42) analysis. J. Biol. Inorg. Chem. 2021, 26, 495–510. [Google Scholar] [CrossRef]
- Seong, S.C.; Kim, Y.Y.; Park, S.K.; Khang, Y.H.; Kim, H.C.; Park, J.H.; Kang, H.J.; Do, C.H.; Song, J.S.; Lee, E.J.; et al. Cohort profile: The National Health Insurance Service-National Health Screening Cohort (NHIS-HEALS) in Korea. BMJ Open 2017, 7, e016640. [Google Scholar] [CrossRef]
- Kwon, M.J.; Kim, J.H.; Kim, J.H.; Park, H.R.; Kim, N.Y.; Hong, S.; Choi, H.G. Incident Rheumatoid Arthritis Following Statin Use: From the View of a National Cohort Study in Korea. J. Pers. Med. 2022, 12, 559. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.G.; Kang, H.S.; Lim, H.; Kim, J.H.; Kim, J.H.; Cho, S.J.; Nam, E.S.; Min, K.W.; Park, H.Y.; Kim, N.Y.; et al. Changes in the Incidence Rates of Gastrointestinal Diseases Due to the COVID-19 Pandemic in South Korea: A Long-Term Perspective. J. Pers. Med. 2022, 12, 1144. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.G.; Kim, J.H.; Kim, J.H.; Kim, E.S.; Park, H.Y.; Min, K.W.; Kwon, M.J. Associations between proton pump inhibitors and Alzheimer’s disease: A nested case-control study using a Korean nationwide health screening cohort. Alzheimer’s Res. Ther. 2022, 14, 91. [Google Scholar] [CrossRef] [PubMed]
- Kwon, M.J.; Kim, J.H.; Kim, J.H.; Cho, S.J.; Nam, E.S.; Choi, H.G. The Occurrence of Alzheimer’s Disease and Parkinson’s Disease in Individuals with Osteoporosis: A Longitudinal Follow-Up Study Using a National Health Screening Database in Korea. Front. Aging Neurosci. 2021, 13, 786337. [Google Scholar] [CrossRef]
- Choi, H.G.; Kim, S.Y.; Lim, H.; Kim, J.H.; Kim, J.H.; Cho, S.J.; Nam, E.S.; Min, K.W.; Park, H.Y.; Kim, N.Y.; et al. Comparison of Concordance of Peptic Ulcer Disease, Non-Adenomatous Intestinal Polyp, and Gallstone Disease in Korean Monozygotic and Dizygotic Twins: A Cross-Sectional Study. Int. J. Env. Res. Public Health 2022, 19, 12708. [Google Scholar] [CrossRef]
- Kwon, M.J.; Park, J.Y.; Kim, S.G.; Kim, J.K.; Lim, H.; Kim, J.H.; Kim, J.H.; Cho, S.J.; Nam, E.S.; Park, H.Y.; et al. Potential Association of Osteoporosis and Not Osteoporotic Fractures in Patients with Gout: A Longitudinal Follow-Up Study. Nutrients 2022, 15, 134. [Google Scholar] [CrossRef]
- Quan, H.; Li, B.; Couris, C.M.; Fushimi, K.; Graham, P.; Hider, P.; Januel, J.M.; Sundararajan, V. Updating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. Am. J. Epidemiol. 2011, 173, 676–682. [Google Scholar] [CrossRef]
- Quan, H.; Sundararajan, V.; Halfon, P.; Fong, A.; Burnand, B.; Luthi, J.C.; Saunders, L.D.; Beck, C.A.; Feasby, T.E.; Ghali, W.A. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med. Care 2005, 43, 1130–1139. [Google Scholar] [CrossRef]
- Li, F.; Thomas, L.E.; Li, F. Addressing Extreme Propensity Scores via the Overlap Weights. Am. J. Epidemiol. 2019, 188, 250–257. [Google Scholar] [CrossRef]
- Thomas, L.E.; Li, F.; Pencina, M.J. Overlap Weighting: A Propensity Score Method That Mimics Attributes of a Randomized Clinical Trial. JAMA 2020, 323, 2417–2418. [Google Scholar] [CrossRef]
- Li, F.; Morgan, K.L.; Zaslavsky, A.M. Balancing Covariates via Propensity Score Weighting. J. Am. Stat. Assoc. 2018, 113, 390–400. [Google Scholar] [CrossRef]
- Austin, P.C. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Stat. Med. 2009, 28, 3083–3107. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Before Overlap Weighting Adjustment | After Overlap Weighting Adjustment | ||||||
---|---|---|---|---|---|---|---|---|
CKD | Control | Standardized Difference | CKD | Control | Standardized Difference | t or χ2 Value 1 | p-Value | |
Age (n, %) | 0.00 | 0.00 | 0.00 | 1.000 | ||||
40–44 | 98 (0.62) | 392 (0.62) | 75 (0.64) | 75 (0.64) | ||||
45–49 | 362 (2.30) | 1448 (2.30) | 261 (2.24) | 261 (2.24) | ||||
50–54 | 950 (6.03) | 3800 (6.03) | 688 (5.90) | 688 (5.90) | ||||
55–59 | 1861 (11.81) | 7444 (11.81) | 1359 (11.66) | 1359 (11.66) | ||||
60–64 | 2288 (14.52) | 9152 (14.52) | 1666 (14.29) | 1666 (14.29) | ||||
65–69 | 2567 (16.29) | 10,268 (16.29) | 1883 (16.15) | 1883 (16.15) | ||||
70–74 | 2804 (17.80) | 11,216 (17.80) | 2089 (17.92) | 2089 (17.92) | ||||
75–79 | 2587 (16.42) | 10,348 (16.42) | 1943 (16.67) | 1943 (16.67) | ||||
80–84 | 1579 (10.02) | 6316 (10.02) | 1187 (10.18) | 1187 (10.18) | ||||
85+ | 660 (4.19) | 2640 (4.19) | 507 (4.35) | 507 (4.35) | ||||
Sex (n, %) | 0.00 | |||||||
Male | 10,548 (66.95) | 42,192 (66.95) | 7816 (67.04) | 7816 (67.04) | ||||
Female | 5208 (33.05) | 20,832 (33.05) | 3842 (32.96) | 3842 (32.96) | ||||
Income (n, %) | 0.00 | 0.00 | 0.00 | 1.000 | ||||
1 (lowest) | 2717 (17.24) | 10,868 (17.24) | 2000 (17.16) | 2000 (17.16) | ||||
2 | 1831 (11.62) | 7324 (11.62) | 1357 (11.64) | 1357 (11.64) | ||||
3 | 2272 (14.42) | 9088 (14.42) | 1678 (14.39) | 1678 (14.39) | ||||
4 | 3176 (20.16) | 12,704 (20.16) | 2340 (20.08) | 2340 (20.08) | ||||
5 (highest) | 5760 (36.56) | 23,040 (36.56) | 4283 (36.74) | 4283 (36.74) | ||||
Region of residence (n, %) | 0.00 | 0.00 | 0.00 | 1.000 | ||||
Urban | 6820 (43.29) | 27,280 (43.29) | 5046 (43.28) | 5046 (43.28) | ||||
Rural | 8936 (56.71) | 35,744 (56.71) | 6612 (56.72) | 6612 (56.72) | ||||
Obesity † (n, %) | 0.16 | 0.00 | 0.00 | 1.000 | ||||
Underweight | 395 (2.51) | 1971 (3.13) | 307 (2.63) | 307 (2.63) | ||||
Normal | 4817 (30.57) | 22,314 (35.41) | 3674 (31.51) | 3674 (31.51) | ||||
Overweight | 4154 (26.36) | 17,210 (27.31) | 3109 (26.67) | 3109 (26.67) | ||||
Obese I | 5678 (36.04) | 19,850 (31.50) | 4110 (35.25) | 4110 (35.25) | ||||
Obese II | 712 (4.52) | 1679 (2.66) | 458 (3.93) | 458 (3.93) | ||||
Smoking status (n, %) | 0.02 | 0.00 | 0.00 | 1.000 | ||||
Nonsmoker | 9946 (63.13) | 40,439 (64.16) | 7394 (63.42) | 7394 (63.42) | ||||
Past smoker | 1693 (10.75) | 6674 (10.59) | 1258 (10.79) | 1258 (10.79) | ||||
Current smoker | 4117 (26.13) | 15,911 (25.25) | 3006 (25.79) | 3006 (25.79) | ||||
Alcohol consumption (n, %) | 0.07 | 0.00 | 0.00 | 1.000 | ||||
<1 time a week | 11,357 (72.08) | 43,333 (68.76) | 8299 (71.18) | 8299 (71.18) | ||||
≥1 time a week | 4399 (27.92) | 19,691 (31.24) | 3360 (28.82) | 3360 (28.82) | ||||
SBP (Mean, SD) | 131.85 (18.41) | 128.67 (16.26) | 0.18 | 130.87 (15.42) | 130.87 (7.30) | 0.00 | 0.00 | 1.000 |
DBP (Mean, SD) | 78.86 (11.56) | 78.14 (10.33) | 0.07 | 78.62 (9.83) | 78.62 (4.54) | 0.00 | 0.00 | 1.000 |
Fasting blood glucose (Mean, SD) | 115.36 (48.85) | 103.60 (28.08) | 0.30 | 109.75 (32.48) | 109.75 (16.57) | 0.00 | 0.00 | 1.000 |
Total cholesterol (Mean, SD) | 190.49 (45.68) | 193.55 (38.73) | 0.07 | 190.88 (38.95) | 190.88 (16.78) | 0.00 | 0.00 | 1.000 |
CCI score (Mean, SD) | 2.13 (2.19) | 1.07 (1.69) | 0.54 | 1.77 (1.66) | 1.77 (0.97) | 0.00 | 0.00 | 1.000 |
AD (n, %) | 1050 (6.66) | 4053 (6.43) | 0.01 | 712 (6.11) | 894 (7.67) | 0.06 | 21.99 | <0.001 |
n of Event/n of Total (%) | Follow-Up Duration (PY) | IR per 1000 (PY) | IRD (95% CI) | Hazard Ratios for AD | ||||
---|---|---|---|---|---|---|---|---|
Crude | p | Overlap Weighted Model † | p | |||||
Total participants | ||||||||
CKD | 1050/15,756 (6.66) | 66,403 | 15.80 | 3.40 (2.44–4.34) | 1.25 (1.17–1.34) | <0.001 * | 1.14 (1.08–1.2) | <0.001 * |
Control | 4053/63,024 (6.43) | 326,315 | 12.40 | 1 | 1 | |||
Age < 70 years old | ||||||||
CKD | 244/8126 (3.00) | 45,015 | 5.42 | 2.12 (1.51–2.74) | 1.72 (1.48–1.99) | <0.001 * | 1.27 (1.13–1.44) | <0.001 * |
Control | 707/32,504 (2.18) | 214,462 | 3.30 | 1 | 1 | |||
Age ≥ 70 years old | ||||||||
CKD | 806/7630 (10.56) | 21,388 | 37.70 | 7.80 (5.19–10.35) | 1.25 (1.16–1.35) | <0.001 * | 1.10 (1.03–1.16) | 0.004 * |
Control | 3346/30,520 (10.96) | 111,853 | 29.90 | 1 | 1 | |||
Male | ||||||||
CKD | 566/10,548 (5.37) | 43,453 | 13.00 | 3.00 (1.94–4.06) | 1.28 (1.16–1.40) | <0.001 * | 1.15 (1.07–1.24) | <0.001 * |
Control | 2140/42,192 (5.07) | 213,445 | 10.00 | 1 | 1 | |||
Female | ||||||||
CKD | 484/5208 (9.29) | 22,950 | 21.10 | 4.20 (2.26–6.03) | 1.22 (1.10–1.35) | <0.001 * | 1.12 (1.04–1.21) | 0.005 * |
Control | 1913/20,832 (9.18) | 112,870 | 16.90 | 1 | 1 | |||
Low income group | ||||||||
CKD | 456/6820 (6.69) | 28,399 | 16.10 | 3.60 (2.09–5.01) | 1.27 (1.15–1.41) | <0.001 * | 1.17 (1.08–1.27) | <0.001 * |
Control | 1780/27,280 (6.52) | 142,343 | 12.50 | 1 | 1 | |||
High income group | ||||||||
CKD | 594 /8936 (6.65) | 38,004 | 15.60 | 3.20 (2.02–4.53) | 1.24 (1.13–1.35) | <0.001 * | 1.11 (1.03–1.19) | 0.004 * |
Control | 2273/35,744 (6.36) | 183,972 | 12.40 | 1 | 1 | |||
Urban resident | ||||||||
CKD | 442/6820 (6.48) | 30,567 | 14.50 | 4.10 (2.72–5.32) | 1.37 (1.23–1.52) | <0.001 * | 1.20 (1.10–1.31) | <0.001 * |
Control | 1535/27,280 (5.63) | 147,086 | 10.40 | 1 | 1 | |||
Rural resident | ||||||||
CKD | 608/8936 (6.80) | 35,836 | 17.00 | 3.00 (1.55–4.28) | 1.18 (1.08–1.29) | <0.001 * | 1.09 (1.02–1.17) | 0.014 * |
Control | 2518/35,744 (7.04) | 179,229 | 14.00 | 1 | 1 |
n of Event/ n of Total (%) | Follow-Up Duration (PY) | IR per 1000 (PY) | IRD (95% CI) | Hazard Ratios for AD | ||||
---|---|---|---|---|---|---|---|---|
Crude | p | Overlap Weighted Model † | p | |||||
Underweight | ||||||||
CKD | 25/395 (6.33) | 1244 | 20.10 | −4.90 (−14.20 to 4.36) | 0.76 (0.50–1.15) | 0.197 | 0.91 (0.68–1.23) | 0.547 |
Control | 218/1971 (11.06) | 8715 | 25.00 | 1 | 1 | |||
Normal weight | ||||||||
CKD | 348/4817 (7.22) | 19,540 | 17.80 | 2.80 (0.95 to 4.71) | 1.16 (1.03–1.30) | 0.014 * | 1.08 (0.99–1.18) | 0.087 |
Control | 1708/22,314 (7.65) | 114,010 | 15.00 | 1 | 1 | |||
Overweight | ||||||||
CKD | 276/4154 (6.64) | 18,487 | 14.90 | 4.30 (2.62 to 5.99) | 1.39 (1.22–1.59) | <0.001 * | 1.19 (1.06–1.32) | 0.002 * |
Control | 962/17,210 (5.59) | 90,563 | 10.60 | 1 | 1 | |||
Obese | ||||||||
CKD | 401/6390 (6.28) | 27,132 | 14.80 | 4.50 (3.07 to 5.87) | 1.42 (1.27–1.59) | <0.001 * | 1.19 (1.08–1.30) | <0.001 * |
Control | 1165/21,529 (5.41) | 113,027 | 10.30 | 1 | 1 | |||
Non-smoker | ||||||||
CKD | 752/9946 (7.56) | 43,502 | 17.30 | 3.40 (2.12 to 4.60) | 1.22 (1.13–1.32) | <0.001 * | 1.14 (1.07–1.21) | <0.001 * |
Control | 2963/40,439 (7.33) | 212,727 | 13.90 | 1 | 1 | |||
Past and current smoker | ||||||||
CKD | 298/5810 (5.13) | 22,901 | 13.00 | 3.40 (1.98 to 4.85) | 1.32 (1.16–1.50) | <0.001 * | 1.13 (1.02–1.26) | 0.020 * |
Control | 1090/22,585 (4.83) | 113,588 | 9.60 | 1 | 1 | |||
Alcohol consumption <1 time a week | ||||||||
CKD | 842/11,357 (7.41) | 48,781 | 17.30 | 3.60 (2.34 to 4.69) | 1.23 (1.14–1.33) | <0.001 * | 1.14 (1.07–1.21) | <0.001 * |
Control | 3108/43,333 (7.17) | 226,064 | 13.70 | 1 | 1 | |||
Alcohol consumption ≥1 time a week | ||||||||
CKD | 208/4399 (4.73) | 17,622 | 11.80 | 2.37 (0.79 to 3.96) | 1.23 (1.06–1.43) | 0.008 * | 1.13 (1.01–1.28) | 0.035 * |
Control | 945/19,691 (4.80) | 100,251 | 9.43 | 1 | 1 | |||
SBP < 140 mmHg and DBP < 90 mmHg | ||||||||
CKD | 642/10,306 (6.23) | 41,881 | 15.30 | 3.90 (2.76 to 5.04) | 1.31 (1.20–1.43) | <0.001 * | 1.16 (1.09–1.24) | <0.001 * |
Control | 2661/46,067 (5.78) | 232,910 | 11.40 | 1 | 1 | |||
SBP ≥ 140 mmHg or DBP ≥ 90 mmHg | ||||||||
CKD | 408/5450 (7.49) | 24,522 | 16.60 | 1.70 (0.00 to 3.47) | 1.10 (0.98–1.23) | 0.091 | 1.09 (0.99–1.20) | 0.074 |
Control | 1392/16,957 (8.21) | 93,405 | 14.90 | 1 | 1 | |||
Fasting blood glucose < 100 mg/dL | ||||||||
CKD | 484/7405 (6.54) | 33,911 | 14.30 | 2.60 (1.36 to 3.89) | 1.20 (1.09–1.33) | <0.001 * | 1.16 (1.07–1.25) | <0.001 * |
Control | 2279/34,901 (6.53) | 195,609 | 11.70 | 1 | 1 | |||
Fasting blood glucose ≥ 100 mg/dL | ||||||||
CKD | 566/8351 (6.78) | 32,492 | 17.40 | 3.80 (2.39 to 5.30) | 1.26 (1.15–1.39) | <0.001 * | 1.12 (1.03–1.21) | 0.007 * |
Control | 1774/28,123 (6.31) | 130,706 | 13.60 | 1 | 1 | |||
Total cholesterol < 200 mg/dL | ||||||||
CKD | 647/9734 (6.65) | 38,036 | 17.00 | 4.50 (3.19 to 5.74) | 1.33 (1.21–1.45) | <0.001 * | 1.19 (1.11–1.28) | <0.001 * |
Control | 2261/36,777 (6.15) | 180,229 | 12.50 | 1 | 1 | |||
Total cholesterol ≥ 200 mg/dL | ||||||||
CKD | 403/6022 (6.69) | 28,367 | 14.20 | 1.90 (0.51 to 3.37) | 1.14 (1.03–1.27) | 0.016 * | 1.07 (0.98–1.16) | 0.111 |
Control | 1792/26,247 (6.83) | 146,086 | 12.30 | 1 | 1 | |||
CCI scores = 0 | ||||||||
CKD | 159/4810 (3.31) | 22,607 | 7.03 | 0.31 (−0.82 to 1.45) | 1.04 (0.88–1.22) | 0.67 | 1.20 (1.07–1.34) | 0.001 * |
Control | 1261/34,942 (3.61) | 187,732 | 6.72 | 1 | 1 | |||
CCI scores = 1 | ||||||||
CKD | 83/2695 (3.08) | 10,818 | 7.67 | −2.53 (−4.51 to −0.46) | 0.74 (0.59–0.93) | 0.009 * | 0.95 (0.80–1.12) | 0.533 |
Control | 600/11,574 (5.18) | 59,071 | 10.20 | 1 | 1 | |||
CCI scores ≥ 2 | ||||||||
CKD | 808/8251 (9.79) | 32,978 | 24.50 | −3.10 (−5.16 to −0.97) | 0.87 (0.81–0.95) | 0.001 * | 1.11 (1.02–1.19) | 0.010 * |
Control | 2192/16,508 (13.28) | 79,512 | 27.60 | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, M.J.; Song, Y.R.; Kim, J.-H.; Kim, J.H.; Kang, H.S.; Lim, H.; Kim, M.-J.; Kim, N.Y.; Hong, S.; Choi, Y.; et al. Exploring the Link between Chronic Kidney Disease and Alzheimer’s Disease: A Longitudinal Follow-Up Study Using the Korean National Health Screening Cohort. Biomedicines 2023, 11, 1606. https://doi.org/10.3390/biomedicines11061606
Kwon MJ, Song YR, Kim J-H, Kim JH, Kang HS, Lim H, Kim M-J, Kim NY, Hong S, Choi Y, et al. Exploring the Link between Chronic Kidney Disease and Alzheimer’s Disease: A Longitudinal Follow-Up Study Using the Korean National Health Screening Cohort. Biomedicines. 2023; 11(6):1606. https://doi.org/10.3390/biomedicines11061606
Chicago/Turabian StyleKwon, Mi Jung, Young Rim Song, Joo-Hee Kim, Ji Hee Kim, Ho Suk Kang, Hyun Lim, Min-Jeong Kim, Nan Young Kim, Sangkyoon Hong, Younghee Choi, and et al. 2023. "Exploring the Link between Chronic Kidney Disease and Alzheimer’s Disease: A Longitudinal Follow-Up Study Using the Korean National Health Screening Cohort" Biomedicines 11, no. 6: 1606. https://doi.org/10.3390/biomedicines11061606
APA StyleKwon, M. J., Song, Y. R., Kim, J.-H., Kim, J. H., Kang, H. S., Lim, H., Kim, M.-J., Kim, N. Y., Hong, S., Choi, Y., Min, K.-W., Choi, H. G., & Kim, E. S. (2023). Exploring the Link between Chronic Kidney Disease and Alzheimer’s Disease: A Longitudinal Follow-Up Study Using the Korean National Health Screening Cohort. Biomedicines, 11(6), 1606. https://doi.org/10.3390/biomedicines11061606