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Abstract: Chronic kidney disease (CKD) and Alzheimer’s disease (AD) are common chronic diseases
in the elderly population. Although a relationship between CKD and the occurrence of AD has
been proposed, previous research results have been disputed, and further investigation is necessary
to confirm this relationship. In this longitudinal follow-up study, we examined data from the
Korean National Health Insurance Service-Health Screening Cohort, consisting of 15,756 individuals
with CKD and 63,024 matched controls aged ≥40 years who received health check-ups between
2002 and 2019. Overlap-weighted Cox proportional hazard regression models were exploited to
calculate hazard ratios (HRs) for the association between CKD and AD. During the monitoring period,
individuals with CKD had a greater incidence of AD than those without CKD (15.80 versus 12.40 per
1000 person years). After accounting for various factors, CKD was significantly associated with a
1.14-fold increased likelihood of developing AD, with a 95% confidence interval ranging from 1.08 to
1.20. In subgroup analysis, this relationship persisted irrespective of age (≥70 or <70), sex, income,
smoking status, alcohol consumption, place of residence, or fasting blood glucose level. Additionally,
the association between CKD and AD was still evident among patients who were overweight or
obese, those with normal blood pressure or cholesterol levels, and those without any other health
conditions or with a CCI score of ≥2. These results suggest that CKD could increase the probability
of developing AD in the Korean adult population irrespective of demographic or lifestyle conditions.
This may make it challenging to predict AD in patients with CKD, emphasizing the importance of
frequent AD screening and management.
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1. Introduction

Chronic kidney disease (CKD) and Alzheimer’s dementia (AD) are common chronic
diseases in the elderly population [1,2]. CKD is a major global public health concern,
particularly in Korea, where it affects approximately 10–13% of the general population [1,3].
Among individuals aged ≥60, the prevalence of CKD increased to approximately 40% [4].
CKD refers to anomalies in the structure or function of the kidneys that persist for more
than 3 months [5]. If left untreated, CKD can progress to the point where dialysis or kidney
transplantation may be required [6]. Additionally, CKD poses a meaningful hazard for
cardiovascular events and increases the risk of all-cause mortality [6]. Between the years
1990 and 2017, there was a 41.5% surge in the worldwide mortality rate associated with
CKD across all age demographics [7]. AD is the predominant cause of dementia and is
estimated to affect approximately 35 million individuals globally [2]. AD is characterized
by a combination of protein abnormalities, specifically aberrant deposits of β-amyloid and
tau proteins in the brain [8,9]. These protein deposits cause progressive neurodegener-
ative damage [8,9]. According to the 2020 report on dementia by the Korean Dementia
Observatory, the prevalence of dementia over the last 10 years, from 2010 to 2019, has
increased by 30% [2]. It is anticipated that the number of individuals over the age of 65
years that will be affected by dementia in Korea will increase to over 3 million by 2050,
which is approximately 16% of the population [2]. This is a significant increase from the 10%
reported in 2019 [2]. Owing to the aging population and evolving lifestyles in Korea [10],
CKD and AD have emerged as significant public health concerns, posing a substantial
financial and health burden on society [1,2].

Recent epidemiological studies have shown a link between CKD and a heightened
risk of dementia [11–13] or cognitive impairment [14,15]. This association raises concerns
about the hazard of comorbid dementia in elderly individuals with CKD. These results
may support the theory of crosstalk between the kidneys and nervous system, as seen
in both in vitro and in vivo studies [16,17]. Sustained kidney injury and reduced renal
function can have detrimental effects on the function and structure of the kidneys, brain,
gut, lungs, heart, and immune system [18,19]. Given that the kidneys and brain are both
end organs, they share similar anatomical and vascular systems and hemodynamic features,
which make them vulnerable to vascular damage [16,18,20]. Therefore, CKD and AD may
share common risk factors and potential underlying mechanisms [21]. Indeed, multiple
risk factors, including advanced age (>60 years), family history, lifestyle factors (poor diet,
smoking, and excessive alcohol consumption), cardiovascular risk factors (hypertension,
high cholesterol, and diabetes), and exposure to certain toxins are related to both CKD
and AD [21,22]. In contrast, there have been various contradictory findings regarding the
relationship between CKD and dementia [23,24], particularly AD [25,26]. Some studies
have reported no significant association between these two conditions [24–26].

A meta-analysis of 10 studies found a noteworthy link between CKD and cognitive
impairment [27]. However, there was a high degree of variation among the studies, and
it was not possible to determine a specific association between CKD and AD onset [27].
Previous studies exploring the relationship between CKD and dementia did not differ-
entiate between AD and other forms of dementia [12,25,28]. In some situations, AD was
included in a limited number of cases [11], which limited the applicability of the findings to
AD. The sample sizes of the CKD and control groups in many of these studies were often
unequal in terms of demographic data and predominantly consisted of community-based
cohorts [11,13,14]. Patients in the CKD group were older, had a more deviated prevalence
of comorbidities such as diabetes and cardiovascular disease, and were less likely to have
completed high school or earn a high income [12–15,26]. Therefore, additional validation
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using national population cohort data with well-matched and balanced demographics
is required to minimize the impact of confounding factors [21]. As CKD and AD share
common risk factors and reciprocal associations, a long-term follow-up study that considers
potential mutual confounders is also required to confirm the link between CKD and the
likelihood of developing AD.

As assessing the impact of CKD on dementia may obscure its effect on AD, we con-
ducted a longitudinal follow-up study with a specific focus on the association between
CKD and the likelihood of developing AD. To achieve this, we used data from the Korean
national public healthcare system. We hypothesized that the impact of CKD on the like-
lihood of developing AD may vary based on patient factors, such as sex, age, social or
economic status, and the presence of comorbid conditions. Therefore, this study aimed
to explore the onset of AD and to suggest possible preventive measures for individuals
with CKD.

2. Results
2.1. Baseline Characteristics

This study included 17,478 individuals with CKD who were matched for age, sex,
income, and place of residence, with a comparison group of 497,388 participants. Table 1
summarizes the baseline characteristics of both groups before and after an overlap-weight-
adjusted propensity score matching procedure.

Table 1. General Characteristics of Participants.

Characteristics
Before Overlap Weighting Adjustment After Overlap Weighting Adjustment

CKD Control Standardized
Difference CKD Control Standardized

Difference t or χ2 Value 1 p-Value

Age (n, %) 0.00 0.00 0.00 1.000
40–44 98 (0.62) 392 (0.62) 75 (0.64) 75 (0.64)
45–49 362 (2.30) 1448 (2.30) 261 (2.24) 261 (2.24)
50–54 950 (6.03) 3800 (6.03) 688 (5.90) 688 (5.90)
55–59 1861 (11.81) 7444 (11.81) 1359 (11.66) 1359 (11.66)
60–64 2288 (14.52) 9152 (14.52) 1666 (14.29) 1666 (14.29)
65–69 2567 (16.29) 10,268 (16.29) 1883 (16.15) 1883 (16.15)
70–74 2804 (17.80) 11,216 (17.80) 2089 (17.92) 2089 (17.92)
75–79 2587 (16.42) 10,348 (16.42) 1943 (16.67) 1943 (16.67)
80–84 1579 (10.02) 6316 (10.02) 1187 (10.18) 1187 (10.18)
85+ 660 (4.19) 2640 (4.19) 507 (4.35) 507 (4.35)

Sex (n, %) 0.00
Male 10,548 (66.95) 42,192 (66.95) 7816 (67.04) 7816 (67.04)
Female 5208 (33.05) 20,832 (33.05) 3842 (32.96) 3842 (32.96)

Income (n, %) 0.00 0.00 0.00 1.000
1 (lowest) 2717 (17.24) 10,868 (17.24) 2000 (17.16) 2000 (17.16)
2 1831 (11.62) 7324 (11.62) 1357 (11.64) 1357 (11.64)
3 2272 (14.42) 9088 (14.42) 1678 (14.39) 1678 (14.39)
4 3176 (20.16) 12,704 (20.16) 2340 (20.08) 2340 (20.08)
5 (highest) 5760 (36.56) 23,040 (36.56) 4283 (36.74) 4283 (36.74)

Region of residence
(n, %) 0.00 0.00 0.00 1.000

Urban 6820 (43.29) 27,280 (43.29) 5046 (43.28) 5046 (43.28)
Rural 8936 (56.71) 35,744 (56.71) 6612 (56.72) 6612 (56.72)

Obesity † (n, %) 0.16 0.00 0.00 1.000
Underweight 395 (2.51) 1971 (3.13) 307 (2.63) 307 (2.63)
Normal 4817 (30.57) 22,314 (35.41) 3674 (31.51) 3674 (31.51)
Overweight 4154 (26.36) 17,210 (27.31) 3109 (26.67) 3109 (26.67)
Obese I 5678 (36.04) 19,850 (31.50) 4110 (35.25) 4110 (35.25)
Obese II 712 (4.52) 1679 (2.66) 458 (3.93) 458 (3.93)

Smoking status (n, %) 0.02 0.00 0.00 1.000
Nonsmoker 9946 (63.13) 40,439 (64.16) 7394 (63.42) 7394 (63.42)
Past smoker 1693 (10.75) 6674 (10.59) 1258 (10.79) 1258 (10.79)
Current smoker 4117 (26.13) 15,911 (25.25) 3006 (25.79) 3006 (25.79)

Alcohol consumption
(n, %) 0.07 0.00 0.00 1.000

<1 time a week 11,357 (72.08) 43,333 (68.76) 8299 (71.18) 8299 (71.18)
≥1 time a week 4399 (27.92) 19,691 (31.24) 3360 (28.82) 3360 (28.82)
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Table 1. Cont.

Characteristics
Before Overlap Weighting Adjustment After Overlap Weighting Adjustment

CKD Control Standardized
Difference CKD Control Standardized

Difference t or χ2 Value 1 p-Value

SBP (Mean, SD) 131.85 (18.41) 128.67 (16.26) 0.18 130.87 (15.42) 130.87 (7.30) 0.00 0.00 1.000
DBP (Mean, SD) 78.86 (11.56) 78.14 (10.33) 0.07 78.62 (9.83) 78.62 (4.54) 0.00 0.00 1.000
Fasting blood glucose
(Mean, SD) 115.36 (48.85) 103.60 (28.08) 0.30 109.75 (32.48) 109.75 (16.57) 0.00 0.00 1.000

Total cholesterol
(Mean, SD) 190.49 (45.68) 193.55 (38.73) 0.07 190.88 (38.95) 190.88 (16.78) 0.00 0.00 1.000

CCI score (Mean, SD) 2.13 (2.19) 1.07 (1.69) 0.54 1.77 (1.66) 1.77 (0.97) 0.00 0.00 1.000
AD (n, %) 1050 (6.66) 4053 (6.43) 0.01 712 (6.11) 894 (7.67) 0.06 21.99 <0.001

Abbreviations: CCI—Charlson Comorbidity Index; SBP—Systolic blood pressure; DBP—Diastolic blood pressure;
Alzheimer dementia—AD; † Obesity (BMI, body mass index, kg/m2) was categorized as <18.5 (underweight),
≥18.5 to <23 (normal), ≥23 to <25 (overweight), ≥25 to <30 (obese I), and ≥30 (obese II). Categorical variables
were compared using chi-squared tests and continuous variables were compared using t-tests; 1 The chi-squared
test or independent t-test were analyzed, where significance was at p < 0.05.

2.2. Association of Occurrence of AD between the CKD Group and Controls

Table 2 shows the crude and adjusted hazard ratios (HRs) of CKD for incident AD.
Overall, AD occurred in 1050 (6.66%) patients among the 15,756 patients with CKD and
4053 (6.43%) of the 63,024 control cohort. With their follow-up durations (66,403 and
326,315 person-years, respectively), the incidence rate of AD (15.80 per 1000 person-years)
was higher in the CKD group than in the control group (12.40 per 1000 person-years). After
adjusting for demographic factors and medical comorbidities, Cox regression analysis
documented that individuals with CKD had a greater probability of developing AD com-
pared to the control group (HR, 1.14; 95% confidence intervals (CIs), 1.08–1.20; p < 0.001).
Kaplan–Meier analysis and log-rank test indicated a greater likelihood of developing AD
among individuals with CKD in comparison with the control group throughout the 16-year
follow-up period (p < 0.0001; Figure 1).
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Table 2. Crude and overlap propensity score weighted hazard ratios (95% confidence interval) of
CKD for AD with subgroup analyses according to age, sex, income, and region of residence.

n of Event/n of
Total (%)

Follow-Up
Duration (PY)

IR per
1000
(PY)

IRD (95% CI)
Hazard Ratios for AD

Crude p Overlap Weighted
Model † p

Total participants
CKD 1050/15,756 (6.66) 66,403 15.80 3.40 (2.44–4.34) 1.25 (1.17–1.34) <0.001 * 1.14 (1.08–1.2) <0.001 *
Control 4053/63,024 (6.43) 326,315 12.40 1 1

Age < 70 years old
CKD 244/8126 (3.00) 45,015 5.42 2.12 (1.51–2.74) 1.72 (1.48–1.99) <0.001 * 1.27 (1.13–1.44) <0.001 *
Control 707/32,504 (2.18) 214,462 3.30 1 1

Age ≥ 70 years old
CKD 806/7630 (10.56) 21,388 37.70 7.80 (5.19–10.35) 1.25 (1.16–1.35) <0.001 * 1.10 (1.03–1.16) 0.004 *
Control 3346/30,520 (10.96) 111,853 29.90 1 1

Male
CKD 566/10,548 (5.37) 43,453 13.00 3.00 (1.94–4.06) 1.28 (1.16–1.40) <0.001 * 1.15 (1.07–1.24) <0.001 *
Control 2140/42,192 (5.07) 213,445 10.00 1 1

Female
CKD 484/5208 (9.29) 22,950 21.10 4.20 (2.26–6.03) 1.22 (1.10–1.35) <0.001 * 1.12 (1.04–1.21) 0.005 *
Control 1913/20,832 (9.18) 112,870 16.90 1 1

Low income group
CKD 456/6820 (6.69) 28,399 16.10 3.60 (2.09–5.01) 1.27 (1.15–1.41) <0.001 * 1.17 (1.08–1.27) <0.001 *
Control 1780/27,280 (6.52) 142,343 12.50 1 1

High income group
CKD 594 /8936 (6.65) 38,004 15.60 3.20 (2.02–4.53) 1.24 (1.13–1.35) <0.001 * 1.11 (1.03–1.19) 0.004 *
Control 2273/35,744 (6.36) 183,972 12.40 1 1

Urban resident
CKD 442/6820 (6.48) 30,567 14.50 4.10 (2.72–5.32) 1.37 (1.23–1.52) <0.001 * 1.20 (1.10–1.31) <0.001 *
Control 1535/27,280 (5.63) 147,086 10.40 1 1

Rural resident
CKD 608/8936 (6.80) 35,836 17.00 3.00 (1.55–4.28) 1.18 (1.08–1.29) <0.001 * 1.09 (1.02–1.17) 0.014 *
Control 2518/35,744 (7.04) 179,229 14.00 1 1

Abbreviation: CKD—Chronic kidney disease; AD—Alzheimer dementia; IR—incidence rate; CI—confidence
interval; IRD—incidence rate difference; PY—person- year; * Significance at p < 0.05; † Adjusted for age, sex,
income, region of residence, obesity, smoking, alcohol consumption, systolic blood pressure, diastolic blood
pressure, fasting blood glucose, total cholesterol, and Charlson Comorbidity Index scores.

2.3. Subgroup Analysis

To further investigate the association between CKD and the incidence of AD, patients
were stratified on the basis of sex, age, income, and residential area (Table 3). The event of
AD was found to be meaningfully greater in individuals with CKD who were either <70
or ≥70 years ([HR, 1.27; 95% CI, 1.13–1.44; p < 0.001] and [HR, 1.10; 95% CI, 1.037–1.16;
p = 0.004], each); male or female ([HR, 1.15; 95% CI, 1.07–1.24; p < 0.001] and [HR, 1.12;
95% CI, 1.04–1.21; p = 0.005], each); with a low or high income status ([HR, 1.17; 95% CI,
1.08–1.27; p < 0.001] and [HR, 1.11; 95% CI, 1.03–1.19; p = 0.004], each); and living in either
urban or rural areas ([HR, 1.20; 95% CI, 1.10–1.31; p < 0.001] and [HR, 1.09; 95% CI, 1.02–1.17;
p = 0.014], each).

Table 3. Subgroup analyses of crude and overlap propensity score weighted hazard ratios (95% confi-
dence interval) of CKD for AD.

n of Event/
n of Total (%)

Follow-Up
Duration
(PY)

IR per
1000
(PY)

IRD (95% CI)
Hazard Ratios for AD

Crude p Overlap Weighted
Model † p

Underweight
CKD 25/395 (6.33) 1244 20.10 −4.90 (−14.20 to 4.36) 0.76 (0.50–1.15) 0.197 0.91 (0.68–1.23) 0.547
Control 218/1971 (11.06) 8715 25.00 1 1

Normal weight
CKD 348/4817 (7.22) 19,540 17.80 2.80 (0.95 to 4.71) 1.16 (1.03–1.30) 0.014 * 1.08 (0.99–1.18) 0.087
Control 1708/22,314 (7.65) 114,010 15.00 1 1

Overweight
CKD 276/4154 (6.64) 18,487 14.90 4.30 (2.62 to 5.99) 1.39 (1.22–1.59) <0.001 * 1.19 (1.06–1.32) 0.002 *
Control 962/17,210 (5.59) 90,563 10.60 1 1

Obese
CKD 401/6390 (6.28) 27,132 14.80 4.50 (3.07 to 5.87) 1.42 (1.27–1.59) <0.001 * 1.19 (1.08–1.30) <0.001 *
Control 1165/21,529 (5.41) 113,027 10.30 1 1
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Table 3. Cont.

n of Event/
n of Total (%)

Follow-Up
Duration
(PY)

IR per
1000
(PY)

IRD (95% CI)
Hazard Ratios for AD

Crude p Overlap Weighted
Model † p

Non-smoker
CKD 752/9946 (7.56) 43,502 17.30 3.40 (2.12 to 4.60) 1.22 (1.13–1.32) <0.001 * 1.14 (1.07–1.21) <0.001 *
Control 2963/40,439 (7.33) 212,727 13.90 1 1

Past and current smoker
CKD 298/5810 (5.13) 22,901 13.00 3.40 (1.98 to 4.85) 1.32 (1.16–1.50) <0.001 * 1.13 (1.02–1.26) 0.020 *
Control 1090/22,585 (4.83) 113,588 9.60 1 1

Alcohol consumption <1 time a week
CKD 842/11,357 (7.41) 48,781 17.30 3.60 (2.34 to 4.69) 1.23 (1.14–1.33) <0.001 * 1.14 (1.07–1.21) <0.001 *
Control 3108/43,333 (7.17) 226,064 13.70 1 1

Alcohol consumption ≥1 time a week
CKD 208/4399 (4.73) 17,622 11.80 2.37 (0.79 to 3.96) 1.23 (1.06–1.43) 0.008 * 1.13 (1.01–1.28) 0.035 *
Control 945/19,691 (4.80) 100,251 9.43 1 1

SBP < 140 mmHg and DBP < 90 mmHg
CKD 642/10,306 (6.23) 41,881 15.30 3.90 (2.76 to 5.04) 1.31 (1.20–1.43) <0.001 * 1.16 (1.09–1.24) <0.001 *
Control 2661/46,067 (5.78) 232,910 11.40 1 1

SBP ≥ 140 mmHg or DBP ≥ 90 mmHg
CKD 408/5450 (7.49) 24,522 16.60 1.70 (0.00 to 3.47) 1.10 (0.98–1.23) 0.091 1.09 (0.99–1.20) 0.074
Control 1392/16,957 (8.21) 93,405 14.90 1 1

Fasting blood glucose < 100 mg/dL
CKD 484/7405 (6.54) 33,911 14.30 2.60 (1.36 to 3.89) 1.20 (1.09–1.33) <0.001 * 1.16 (1.07–1.25) <0.001 *
Control 2279/34,901 (6.53) 195,609 11.70 1 1

Fasting blood glucose ≥ 100 mg/dL
CKD 566/8351 (6.78) 32,492 17.40 3.80 (2.39 to 5.30) 1.26 (1.15–1.39) <0.001 * 1.12 (1.03–1.21) 0.007 *
Control 1774/28,123 (6.31) 130,706 13.60 1 1

Total cholesterol < 200 mg/dL
CKD 647/9734 (6.65) 38,036 17.00 4.50 (3.19 to 5.74) 1.33 (1.21–1.45) <0.001 * 1.19 (1.11–1.28) <0.001 *
Control 2261/36,777 (6.15) 180,229 12.50 1 1

Total cholesterol ≥ 200 mg/dL
CKD 403/6022 (6.69) 28,367 14.20 1.90 (0.51 to 3.37) 1.14 (1.03–1.27) 0.016 * 1.07 (0.98–1.16) 0.111
Control 1792/26,247 (6.83) 146,086 12.30 1 1

CCI scores = 0
CKD 159/4810 (3.31) 22,607 7.03 0.31 (−0.82 to 1.45) 1.04 (0.88–1.22) 0.67 1.20 (1.07–1.34) 0.001 *
Control 1261/34,942 (3.61) 187,732 6.72 1 1

CCI scores = 1
CKD 83/2695 (3.08) 10,818 7.67 −2.53 (−4.51 to −0.46) 0.74 (0.59–0.93) 0.009 * 0.95 (0.80–1.12) 0.533
Control 600/11,574 (5.18) 59,071 10.20 1 1

CCI scores ≥ 2
CKD 808/8251 (9.79) 32,978 24.50 −3.10 (−5.16 to −0.97) 0.87 (0.81–0.95) 0.001 * 1.11 (1.02–1.19) 0.010 *
Control 2192/16,508 (13.28) 79,512 27.60 1 1

Abbreviation: CKD—Chronic kidney disease; AD—Alzheimer dementia; IR—incidence rate; CI—confidence
interval; IRD—incidence rate difference; PY—person year; * Significance at p < 0.05; † Adjusted for age, sex,
income, region of residence, obesity, smoking, alcohol consumption, systolic blood pressure, diastolic blood
pressure, fasting blood glucose, total cholesterol, and Charlson Comorbidity Index scores.

Subgroup analysis revealed that CKD was significantly associated with an increased
risk of developing AD, regardless of smoking history, alcohol consumption, or fasting
blood glucose level. Additionally, individuals with CKD were more likely to develop AD if
they were overweight (HR, 1.19; 95% CI, 1.06–1.32; p = 0.002) or obese (HR, 1.19; 95% CI,
1.08–1.30; p < 0.001), had a systolic blood pressure <140 mmHg and diastolic blood pressure
<90 mmHg (1.16; 95% CI, 1.09–1.24; p < 0.001), a total cholesterol <200 mg/dL (HR, 1.19;
95% CI, 1.11–1.28; p < 0.001), CCI scores = 0 (HR, 1.20; 95% CI, 1.07–1.34; p = 0.001), or CCI
scores ≥2 (HR, 1.11; 95% CI, 1.02–1.19; p = 0.010).

3. Discussion

This study revealed that there was a slight elevation in the risk of developing AD in
Korean adults with CKD than in those without CKD over a 16-year observation period.
Using a propensity score overlap-weighted Cox proportional hazard regression analysis
adjusted for confounding factors such as demographics, socioeconomics, lifestyle, and
comorbidities, the study found that CKD could be an independent risk factor for developing
AD. Those with CKD had a 14% higher chance (95% CI, 1.08–1.20) of occurring AD than
those without CKD. The study found that the effect of CKD on the prevalence of AD
remained consistent regardless of various factors, such as sex, age, income, residential
location, smoking history, alcohol consumption, fasting blood glucose level, and certain
comorbidities, such as obesity or CCI scores ≥2. This suggests that predicting AD in
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patients with CKD may be challenging, and highlighting the need for regular screening of
AD in these patients is of great importance.

Our results confirmed the findings of prior studies suggesting a relationship between
CKD and the hazard of dementia. This is the first study that demonstrates the associa-
tion between CKD and the incidence of AD. This study found a persistently increased
risk of developing AD in participants with CKD throughout the 16-year follow-up pe-
riod when compared with the control group. In an earlier community-based population
study (n = 2406) in the USA, CKD was linked to a more augmented hazard of cognitive
impairment, even after controlling for age, sex, race, and education [14]. This study em-
phasizes a positive relationship between the severity of CKD and cognitive impairment,
indicating a causal relationship between CKD and cognitive impairment [14], which could
not be assessed owing to the lack of data on the severity of CKD and AD in the national
insurance data in the present study. However, individuals who had been diagnosed with
cognitive impairment in the study were not officially diagnosed with dementia or AD by
physicians [14]; only questionnaire assessments were performed by trained personnel [14].
Another community-based population study of individuals aged ≥65 years living in a
typical agricultural area in northern Japan (n = 497) demonstrated that CKD has a 5.3-fold
greater risk (95% CI, 1.7–16.2) for the incidence of dementia [11]. This remarkably high value
may be explained by the fact that rural regions of the country may be disproportionally
affected by dementia or AD compared to urban areas, possibly owing to underdiagnosis
or risk factors [29]. However, only 60.7% (17/28) of the patients with dementia had AD
in this study. Body mass index was not included as a variable in the study, and the 5-year
follow-up timespan may not have been lengthy enough to fully evaluate the development
of dementia [11]. A community cohort study conducted in the United Kingdom, which
compiled data for over 10 years and included 306 cases of dementia, found that CKD
was involved with an HR of 1.37 (95% CI 1.02–1.85) for the development of dementia [13].
The community-based cohort studies mentioned above may have limitations owing to
confounding factors depending on the residence area [11,13,14]. A massive nationwide
population-based study that employed the National Health Insurance Research Database in
Taiwan (n = 37,049 for the CKD group; n = 74,098 for the control group), which has a health
insurance plan similar to that of Korea, determined the association between CKD and the
probability of subsequent dementia, with an overall HR of 1.41 (95% CI 1.32–1.50) [12].
This study is noteworthy for its in-depth investigation of comorbidities and medications
as predictive factors for incident dementia. However, this study did not focus on patients
with AD.

However, some studies have found conflicting evidence regarding the link between
CKD and AD [26], or dementia [23,24,26]. In a prospective, population-based cohort study
(n = 6256) in Germany, which involved over 17 years of follow-up, there was no significant
involvement between CKD and an increased hazard of developing all-cause dementia (HR
0.95, 95% CI 0.69–1.29), AD (HR 0.94, 95% CI 0.55–1.63), or vascular dementia (HR 1.06,
95% CI 0.65–1.70) [26]. Previous negative studies on this issue did not accomplish the exact
balance in terms of sociodemographic and health profiles at baseline between the CKD
and control groups [23,24,26]. The heterogeneity in terms of demographic data differences
likely caused huge differences in the original qualities of the research groups concerning
the same participant [30]. To minimize potential confounding factors in our investigation,
we planned a preferable research design, which involved applying nationwide organized
data and overlap weighting adjustment to reduce differences between the cohorts. The
conclusion drawn from our study was that there was a small but statistically meaningful
increase in the HR for AD following CKD, even after adjusting for age, income, place of
residence, smoking status, alcohol consumption, and fasting blood glucose levels. This
finding was confirmed using a larger sample size of 15,756 individuals with CKD who
were closely matched with 63,024 participants without CKD, indicating that CKD may be
an independent predictor of AD. This conclusion is consistent with previous studies that
investigated the link between CKD and dementia [11,13,28,31]. The fact that the effect of
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CKD on AD was observed consistently over a 16-year follow-up period in our study is
particularly noteworthy and may be clinically significant, as previous studies on this topic
had follow-up durations ranging from 4 to 17 years [13,15,24,26,28,31].

Individuals with CKD often have a more enhanced risk of occurring cardiovascular
diseases such as arrhythmias, heart failure, coronary artery disease, and sudden cardiac
death [6]. The influence of cardiovascular risk elements on the risk of dementia or cognitive
impairment in individuals with CKD has not been investigated [13,23]. According to a
recent study, stroke is not an independent risk factor for developing dementia in patients
with CKD [21]. Adjustment for incident stroke modestly attenuates the risk of cognitive
impairment in patients with CKD [14]. In other studies, excluding participants who had
a stroke during the follow-up period did not affect the association between CKD and the
probability of subsequent dementia [13,23]. One study found that the association between
CKD and dementia was not influenced by the presence of small vessel disease [28]. Ad-
ditionally, even after controlling for major cardiometabolic conditions, such as obesity,
hypertension, diabetes, and coronary heart disease, the risk of dementia following CKD
persisted [14]. This suggests that the higher hazard of dementia related to CKD may not
be attributable to cardiovascular factors [13,14,23,28]. In our subgroup analyses, CKD was
associated with elevated HRs in AD, regardless of cardiovascular risk factors, which corre-
sponds with a Taiwanese study [12]. Furthermore, we noted that a subset of CKD patients
without hypertension or hyperlipidemia had an increased probability of developing AD.
CKD patients without hyperlipidemia had a greater incidence of dementia than those of the
non-CKD group [12], which is consistent with our study. Other comorbidities or undefined
risk factors may interact with CKD and further increase the risk of developing AD [12].

The mechanisms underlying the association between CKD and AD development
are unclear. However, our study found that cardiovascular risk factors are unlikely to
fully explain the link between CKD and AD, which is consistent with the findings of
other studies on this topic [13,14,23]. Many researchers have attempted to explain the
increased risk of cognitive disorders and dementia by highlighting the high prevalence of
symptomatic and subclinical ischemic cerebrovascular lesions [11,12,31]. However, other
mechanisms may contribute to the development of cognitive disorders and dementia,
such as the direct damage to neurons caused by uremic toxins [32]. These mechanisms
may be particularly relevant in cases where there is no clear cerebrovascular disease [32].
The kidney–brain axis communicates to maintain homeostasis in the body because they
share closely related anatomical and physiological aspects [20]. The interplay between
the kidney and brain contributes to the pathophysiology of neurological diseases and has
only been recently recognized [21,32]. In this context, first, the increased risk of developing
AD may result from impaired kidney function leading to the decreased clearance of toxic
β-amyloid, a protein that forms the plaques found in the brains of patients with AD [21].
An animal model study found that performing a unilateral nephrectomy, which involves
removing one kidney, led to an increase in the deposition of β-amyloid in the brain [33].
This was accompanied by the aggravation of β-amyloid and tau protein deposition, glial
activation, neuroinflammation, and neuronal loss [33]. Additionally, cognitive deficits
were also observed to worsen in the mice [33]. Individuals with CKD had higher levels of
tau protein, another protein implicated in the development of AD, in their cerebrospinal
fluid than those without CKD [34]. In a prospective study, CKD was associated with
dementia-related blood biomarker levels of phosphorylated tau 181, which may result from
reduced kidney clearance [26]. Cognitive improvement was noted in kidney transplant
recipients [35]. Another potential mechanism linking CKD and AD involves the uremic
toxin homocysteine [36]. Elevated plasma homocysteine levels are associated with both
atrophic changes in the brain and glomerular injury [37]. This toxin may contribute to the
pathogenesis of AD by activating N-methyl-D-aspartate receptors, leading to excessive
calcium influx, increased oxidative stress, and inflammation within neurons, ultimately
resulting in cell death [38]. Oxidative stress has also been identified as a significant element
in the development of age-related neurodegenerative diseases, such as AD [39]. This, in
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turn, can cause changes in the histological characteristics of AD [21]. Furthermore, it is
possible that the presence of certain metals, such as aluminum, copper, zinc, and iron,
which cannot be properly eliminated owing to reduced kidney function, may contribute
to chronic increases in oxidative stress and the release of inflammatory cytokines [40,41].
This can ultimately lead to an imbalanced concentration of neurotransmitters and promote
the accumulation of β-amyloid and Na+/K+-ATPase activity, potentially contributing to
AD development.

The strength and reliability of this study are rooted in the use of a representative
nationwide cohort database that allows for the matching of patient and control members
through overlap-weighted propensity score matching. This technique helped minimize
selection bias and create study groups that were similar to those in randomized clinical
trials, adding to the integrity of the study. Although previous studies have indicated a high
prevalence of CKD and AD among certain groups, such as women, elderly people, those
with a low income, and those living in rural areas [12–15,26], our study created a balanced
distribution of demographic and health-related factors by matching 15,756 individuals
with CKD to 63,024 participants without CKD. This allowed us to accurately investigate
the association between CKD and AD. Through this procedure, we found that individuals
with CKD were more likely to develop AD, regardless of factors such as sex, age, income,
residential location, smoking history, and alcohol consumption. This suggests that the
association between CKD and AD is not limited to specific subgroups. Second, the use
of the Korean National Health Insurance Service-Health Screening Cohort (KNHIS-HSC)
database in our study allowed a complete medical history to be obtained from every
hospital and clinic throughout the country. This significantly enhanced the generalizability
and accuracy of our findings. Third, another advantage of our study is that we carefully
considered and adjusted for potential confounding variables. This included adjusting
for socioeconomic status, such as income and area of residence, and lifestyle-related risk
factors, such as alcohol consumption, blood pressure, obesity, fasting blood glucose, total
cholesterol level, and smoking. We also considered comorbidities, which further enhanced
the reliability and accuracy of our findings. Finally, our study also benefited from a lengthy
16-year follow-up period, which is one of the longest and most extensive longitudinal
studies investigating the relationship between CKD and AD. This provided a significant
advantage in terms of detecting and analyzing the potential associations between the two
conditions over an extended period.

Our findings possessed some limitations. First, the observational and retrospective na-
ture of our study design meant that we could not definitively establish a causal relationship
between CKD and AD. Additionally, we did not investigate the underlying mechanisms
that might explain the association between these two conditions. Second, we included only
Korean citizens over the age of 40 years and relied on diagnosis codes obtained from health
insurance data in Korea. This means that there may be some unmeasured confounding
variables that were not accounted for, and that the results may not be generalizable to
other populations. Third, the KNHIS-HSC database used in our study did not contain
information regarding the severity of CKD or AD, family history, personal genetics, or
dietary habits. This lack of information may have limited our ability to fully understand
and investigate the relationship between CKD and AD.

4. Materials and Methods
4.1. Ethics

The ethics committee of Hallym University approved this study (2019-10-023) and
written informed consent was not required by the Institutional Review Board in accordance
with their guidelines and regulations. The authors used data from the KNHIS-HSC, which
provides population-based electronic files for research purposes that are de-identified to
protect the anonymity of the Korean population, as earlier described [42–44]. The diagnostic
codes used in this study followed the International Classification of Diseases, 10th Revision,
Clinical Modification (ICD-10-CM).
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4.2. Exposure (Chronic Kidney Disease)

To identify participants with CKD, the researchers categorized those who had been
diagnosed with CKD (ICD-10 code: N18) at least twice or those with unspecified kidney
failure (ICD-10 code: N19) as CKD patients. Additionally, participants who had received
regular dialysis treatment (hemodialysis and/or peritoneal dialysis) were included if they
had corresponding treatment codes (O7010, O7020, and O7070).

4.3. Outcome (AD)

In this study, AD was defined using either the G30 code or F00 code (dementia in AD).
To ensure the accuracy of the diagnosis, only participants who had been treated for AD
two or more times were included in the analysis.

4.4. Participant Selection

From the KNHIS-HSC dataset, individuals aged ≥40 years with medical claim codes
between 2002 and 2019 were included, resulting in a total of 514,866 adult patients with
895,300,177 medical claim codes. Among them, 17,478 were identified as having CKD.
Individuals who were not diagnosed with CKD between 2002 and 2019 were included
in the control group (n = 497,388). To avoid potential bias in the analysis of pre-existing
AD, individuals with CKD diagnosed in 2002 were excluded from the study (n = 536) to
allow for a 1-year washout period. Participants with CKD who did not have any recorded
BMI (n = 2), fasting blood glucose (n = 2), or blood pressure (n = 1) values were excluded
from the analysis. Participants in the control group who were diagnosed with ICD-10
code N18 were excluded from the study (n = 3649). The study employed a 1:4 matching
strategy to create a control group that was comparable to participants with CKD in terms of
age, sex, income, and region of residence. To ensure unbiased selection, the control group
was randomly ordered and selected from the top of the list in a one-to-one match with
participants with CKD. To ensure that both groups were assessed simultaneously, the index
date for the control participants was set to match that of the corresponding participants
with CKD. To ensure that the CKD and control groups were comparable, participants
from the comparison group who passed away before the index date were excluded from
the analysis. Furthermore, participants in the two groups with a history of AD prior to
the index date were excluded to avoid any bias in the analysis. In the CKD group, a
total of 1181 participants were excluded because they were left-truncated, meaning that
they did not meet the inclusion criteria during the matching procedure. For the control
group, 430,715 participants were excluded during the matching procedure. After excluding
participants based on the aforementioned criteria, 15,756 participants with CKD were
selected and matched with 63,024 participants in the control group in a ratio of 1:4. The
participant selection and matching process is shown in Figure 2.

Furthermore, we searched for newly diagnosed cases of AD by identifying newly as-
signed ICD-10 codes for AD in both the CKD and control groups between each individual’s
index date and the end of 2019.
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Figure 2. A schematic diagram of the participant selection process to analyze data from 514,866 par-
ticipants. From this pool, 15,756 individuals with chronic kidney disease (CKD) were matched with
63,024 control participants based on factors such as age, sex, income, and region of residence.

4.5. Covariates

The study categorized participants into 10 age groups, with each group representing
a 5-year interval, and five income groups ranging from class 1 (lowest income) to class 5
(highest income) [45]. The researchers categorized the participants’ residential areas as
either urban or rural using the same methodology as in a previous study [46,47]. The
study used the same categorization method as a previous study for three variables: tobacco
smoking, alcohol consumption, and obesity, which was based on the participant’s body
mass index in kg/m2 [48]. The study utilized data on several health measures, including
systolic and diastolic blood pressures (mmHg), fasting blood glucose levels (mg/dL), and
total cholesterol levels (mg/dL) [45]. The CCI is a commonly used tool to assess the overall
burden of disease in individuals, which considers the presence of 17 different comorbid
conditions. Each participant was given a score based on the severity and number of
diseases using the CCI, which includes 17 comorbidities. The CCI score ranges from 0 (no
comorbidities) to 29 (multiple comorbidities) [49,50]. In this study, CKD (ICD-10 codes: N18
and N19) was excluded from the CCI score. The CCI was used as a continuous variable.
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4.6. Statistical Analyses

The research compiled proportions for categorical data and computed means along
with their corresponding standard deviations for continuous data. For comparative pur-
poses, chi-squared tests were employed for categorical variables, while t-tests were utilized
for continuous variables. To assess the distribution of the general characteristics between
the cohorts, the standardized difference was applied. To ensure that the covariates were
balanced and to increase the effective sample size, propensity score overlap weighting was
performed. We used multivariable logistic regression with all covariates to calculate the
propensity scores. For overlap weighting, participants with CKD were weighted using the
probability of the propensity score, while control participants were weighted using the
probability of 1 − propensity score. The overlap weighting was calculated between 0 and 1
to achieve perfect balance and increase the precision [51–53]. The study used standardized
differences to compare the general characteristics between the CKD and control groups
before and after weighting. The accuracy of the matching groups was evaluated by com-
paring the absolute standardized differences of the covariates before and after matching. A
value of <0.20 was considered an appropriate balance [54].

We calculated the crude incidence rates and incidence rate difference by dividing
the number of participants who experienced a specific event by the total person years of
follow-up, illustrated as cases per 1000 person years. Kaplan–Meier analysis and log-rank
tests were used to compare the cumulative probability of incident AD in the CKD group
with that of the control group. To adjust for potential confounders and to estimate the
overlap-weighted HRs and 95% CIs of CKD for incident AD, we used Cox proportional
hazard regressions with an overlap weight for both unadjusted and overlap-weighted
(adjusted for all covariates) models. To ensure the validity of the results, we confirmed that
the proportional hazard assumptions were met by creating log-minus-log plots, and found
no violations of these assumptions (Figure 3).
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The analysis does not identify any violations of these assumptions, indicating that our results are
reliable and accurate.

5. Conclusions

Our study suggests that Korean adults with CKD may have a slightly increased risk of
developing AD regardless of their demographic or lifestyle characteristics. This population-
based nationwide study cautiously suggests a potential association between CKD and
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incident AD in Korean adults. However, further research is needed to confirm this link and
investigate the underlying mechanisms in greater detail.
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