Impact of Blood-Flow-Restricted Training on Arterial Functions and Angiogenesis—A Systematic Review with Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion Criteria
2.3. Screening
2.4. Data Extraction
2.5. Bias Risk Assessment
2.6. Statistical Analysis
3. Results
3.1. Study Selection
3.2. Included Studies’ Characteristics
3.3. Endothelial Functions
3.3.1. Flow-Mediated Dilatation
3.3.2. Reactive Hyperemia Index
3.3.3. Vascular Stiffness Parameters
3.3.4. Intima-Media Thickness
3.3.5. Nitric Oxide
3.4. Angiogenesis
3.4.1. Vascular Endothelial Growth Factor and Its Variations
- Serum VEGF: Only four studies that examined serum VEGF were eligible for statistical analysis [27,39,42,52]. The rest did not present sufficient data for calculation, but they showed a trend for higher VEGF concentrations after BFR compared to non-BFR exercise [2,53,54,55]. Only in the study by Christiansen et al. [56] were no differences observed. As some of the studies consisted of different subgroups performing different types of exercise or/and used assessments at multiple time points, all of the variants were pooled, resulting in seven trials to be examined regarding the effects of exercise on circulating VEGF concentrations. The model estimate was 0.529 (CI 0.130, 0.928, p value = 0.009). The heterogeneity was low (I-squared: 39.41%, p value = 0.130) [Figure 4].
- VEGF mRNA: Five studies analyzed levels of VEGF mRNA, and 4 showed a significant increase after BFR exercise and a greater effect compared to non-BFR exercise, regardless of the training type [52,57,58,59]. Only Conceicao et al., in their 2016 study, did not observe significant changes in VEGF mRNA concentrations [60]. Unfortunately, the provided data were insufficient for calculations.
- VEGF-R: The serum VEGF-R concentration was only measured by two studies, but they both confirmed its significant elevation after BFR exercise, which was greater compared to that after non-BFR exercise [28,55]. VEGF-R mRNA was assessed in three studies [52,58,59], and all of them confirmed its peak due to BFR exercise, but it was only significantly different compared to non-BFR exercise in two of them.
3.4.2. CD31 (PECAM-1) and CD34
3.4.3. CD106/VCAM-1
3.4.4. Von Willebrand Factor
3.5. Other Vascular Functions
3.5.1. Ankle-Brachial Index and Toe-Brachial Index
3.5.2. Cardio-Ankle Vascular Index
3.5.3. TcPO2
3.5.4. Systolic Blood Pressure
3.5.5. Heart Rate
4. Discussion
4.1. Impact of Blood Flow Restriction on Exercise Performance
4.2. Other BFR Vascular-Related Studies
4.3. Vascular Parameters
4.3.1. Endothelium
4.3.2. Angiogenesis
4.3.3. Other Vascular Functions
4.4. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
PUBMED: |
((“blood flow restricted training”) OR (“blood flow restriction training”) OR (“blood flow restricted exercise”) OR (“blood flow restriction exercise”) OR (“blood flow restriction”) OR (BFR) OR (“BFR-RT”) OR (“ischemic training”) OR (“ischemic exercise”) OR (kaatsu) OR (katsu) OR (“kaatsu exercise”) OR (“kaatsu training”) OR (“vascular occlusion exercise”) OR (“vascular occlusion training”)) AND ((“vascular function”) OR (“endothelium”[MeSH Terms]) OR (“endothelium, vascular”[MeSH Terms]) OR (vasodilatation[MeSH Terms]) OR (“flow mediated dilatation”) OR (“flow-mediated dilatation”) OR (FMD) OR (“reactive hyperemia index”) OR (RHI) OR (“intima-media thickness”) OR (IMT) OR (“transcutaneous oximetry”) OR (tcpo2) OR (“arterial stiffness”) OR (“ankle brachial index”[MeSH Terms]) OR (“toe brachial index”) OR (“toe- brachial index”) OR (TBI) OR (“cardio ankle vascular index”[MeSH Terms]) OR (“vascular endothelial growth factor a”[MeSH Terms]) OR (“vascular endothelial growth factor b”[MeSH Terms]) OR (vascular stiffness[MeSH Terms]) OR (“vascular remodeling”[MeSH Terms]) OR (Angiogenesis effect[MeSH Terms]) OR (angiogenesis factor[MeSH Terms]) OR (“angiogenesis inducing agents”[MeSH Terms]) OR (angiogenesis) OR (cd31 antigen[MeSH Terms]) OR (vcam-1) OR (CD106) OR (CD-106) OR (von willebrand factor[MeSH Terms]) OR “nitric oxide”[MeSH Terms])) |
EMBASE: |
(‘blood flow restriction training’/de OR ‘blood flow restriction exercise’/de OR ‘blood flow restriction’/de OR ‘ischemic training’ OR ‘ischemic exercise’ OR ‘kaatsu’ OR ‘katsu’ OR ‘kaatsu training’ OR ‘kaatsu exercise’ OR ‘blood vessel occlusion’/de OR ‘vascular occlusion exercise’ OR ‘vascular occlusion training’) AND (‘vascular function’/de OR ‘endothelium’/de OR ‘vascular endothelium’/de OR ‘vasodilatation’/de OR ‘flow mediated dilatation’/de OR ‘flow-mediated dilation test’/de OR ‘flow mediated vasodilation’/de OR ‘reactive hyperemia index’/de OR ‘arterial wall thickness’/de OR ‘intima-media thickness’ OR ‘transcutaneous oximetry’/de OR tcpo2 OR ‘ankle brachial index’/de OR ‘toe brachial index’/de OR ‘cardio-ankle vascular index’/de OR ‘vasculotropin’/de OR ‘vascular endothelial growth factor’ OR ‘arterial stiffness’/de OR ‘vascular remodeling’/de OR ‘angiogenesis’/de OR ‘angiogenic factor’/de OR ‘angiogenesis modulator’/de OR ‘cd31 antibody’/de OR ‘platelet endothelial cell adhesion molecule 1’/de OR ‘vascular cell adhesion molecule 1’/de OR ‘von willebrand factor’/de OR ‘nitric oxide’/de) AND [english]/lim AND ‘human’/de |
References
- Cognetti, D.J.; Sheean, A.J.; Owens, J.G. Blood Flow Restriction Therapy and Its Use for Rehabilitation and Return to Sport: Physiology, Application, and Guidelines for Implementation. Arthrosc. Sport. Med. Rehabil. 2022, 4, e71–e76. [Google Scholar] [CrossRef]
- Barjaste, A.; Mirzaei, B.; Rahmani-nia, F.; Haghniyaz, R.; Brocherie, F. Concomitant Aerobic- and Hypertrophy-Related Skeletal Muscle Cell Signaling Following Blood Flow-Restricted Walking. Sci. Sport. 2020, 36, e51–e58. [Google Scholar] [CrossRef]
- Beak, H.J.; Park, W.; Yang, J.H.; Kim, J. Effect of Low-Intensity Aerobic Training Combined with Blood Flow Restriction on Body Composition, Physical Fitness, and Vascular Responses in Recreational Runners. Healthcare 2022, 10, 1789. [Google Scholar] [CrossRef] [PubMed]
- Kilgas, M.A.; Yoon, T.; McDaniel, J.; Phillips, K.C.; Elmer, S.J. Physiological Responses to Acute Cycling with Blood Flow Restriction. Front. Physiol. 2022, 13, 409. [Google Scholar] [CrossRef]
- Wooten, S.V.; Stray-Gundersen, S.; Tanaka, H. Hemodynamic and Pressor Responses to Combination of Yoga and Blood Flow Restriction. Int. J. Sport. Med. 2020, 41, 759–765. [Google Scholar] [CrossRef]
- Wortman, R.J.; Brown, S.M.; Savage-Elliott, I.; Finley, Z.J.; Mulcahey, M.K. Blood Flow Restriction Training for Athletes: A Systematic Review. Am. J. Sport. Med. 2021, 49, 1938–1944. [Google Scholar] [CrossRef] [PubMed]
- Gladden, J.; Wernecke, C.; Rector, S.; Tecson, K.; McCullough, P. Pilot Safety Study: The Use of VasperTM, a Novel Blood Flow Restriction Exercise in Healthy Adults. J. Exerc. Physiol. Online 2016, 19, 99–106. [Google Scholar]
- Patterson, S.D.; Hughes, L.; Warmington, S.; Burr, J.; Scott, B.R.; Owens, J.; Abe, T.; Nielsen, J.L.; Libardi, C.A.; Laurentino, G.; et al. Blood Flow Restriction Exercise Position Stand: Considerations of Methodology, Application, and Safety. Front. Physiol. 2019, 10, 533. [Google Scholar] [CrossRef]
- Lorenz, D.S.; Bailey, L.; Wilk, K.E.; Mangine, R.E.; Head, P.; Grindstaff, T.L.; Morrison, S. Blood Flow Restriction Training. J. Athl. Train. 2021, 56, 937–944. [Google Scholar] [CrossRef]
- Hughes, L.; Paton, B.; Rosenblatt, B.; Gissane, C.; Patterson, S.D. Blood Flow Restriction Training in Clinical Musculoskeletal Rehabilitation: A Systematic Review and Meta-Analysis. Br. J. Sport. Med. 2017, 51, 1003–1011. [Google Scholar] [CrossRef]
- Ferguson, R.A.; Mitchell, E.A.; Taylor, C.W.; Bishop, D.J.; Christiansen, D. Blood-Flow-Restricted Exercise: Strategies for Enhancing Muscle Adaptation and Performance in the Endurance-Trained Athlete. Exp. Physiol. 2021, 106, 837–860. [Google Scholar] [CrossRef] [PubMed]
- Patterson, S.D.; Hughes, L.; Head, P.; Warmington, S.; Brandner, C. Blood Flow Restriction Training: A Novel Approach to Augment Clinical Rehabilitation: How to Do It. Br. J. Sport. Med. 2017, 51, 1648–1649. [Google Scholar] [CrossRef]
- Nystoriak, M.A.; Bhatnagar, A. Cardiovascular Effects and Benefits of Exercise. Front. Cardiovasc. Med. 2018, 5, 135. [Google Scholar] [CrossRef]
- Januszek, R.; Mika, P.; Nowobilski, R.; Maga, P.; Niżankowski, R. The Improvement of Walking Abilities and Endothelial Function after the Supervised Training Treadmill Program (STTP) in Patients with Peripheral Artery Disease (PAD) Is Not Related to Prostacyclin and Thromboxane Release. Int. J. Cardiol. 2016, 222, 813–818. [Google Scholar] [CrossRef]
- Piepoli, M.F.; Hoes, A.W.; Agewall, S.; Albus, C.; Brotons, C.; Catapano, A.L.; Cooney, M.T.; Corrà, U.; Cosyns, B.; Deaton, C.; et al. 2016 European Guidelines on Cardiovascular Disease Prevention in Clinical Practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (Constituted by Representatives of 10 Societies and by Invited Experts) Developed with the Special Contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Atherosclerosis 2016, 252, 207–274. [Google Scholar] [CrossRef]
- Frank, U.; Nikol, S.; Belch, J.; Boc, V.; Brodmann, M.; Carpentier, P.H.; Chraim, A.; Canning, C.; Dimakakos, E.; Gottsäter, A.; et al. ESVM Guideline on Peripheral Arterial Disease. Vasa 2019, 48, 1–79. [Google Scholar] [CrossRef] [PubMed]
- Stanford, D.M.; Mouser, J.G.; Chatlaong, M.A.; Jessee, M.B. A Narrative Review of the Effects of Blood Flow Restriction on Vascular Structure and Function. Physiol. Int. 2022, 109, 186–203. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. Cochrane Handbook for Systematic Reviews of Interventions; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Lo Russo, G.; Spolveri, F.; Ciancio, F.; Mori, A. Mendeley: An Easy Way to Manage, Share, and Synchronize Papers and Citations. Plast. Reconstr. Surg. 2013, 131, 946e–947e. [Google Scholar] [CrossRef]
- Moola, S.; Munn, Z.; Tufanaru, C.; Aromataris, E.; Sears, K.; Sfetcu, R.; Currie, M.; Qureshi, R.; Mattis, P.; Lisy, K.; et al. Systematic Reviews of Etiology and Risk. In Joanna Briggs Institute Reviewer’s Manual; Aromataris, E.M.Z., Ed.; The Joanna Briggs Institute: Adelaide, Australia, 2017. [Google Scholar]
- Becker, B.J. Synthesizing Standardized Mean-change Measures. Br. J. Math. Stat. Psychol. 1988, 41, 257–278. [Google Scholar] [CrossRef]
- Morris, S.B. Estimating Effect Sizes from Pretest-Posttest-Control Group Designs. Organ. Res. Methods 2008, 11, 364–386. [Google Scholar] [CrossRef]
- Viechtbauer, W. Conducting Meta-Analyses in R with the Metafor. J. Stat. Softw. 2010, 36, 1–48. [Google Scholar] [CrossRef]
- Viechtbauer, W. Bias and Efficiency of Meta-Analytic Variance Estimators in the Random-Effects Model. J. Educ. Behav. Stat. 2005, 30, 261–293. [Google Scholar] [CrossRef]
- Nave, O. Modification of Semi-Analytical Method Applied System of ODE. Mod. Appl. Sci. 2020, 14, 1–75. [Google Scholar] [CrossRef]
- Takano, H.; Morita, T.; Iida, H.; Asada, K.; Kato, M.; Uno, K.; Hirose, K.; Matsumoto, A.; Takenaka, K.; Hirata, Y.; et al. Hemodynamic and Hormonal Responses to a Short-Term Low-Intensity Resistance Exercise with the Reduction of Muscle Blood Flow. Eur. J. Appl. Physiol. 2005, 95, 65–73. [Google Scholar] [CrossRef]
- Maga, M.; Schönborn, M.; Wachsmann-Maga, A.; Śliwka, A.; Krężel, J.; Włodarczyk, A.; Olszewska, M.; Nowobilski, R. Stimulation of the Vascular Endothelium and Angiogenesis by Blood-Flow-Restricted Exercise. Int. J. Environ. Res. Public Health 2022, 19, 15859. [Google Scholar] [CrossRef]
- Barili, A.; Corralo, V.D.S.; Cardoso, A.M.; Mânica, A.; Bonadiman, B.D.S.R.; Bagatini, M.D.; Da Silva-Grigoletto, M.E.; de Oliveira, G.G.; De Sá, C.A. Acute Responses of Hemodynamic and Oxidative Stress Parameters to Aerobic Exercise with Blood Flow Restriction in Hypertensive Elderly Women. Mol. Biol. Rep. 2018, 45, 1099–1109. [Google Scholar] [CrossRef]
- Pinto, R.R.; Polito, M.D. Haemodynamic Responses during Resistance Exercise with Blood Flow Restriction in Hypertensive Subjects. Clin. Physiol. Funct. Imaging 2016, 36, 407–413. [Google Scholar] [CrossRef]
- Kambič, T.; Novaković, M.; Tomažin, K.; Strojnik, V.; Jug, B. Blood Flow Restriction Resistance Exercise Improves Muscle Strength and Hemodynamics, but Not Vascular Function in Coronary Artery Disease Patients: A Pilot Randomized Controlled Trial. Front. Physiol. 2019, 10, 656. [Google Scholar] [CrossRef]
- Credeur, D.P.; Hollis, B.C.; Welsch, M.A. Effects of Handgrip Training with Venous Restriction on Brachial Artery Vasodilation. Med. Sci. Sport. Exerc. 2010, 42, 1296–1302. [Google Scholar] [CrossRef]
- Paiva, F.M.; Vianna, L.C.; Fernandes, I.A.; Nóbrega, A.C.; Lima, R.M. Effects of Disturbed Blood Flow during Exercise on Endothelial Function: A Time Course Analysis. Braz. J. Med. Biol. Res. Rev. Bras. Pesqui. Med. Biol. 2016, 49, e5100. [Google Scholar] [CrossRef] [PubMed]
- Renzi, C.P.; Tanaka, H.; Sugawara, J. Effects of Leg Blood Flow Restriction during Walking on Cardiovascular Function. Med. Sci. Sport. Exerc. 2010, 42, 726–732. [Google Scholar] [CrossRef] [PubMed]
- Stray-Gundersen, S.; Wooten, S.; Tanaka, H. Walking with Leg Blood Flow Restriction: Wide-Rigid Cuffs vs. Narrow-Elastic Bands. Front. Physiol. 2020, 11, 568. [Google Scholar] [CrossRef] [PubMed]
- Early, K.S.; Rockhill, M.; Bryan, A.; Tyo, B.; Buuck, D.; McGinty, J. Effect of blood flow restriction training on muscular performance, pain and vascular function. Int. J. Sport. Phys. Ther. 2020, 15, 892–900. [Google Scholar] [CrossRef]
- Hunt, J.E.A.; Walton, L.A.; Ferguson, R.A. Brachial Artery Modifications to Blood Flow-Restricted Handgrip Training and Detraining. J. Appl. Physiol. 2012, 112, 956–961. [Google Scholar] [CrossRef]
- Ramis, T.R.; Muller, C.H.D.L.; Boeno, F.P.; Teixeira, B.C.; Rech, A.; Pompermayer, M.G.; Medeiros, N.D.S.; de Oliveira, R.; Pinto, R.S.; Ribeiro, J.L. Effects of Traditional and Vascular Restricted Strength Training Program with Equalized Volume on Isometric and Dynamic Strength, Muscle Thickness, Electromyographic Activity, and Endothelial Function Adaptations in Young Adults. J. Strength Cond. Res. 2020, 34, 689–698. [Google Scholar] [CrossRef]
- Tangchaisuriya, P.; Chuensiri, N.; Tanaka, H.; Suksom, D. Physiological Adaptations to High-Intensity Interval Training Combined with Blood Flow Restriction in Masters Road Cyclists. Med. Sci. Sport. Exerc. 2022, 54, 830–840. [Google Scholar] [CrossRef]
- Yasuda, T.; Fukumura, K.; Iida, H.; Nakajima, T. Effects of Detraining after Blood Flow-Restricted Low-Load Elastic Band Training on Muscle Size and Arterial Stiffness in Older Women. Springerplus 2015, 4, 348. [Google Scholar] [CrossRef]
- Yasuda, T.; Fukumura, K.; Uchida, Y.; Koshi, H.; Iida, H.; Masamune, K.; Yamasoba, T.; Sato, Y.; Nakajima, T. Effects of Low-Load, Elastic Band Resistance Training Combined with Blood Flow Restriction on Muscle Size and Arterial Stiffness in Older Adults. J. Gerontol. A Biol. Sci. Med. Sci. 2015, 70, 950–958. [Google Scholar] [CrossRef]
- Shimizu, R.; Hotta, K.; Yamamoto, S.; Matsumoto, T.; Kamiya, K.; Kato, M.; Hamazaki, N.; Kamekawa, D.; Akiyama, A.; Kamada, Y.; et al. Low-Intensity Resistance Training with Blood Flow Restriction Improves Vascular Endothelial Function and Peripheral Blood Circulation in Healthy Elderly People. Eur. J. Appl. Physiol. 2016, 116, 749–757. [Google Scholar] [CrossRef]
- Amorim, S.; Gaspar, A.P.; Degens, H.; Cendoroglo, M.S.; de Mello Franco, F.G.; Ritti-Dias, R.M.; Cucato, G.G.; Rolnick, N.; de Matos, L.D.N.J. The Effect of a Single Bout of Resistance Exercise with Blood Flow Restriction on Arterial Stiffness in Older People with Slow Gait Speed: A Pilot Randomized Study. J. Cardiovasc. Dev. Dis. 2022, 9, 85. [Google Scholar] [CrossRef]
- Credeur, D.P.; Jones, R.; Stanford, D.; Stoner, L.; McCoy, S.; Jessee, M. Central Cardiovascular Hemodynamic Response to Unilateral Handgrip Exercise with Blood Flow Restriction. Eur. J. Appl. Physiol. 2019, 119, 2255–2263. [Google Scholar] [CrossRef]
- Tai, Y.L.; Marshall, E.M.; Parks, J.C.; Kingsley, J.D. Hemodynamic Response and Pulse Wave Analysis after Upper- and Lower-Body Resistance Exercise with and without Blood Flow Restriction. Eur. J. Sport Sci. 2022, 22, 1695–1704. [Google Scholar] [CrossRef]
- Yasuda, T.; Fukumura, K.; Tomaru, T.; Nakajima, T. Thigh Muscle Size and Vascular Function after Blood Flow-Restricted Elastic Band Training in Older Women. Oncotarget 2016, 7, 33595–33607. [Google Scholar] [CrossRef]
- Karabulut, U.; Karabulut, M.; James, E.G. Small Arteries Stay Stiff for a Longer Period Following Vibration Exercises in Combination with Blood Flow Restriction. Clin. Physiol. Funct. Imaging 2018, 38, 1000–1007. [Google Scholar] [CrossRef]
- Fahs, C.A.; Rossow, L.M.; Seo, D.-I.; Loenneke, J.P.; Sherk, V.D.; Kim, E.; Bemben, D.A.; Bemben, M.G. Effect of Different Types of Resistance Exercise on Arterial Compliance and Calf Blood Flow. Eur. J. Appl. Physiol. 2011, 111, 2969–2975. [Google Scholar] [CrossRef]
- Clark, B.C.; Manini, T.M.; Hoffman, R.L.; Williams, P.S.; Guiler, M.K.; Knutson, M.J.; McGLynn, M.L.; Kushnick, M.R. Relative Safety of 4 Weeks of Blood Flow-Restricted Resistance Exercise in Young, Healthy Adults. Scand. J. Med. Sci. Sport. 2011, 21, 653–662. [Google Scholar] [CrossRef]
- Fahs, C.A.; Rossow, L.M.; Thiebaud, R.S.; Loenneke, J.P.; Kim, D.; Abe, T.; Beck, T.W.; Feeback, D.L.; Bemben, D.A.; Bemben, M.G. Vascular Adaptations to Low-Load Resistance Training with and without Blood Flow Restriction. Eur. J. Appl. Physiol. 2014, 114, 715–724. [Google Scholar] [CrossRef]
- Boeno, F.P.; Ramis, T.R.; Farinha, J.B.; de Lemos, L.S.; Medeiros, N.D.S.; Ribeiro, J.L. Acute Effects of Strength Exercise with Blood Flow Restriction on Vascular Function of Young Healthy Males. J. Vasc. Bras. 2018, 17, 122–127. [Google Scholar] [CrossRef]
- Larkin, K.A.; Macneil, R.G.; Dirain, M.; Sandesara, B.; Manini, T.M.; Buford, T.W. Blood Flow Restriction Enhances Post-Resistance Exercise Angiogenic Gene Expression. Med. Sci. Sport. Exerc. 2012, 44, 2077–2083. [Google Scholar] [CrossRef]
- Patterson, S.D.; Leggate, M.; Nimmo, M.A.; Ferguson, R.A. Circulating Hormone and Cytokine Response to Low-Load Resistance Training with Blood Flow Restriction in Older Men. Eur. J. Appl. Physiol. 2013, 113, 713–719. [Google Scholar] [CrossRef] [PubMed]
- Shill, D.D.; Polley, K.R.; Willingham, T.B.; Call, J.A.; Murrow, J.R.; McCully, K.K.; Jenkins, N.T. Experimental Intermittent Ischemia Augments Exercise-Induced Inflammatory Cytokine Production. J. Appl. Physiol. 2017, 123, 434–441. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Lin, A.; Jiao, L. Eight Weeks of Resistance Training with Blood Flow Restriction Improve Cardiac Function and Vascular Endothelial Function in Healthy Young Asian Males. Int. Health 2021, 13, 417–479. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, D.; Eibye, K.H.; Hostrup, M.; Bangsbo, J. Blood Flow-Restricted Training Enhances Thigh Glucose Uptake during Exercise and Muscle Antioxidant Function in Humans. Metabolism 2019, 98, 1–15. [Google Scholar] [CrossRef]
- Conceição, M.S.; Junior, E.M.M.; Telles, G.D.; Libardi, C.A.; Castro, A.; Andrade, A.L.L.; Brum, P.C.; Urias, Ú.; Kurauti, M.A.; Júnior, J.M.C.; et al. Augmented Anabolic Responses after 8-Wk Cycling with Blood Flow Restriction. Med. Sci. Sport. Exerc. 2019, 51, 84–93. [Google Scholar] [CrossRef]
- Ferguson, R.A.; Hunt, J.E.A.; Lewis, M.P.; Martin, N.R.W.; Player, D.J.; Stangier, C.; Taylor, C.W.; Turner, M.C. The Acute Angiogenic Signalling Response to Low-Load Resistance Exercise with Blood Flow Restriction. Eur. J. Sport Sci. 2018, 18, 397–406. [Google Scholar] [CrossRef]
- Gustafsson, T.; Ameln, H.; Fischer, H.; Sundberg, C.J.; Timmons, J.A.; Jansson, E. VEGF-A Splice Variants and Related Receptor Expression in Human Skeletal Muscle Following Submaximal Exercise. J. Appl. Physiol. 2005, 98, 2137–2146. [Google Scholar] [CrossRef]
- Conceição, M.S.; Chacon-Mikahil, M.P.T.; Telles, G.D.; Libardi, C.A.; Júnior, E.M.M.; Vechin, F.C.; DE Andrade, A.L.L.; Gáspari, A.F.; Brum, P.C.; Cavaglieri, C.R.; et al. Attenuated PGC-1α Isoforms Following Endurance Exercise with Blood Flow Restriction. Med. Sci. Sport. Exerc. 2016, 48, 1699–1707. [Google Scholar] [CrossRef]
- Montgomery, R.; Paterson, A.; Williamson, C.; Florida-James, G.; Ross, M.D. Blood Flow Restriction Exercise Attenuates the Exercise-Induced Endothelial Progenitor Cell Response in Healthy, Young Men. Front. Physiol. 2019, 10, 447. [Google Scholar] [CrossRef]
- Amorim, S.; Gaspar, A.P.; Degens, H.; De Matos, L.D. The Effects of Blood Flow Restriction Exercise on Vascular Function in the Elderly: A Systematic Review. Integr. Clin. Med. 2019, 3, 1–6. [Google Scholar] [CrossRef]
- Sato, Y. The History and Future of KAATSU Training. Int. J. KAATSU Train. Res. 2005, 1, 1–5. [Google Scholar] [CrossRef]
- Freitas, E.D.S.; Karabulut, M.; Bemben, M.G. The Evolution of Blood Flow Restricted Exercise. Front. Physiol. 2021, 12, 747759. [Google Scholar] [CrossRef]
- Lixandrão, M.E.; Ugrinowitsch, C.; Berton, R.; Vechin, F.C.; Conceição, M.S.; Damas, F.; Libardi, C.A.; Roschel, H. Magnitude of Muscle Strength and Mass Adaptations between High-Load Resistance Training Versus Low-Load Resistance Training Associated with Blood-Flow Restriction: A Systematic Review and Meta-Analysis. Sport. Med. 2018, 48, 361–378. [Google Scholar] [CrossRef]
- Slysz, J.; Stultz, J.; Burr, J.F. The Efficacy of Blood Flow Restricted Exercise: A Systematic Review & Meta-Analysis. J. Sci. Med. Sport 2016, 19, 669–675. [Google Scholar] [CrossRef]
- Damas, F.; Phillips, S.M.; Lixandrão, M.E.; Vechin, F.C.; Libardi, C.A.; Roschel, H.; Tricoli, V.; Ugrinowitsch, C. Early Resistance Training-Induced Increases in Muscle Cross-Sectional Area Are Concomitant with Edema-Induced Muscle Swelling. Eur. J. Appl. Physiol. 2016, 116, 49–56. [Google Scholar] [CrossRef]
- Nielsen, J.L.; Aagaard, P.; Bech, R.D.; Nygaard, T.; Hvid, L.G.; Wernbom, M.; Suetta, C.; Frandsen, U. Proliferation of Myogenic Stem Cells in Human Skeletal Muscle in Response to Low-Load Resistance Training with Blood Flow Restriction. J. Physiol. 2012, 590, 4351–4361. [Google Scholar] [CrossRef]
- Pearson, S.J.; Hussain, S.R. A Review on the Mechanisms of Blood-Flow Restriction Resistance Training-Induced Muscle Hypertrophy. Sport. Med. 2015, 45, 187–200. [Google Scholar] [CrossRef]
- Ladlow, P.; Coppack, R.J.; Dharm-Datta, S.; Conway, D.; Sellon, E.; Patterson, S.D.; Bennett, A.N. Low-Load Resistance Training with Blood Flow Restriction Improves Clinical Outcomes in Musculoskeletal Rehabilitation: A Single-Blind Randomized Controlled Trial. Front. Physiol. 2018, 9, 1269. [Google Scholar] [CrossRef]
- Manimmanakorn, A.; Hamlin, M.J.; Ross, J.J.; Taylor, R.; Manimmanakorn, N. Effects of Low-Load Resistance Training Combined with Blood Flow Restriction or Hypoxia on Muscle Function and Performance in Netball Athletes. J. Sci. Med. Sport 2013, 16, 337–342. [Google Scholar] [CrossRef]
- Spranger, M.D.; Krishnan, A.C.; Levy, P.D.; O’Leary, D.S.; Smith, S.A. Blood Flow Restriction Training and the Exercise Pressor Reflex: A Call for Concern. Am. J. Physiol. Circ. Physiol. 2015, 309, H1440–H1452. [Google Scholar] [CrossRef]
- Loenneke, J.P.; Wilson, J.M.; Wilson, G.J.; Pujol, T.J.; Bemben, M.G. Potential Safety Issues with Blood Flow Restriction Training. Scand. J. Med. Sci. Sport. 2011, 21, 510–518. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, D. Blood Flow Restriction: Cause for Optimism, but Let’s Not Abandon the Fundamentals. Int. J. Sport. Phys. Ther. 2021, 16, 962–967. [Google Scholar] [CrossRef] [PubMed]
- Santler, B.; Goerge, T. Chronic Venous Insufficiency—A Review of Pathophysiology, Diagnosis, and Treatment. JDDG J. Ger. Soc. Dermatol. 2017, 15, 538–556. [Google Scholar] [CrossRef] [PubMed]
- Pereira-Neto, E.A.; Lewthwaite, H.; Boyle, T.; Johnston, K.; Bennett, H.; Williams, M.T. Effects of Exercise Training with Blood Flow Restriction on Vascular Function in Adults: A Systematic Review and Meta-Analysis. PeerJ 2021, 7, e11554. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Li, S.; Wang, L.; Quan, H.; Yu, W.; Li, T.; Li, W. The Effect of Blood Flow Restriction Exercise on Angiogenesis-Related Factors in Skeletal Muscle Among Healthy Adults: A Systematic Review and Meta-Analysis. Front. Physiol. 2022, 13, 217. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, N.; Pang, F.; Chen, T. Resistance Training with Blood Flow Restriction on Vascular Function: A Meta-Analysis. Int. J. Sport. Med. 2021, 42, 577–587. [Google Scholar] [CrossRef]
- Ceciliato, J.; Costa, E.C.; Azevêdo, L.; Sousa, J.C.; Fecchio, R.Y.; Brito, L.C. Effect of Resistance Training on Arterial Stiffness in Healthy Subjects: A Systematic Review and Meta-Analysis. Curr. Hypertens. Rep. 2020, 22, 51. [Google Scholar] [CrossRef]
- Raggi, P.; Stein, J.H. Carotid Intima-Media Thickness Should Not Be Referred to as Subclinical Atherosclerosis: A Recommended Update to the Editorial Policy at Atherosclerosis. Atherosclerosis 2020, 312, 119–120. [Google Scholar] [CrossRef]
- Willeit, P.; Tschiderer, L.; Allara, E.; Reuber, K.; Seekircher, L.; Gao, L.; Liao, X.; Lonn, E.; Gerstein, H.C.; Yusuf, S.; et al. Carotid Intima-Media Thickness Progression as Surrogate Marker for Cardiovascular Risk. Circulation 2020, 142, 621–642. [Google Scholar] [CrossRef]
- Kabłak-Ziembicka, A.; Przewłocki, T. Clinical Significance of Carotid Intima-Media Complex and Carotid Plaque Assessment by Ultrasound for the Prediction of Adverse Cardiovascular Events in Primary and Secondary Care Patients. J. Clin. Med. 2021, 10, 4628. [Google Scholar] [CrossRef]
- Mitchell, A.; Newby, D.E.; Mills, N.L.; Fujisawa, T.; Cruden, N.L.M. Reproducibility of Radial Artery Flow-Mediated Dilatation and Feasibility as a Model of Mechanical Vascular Injury in Man. Atherosclerosis 2015, 241, e49. [Google Scholar] [CrossRef]
- Pinheiro, V.D.S.; Tavares, A.C.F.d.S.; Volino-Souza, M.; de Oliveira, G.V.; Alvares, T.S. Association between Femoral Artery Flow-Mediated Dilation and Muscle Oxygen Saturation Parameters in Healthy, Young Individuals. J. Cardiovasc. Dev. Dis. 2023, 10, 63. [Google Scholar] [CrossRef]
- O’Brien, M.W.; Liu, H.; Shivgulam, M.E.; Langley, J.E.; Bray, N.W.; Kimmerly, D.S. The Impact of Exercise Training Interventions on Flow-Mediated Dilation: An Umbrella Review Protocol. Healthy Popul. J. 2022, 2, 1–12. [Google Scholar] [CrossRef]
- Rosenberry, R.; Nelson, M.D. Reactive Hyperemia: A Review of Methods, Mechanisms, and Considerations. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2020, 318, R605–R618. [Google Scholar] [CrossRef]
- Motozato, K.; Suematsu, Y.; Norimatsu, K.; Kusumoto, T.; Miura, S. Reactive Hyperemia Index Associated with Atherosclerotic Cardiovascular Disease Under Treatment for Lifestyle Diseases. J. Clin. Med. Res. 2020, 12, 293–299. [Google Scholar] [CrossRef]
- Higashi, Y.; Sasaki, S.; Sasaki, N.; Nakagawa, K.; Ueda, T.; Yoshimizu, A.; Kurisu, S.; Matsuura, H.; Kajiyama, G.; Oshima, T. Daily Aerobic Exercise Improves Reactive Hyperemia in Patients with Essential Hypertension. Hypertension 1999, 33, 591–597. [Google Scholar] [CrossRef]
- Palombo, C.; Kozakova, M. Arterial Stiffness, Atherosclerosis and Cardiovascular Risk: Pathophysiologic Mechanisms and Emerging Clinical Indications. Vasc. Pharmacol. 2016, 77, 1–7. [Google Scholar] [CrossRef]
- Suvorava, T.; Metry, S.; Pick, S.; Kojda, G. Alterations in Endothelial Nitric Oxide Synthase Activity and Their Relevance to Blood Pressure. Biochem. Pharmacol. 2022, 205, 115256. [Google Scholar] [CrossRef]
- Arefirad, T.; Seif, E.; Sepidarkish, M.; Mohammadian Khonsari, N.; Mousavifar, S.A.; Yazdani, S.; Rahimi, F.; Einollahi, F.; Heshmati, J.; Qorbani, M. Effect of Exercise Training on Nitric Oxide and Nitrate/Nitrite (NOx) Production: A Systematic Review and Meta-Analysis. Front. Physiol. 2022, 13, 2028. [Google Scholar] [CrossRef]
- Song, B.X.; Azhar, L.; Koo, G.K.Y.; Marzolini, S.; Gallagher, D.; Swardfager, W.; Chen, C.; Ba, J.; Herrmann, N.; Lanctôt, K. The Effect of Exercise on Blood Concentrations of Angiogenesis Markers in Older Adults: A Systematic Review and Meta-Analysis. BMC Geriatr. 2023. rs preprint. [Google Scholar]
- Januszek, R.; Mika, P.; Nowobilski, R.; Nowak, W.; Kusienicka, A.; Klóska, D.; Maga, P.; Niżankowski, R. Soluble Endoglin as a Prognostic Factor of the Claudication Distance Improvement in Patients with Peripheral Artery Disease Undergoing Supervised Treadmill Training Program. J. Am. Soc. Hypertens. 2017, 11, 553–564. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Atakan, M.M.; Kuang, J.; Hu, Y.; Bishop, D.J.; Yan, X. The Molecular Adaptive Responses of Skeletal Muscle to High-Intensity Exercise/Training and Hypoxia. Antioxidants 2020, 9, 656. [Google Scholar] [CrossRef] [PubMed]
- Gardner, A.W.; Parker, D.E.; Montgomery, P.S. Changes in Vascular and Inflammatory Biomarkers after Exercise Rehabilitation in Patients with Symptomatic Peripheral Artery Disease. J. Vasc. Surg. 2019, 70, 1280–1290. [Google Scholar] [CrossRef] [PubMed]
- Noumairi, M.; Bouallala, A.; EL Mir, S.; Allam, A.; EL Oumri, A.A. Rehabilitation of Patients with Peripheral Arterial Disease. Ann. Med. Surg. 2021, 70, 102864. [Google Scholar] [CrossRef] [PubMed]
- Veith, A.P.; Henderson, K.; Spencer, A.; Sligar, A.D.; Baker, A.B. Therapeutic Strategies for Enhancing Angiogenesis in Wound Healing. Adv. Drug Deliv. Rev. 2019, 146, 97–125. [Google Scholar] [CrossRef]
- Taylor, C.W.; Ingham, S.A.; Ferguson, R.A. Acute and Chronic Effect of Sprint Interval Training Combined with Postexercise Blood-Flow Restriction in Trained Individuals. Exp. Physiol. 2016, 101, 143–154. [Google Scholar] [CrossRef]
- Preobrazenski, N.; Islam, H.; Drouin, P.J.; Bonafiglia, J.T.; Tschakovsky, M.E.; Gurd, B.J. A Novel Gravity-Induced Blood Flow Restriction Model Augments ACC Phosphorylation and PGC-1α MRNA in Human Skeletal Muscle Following Aerobic Exercise: A Randomized Crossover Study. Appl. Physiol. Nutr. Metab. 2020, 45, 641–649. [Google Scholar] [CrossRef]
- Fan, J.; Watanabe, T. Atherosclerosis: Known and Unknown. Pathol. Int. 2022, 72, 151–160. [Google Scholar] [CrossRef]
- Reimers, A.K.; Knapp, G.; Reimers, C.D. Effects of Exercise on the Resting Heart Rate: A Systematic Review and Meta-Analysis of Interventional Studies. J. Clin. Med. 2018, 7, 503. [Google Scholar] [CrossRef]
- Carpio-Rivera, E.; Moncada-Jiménez, J.; Salazar-Rojas, W.; Solera-Herrera, A. Acute Effects of Exercise on Blood Pressure: A Meta-Analytic Investigation. Arq. Bras. Cardiol. 2016, 106, 422–433. [Google Scholar] [CrossRef]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.; Coca, A.; De Simone, G.; Dominiczak, A.; et al. 2018 Practice Guidelines for the Management of Arterial Hypertension of the European Society of Cardiology and the European Society of Hypertension. J. Hypertens. 2018, 36, 2284–2309. [Google Scholar] [CrossRef]
- Mika, P.; Konik, A.; Januszek, R.; Petriczek, T.; Mika, A.; Nowobilski, R.; Nizankowski, R.; Szczeklik, A. Comparison of Two Treadmill Training Programs on Walking Ability and Endothelial Function in Intermittent Claudication. Int. J. Cardiol. 2013, 168, 838–842. [Google Scholar] [CrossRef]
- Pagan, L.U.; Gomes, M.J.; Okoshi, M.P. Endothelial Function and Physical Exercise. Arq. Bras. Cardiol. 2018, 111, 540–541. [Google Scholar] [CrossRef]
- Boeno, F.P.; Farinha, J.B.; Ramis, T.R.; MacEdo, R.C.O.; Rodrigues-Krause, J.; Queiroz, J.D.N.; Lopez, P.; Pinto, R.S.; Reischak-Oliveira, A. Effects of a Single Session of High-and Moderate-Intensity Resistance Exercise on Endothelial Function of Middle-Aged Sedentary Men. Front. Physiol. 2019, 10, 777. [Google Scholar] [CrossRef]
- Abdalla, D.R. Influence of Exercise or Physical Activity in the Angiogenesis Process: Integrative Review. Online J. Cardiol. Res. Rep. 2020, 3, 1–5. [Google Scholar] [CrossRef]
- Armijo-Olivo, S.; Fuentes, J.; Da Costa, B.R.; Saltaji, H.; Ha, C.; Cummings, G.G. Blinding in Physical Therapy Trials and Its Association with Treatment Effects: A Meta-Epidemiological Study. Am. J. Phys. Med. Rehabil. 2017, 96, 34–44. [Google Scholar] [CrossRef]
- Krüger-Genge, A.; Blocki, A.; Franke, R.P.; Jung, F. Vascular Endothelial Cell Biology: An Update. Int. J. Mol. Sci. 2019, 20, 4411. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maga, M.; Wachsmann-Maga, A.; Batko, K.; Włodarczyk, A.; Kłapacz, P.; Krężel, J.; Szopa, N.; Sliwka, A. Impact of Blood-Flow-Restricted Training on Arterial Functions and Angiogenesis—A Systematic Review with Meta-Analysis. Biomedicines 2023, 11, 1601. https://doi.org/10.3390/biomedicines11061601
Maga M, Wachsmann-Maga A, Batko K, Włodarczyk A, Kłapacz P, Krężel J, Szopa N, Sliwka A. Impact of Blood-Flow-Restricted Training on Arterial Functions and Angiogenesis—A Systematic Review with Meta-Analysis. Biomedicines. 2023; 11(6):1601. https://doi.org/10.3390/biomedicines11061601
Chicago/Turabian StyleMaga, Mikołaj, Agnieszka Wachsmann-Maga, Krzysztof Batko, Aleksandra Włodarczyk, Paulina Kłapacz, Jakub Krężel, Natalia Szopa, and Agnieszka Sliwka. 2023. "Impact of Blood-Flow-Restricted Training on Arterial Functions and Angiogenesis—A Systematic Review with Meta-Analysis" Biomedicines 11, no. 6: 1601. https://doi.org/10.3390/biomedicines11061601