Necessity of an Integrative Animal Model for a Comprehensive Study of Attention-Deficit/Hyperactivity Disorder
Abstract
:1. Introduction
2. Multifactorial Characteristics of ADHD
3. Genetic Model of ADHD
3.1. Spontaneously Hypertensive Rats
3.2. Single Gene Knock-In/Out or Transgenic Mice
4. Pharmacological Model of ADHD
4.1. 6-Hydroxydopamine
4.2. Nicotine
4.3. N-Methyl-D-Aspartate Receptor Agonist (MK-801)
4.4. Yohimbine
5. Environmental Model of ADHD
5.1. Heavy Metals
5.2. Polychlorinated Biphenyl
5.3. Phthalate
5.4. Nitrogen (Hypoxia)
5.5. X-Irradiation
5.6. Stress
5.7. Alcohol (Ethanol)
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Gogtay, N.; Giedd, J.N.; Lusk, L.; Hayashi, K.M.; Greenstein, D.; Vaituzis, A.C.; Nugent, T.F., III; Herman, D.H.; Clasen, L.S.; Toga, A.W.; et al. Dynamic mapping of human cortical development during childhood through early adulthood. Proc. Natl. Acad. Sci. USA 2004, 101, 8174–8179. [Google Scholar] [CrossRef]
- Pastor, P.; Reuben, C.; Duran, C.; Hawkins, L. Association between Diagnosed ADHD and Selected Characteristics among Children Aged 4–17 Years: United States, 2011–2013; NCHS Data Brief: Hyattsville, MD, USA, 2015. [Google Scholar]
- Dehkordian, P.; Hamid, N.; Beshlideh, K.; Honarmand, M. The effectiveness of mindful parenting, social thinking and exercise on quality of life in ADHD children. Int. J. Pediatr. 2017, 5, 4295–4302. [Google Scholar] [CrossRef]
- Battle, D.E. Diagnostic and statistical manual of mental disorders (DSM). CoDAS 2013, 25, 191–192. [Google Scholar] [CrossRef] [PubMed]
- Sterley, T.L.; Howells, F.M.; Russell, V.A. Evidence for reduced tonic levels of GABA in the hippocampus of an animal model of ADHD, the spontaneously hypertensive rat. Brain Res. 2013, 1541, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Gershon, J. A meta-analytic review of gender differences in ADHD. J. Atten. Disord. 2002, 5, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Eubig, P.A.; Aguiar, A.; Schantz, S.L. Lead and PCbs as risk factors for attention deficit/hyperactivity disorder. Environ. Health Perspect. 2010, 118, 1654–1667. [Google Scholar] [CrossRef]
- Eaves, L.J.; Silberg, J.L.; Meyer, J.M.; Maes, H.H.; Simonoff, E.; Pickles, A.; Rutter, M.; Reynolds, C.A.; Heath, A.C.; Truett, K.R.; et al. Genetics and developmental psychopathology: 2. The main effects of genes and environment on behavioral problems in the Virginia Twin Study of Adolescent Behavioral Development. J. Child Psychol. Psychiatry 1997, 38, 965–980. [Google Scholar] [CrossRef] [PubMed]
- Faraone, S.V.; Biederman, J. What is the prevalence of adult ADHD? Results of a population screen of 966 adults. J. Atten. Disord. 2005, 9, 384–391. [Google Scholar] [CrossRef] [PubMed]
- Demontis, D.; Walters, R.K.; Martin, J.; Mattheisen, M.; Als, T.D.; Agerbo, E.; Baldursson, G.; Belliveau, R.; Bybjerg-Grauholm, J.; Bækvad-Hansen, M.; et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat. Genet. 2019, 51, 63–75. [Google Scholar] [CrossRef]
- Okamoto, K.; Aoki, K. Development of a strain of spontaneously hypertensive rats. Jpn. Circ. J. 1963, 27, 282–293. [Google Scholar] [CrossRef]
- Sagvolden, T.; Johansen, E.B. Rat models of ADHD. Curr. Top Behav. Neurosci. 2012, 9, 301–315. [Google Scholar] [CrossRef] [PubMed]
- Dommett, E.J. Using the five-choice serial reaction time task to examine the effects of atomoxetine and methylphenidate in the male spontaneously hypertensive rat. Pharmacol. Biochem. Behav. 2014, 124, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.; Wilding, E.; Cassidy, E.; Dommett, E.J. Effects of atomoxetine on locomotor activity and impulsivity in the spontaneously hypertensive rat. Behav. Brain Res. 2013, 243, 28–37. [Google Scholar] [CrossRef]
- Gainetdinov, R.R.; Jones, S.R.; Fumagalli, F.; Wightman, R.M.; Caron, M.G. Re-evaluation of the role of the dopamine transporter in dopamine system homeostasis. Brain Res. Brain Res. Rev. 1998, 26, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Gainetdinov, R.R.; Caron, M.G. Genetics of childhood disorders: XXIV. ADHD, part 8: Hyperdopaminergic mice as an animal model of ADHD. J. Am. Acad. Child Adolesc. Psychiatry 2001, 40, 380–382. [Google Scholar] [CrossRef] [PubMed]
- Avale, M.E.; Falzone, T.L.; Gelman, D.M.; Low, M.J.; Grandy, D.K.; Rubinstein, M. The dopamine D4 receptor is essential for hyperactivity and impaired behavioral inhibition in a mouse model of attention deficit/hyperactivity disorder. Mol. Psychiatry 2004, 9, 718–726. [Google Scholar] [CrossRef]
- Gong, R.; Ding, C.; Hu, J.; Lu, Y.; Liu, F.; Mann, E.; Xu, F.; Cohen, M.B.; Luo, M. Role for the membrane receptor guanylyl cyclase-C in attention deficiency and hyperactive behavior. Science 2011, 333, 1642–1646. [Google Scholar] [CrossRef]
- Pennanen, L.; van der Hart, M.; Yu, L.; Tecott, L.H. Impact of serotonin (5-HT)2C receptors on executive control processes. Neuropsychopharmacology 2013, 38, 957–967. [Google Scholar] [CrossRef]
- Robbins, T.W. The 5-choice serial reaction time task: Behavioural pharmacology and functional neurochemistry. Psychopharmacology 2002, 163, 362–380. [Google Scholar] [CrossRef]
- Bailey, C.D.; De Biasi, M.; Fletcher, P.J.; Lambe, E.K. The nicotinic acetylcholine receptor alpha5 subunit plays a key role in attention circuitry and accuracy. J. Neurosci. 2010, 30, 9241–9252. [Google Scholar] [CrossRef]
- Young, J.W.; Crawford, N.; Kelly, J.S.; Kerr, L.E.; Marston, H.M.; Spratt, C.; Finlayson, K.; Sharkey, J. Impaired attention is central to the cognitive deficits observed in alpha 7 deficient mice. Eur. Neuropsychopharmacol. 2007, 17, 145–155. [Google Scholar] [CrossRef]
- Won, H.; Mah, W.; Kim, E.; Kim, J.W.; Hahm, E.K.; Kim, M.H.; Cho, S.; Kim, J.; Jang, H.; Cho, S.C.; et al. GIT1 is associated with ADHD in humans and ADHD-like behaviors in mice. Nat. Med. 2011, 17, 566–572. [Google Scholar] [CrossRef]
- Klein, M.; van der Voet, M.; Harich, B.; Van Hulzen, K.J.; Onnink, A.M.H.; Hoogman, M.; Guadalupe, T.; Zwiers, M.; Groothuismink, J.M.; Verberkt, A.; et al. Converging evidence does not support GIT1 as an ADHD risk gene. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2015, 168, 492–507. [Google Scholar] [CrossRef]
- Salatino-Oliveira, A.; Genro, J.P.; Chazan, R.; Zeni, C.; Schmitz, M.; Polanczyk, G.; Roman, T.; Rohde, L.A.; Hutz, M.H. Association study of GIT1 gene with attention-deficit hyperactivity disorder in Brazilian children and adolescents. Genes Brain Behav. 2012, 11, 864–868. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Cai, G.; Cai, Y.; Fei, J.; Liu, G. Gamma aminobutyric acid transporter subtype 1 gene knockout mice: A new model for attention deficit/hyperactivity disorder. Acta Biochim. Biophys. Sin. 2013, 45, 578–585. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yang, X.; Zhou, X.; Wang, C.; Gong, X.; Chen, B.; Chen, Y. Hyperactivity and impaired attention in gamma aminobutyric acid transporter subtype 1 gene knockout mice. Acta Neuropsychiatr. 2015, 27, 368–374. [Google Scholar] [CrossRef]
- Siesser, W.B.; Zhao, J.; Miller, L.R.; Cheng, S.Y.; McDonald, M.P. Transgenic mice expressing a human mutant beta1 thyroid receptor are hyperactive, impulsive, and inattentive. Genes Brain Behav. 2006, 5, 282–297. [Google Scholar] [CrossRef] [PubMed]
- Sandau, U.S.; Alderman, Z.; Corfas, G.; Ojeda, S.R.; Raber, J. Astrocyte-specific disruption of SynCAM1 signaling results in ADHD-like behavioral manifestations. PLoS ONE 2012, 7, e36424. [Google Scholar] [CrossRef] [PubMed]
- Bruno, K.J.; Freet, C.S.; Twining, R.C.; Egami, K.; Grigson, P.S.; Hess, E.J. Abnormal latent inhibition and impulsivity in coloboma mice, a model of ADHD. Neurobiol Dis. 2007, 25, 206–216. [Google Scholar] [CrossRef]
- Wilson, M.C. Coloboma mouse mutant as an animal model of hyperkinesis and attention deficit hyperactivity disorder. Neurosci. Biobehav. Rev. 2000, 24, 51–57. [Google Scholar] [CrossRef]
- Klein-Tasman, B.P.; Janke, K.M.; Luo, W.; Casnar, C.L.; Hunter, S.J.; Tonsgard, J.; Trapane, P.; van der Fluit, F.; Kais, L.A. Cognitive and psychosocial phenotype of young children with neurofibromatosis-1. J. Int. Neuropsychol. Soc. 2014, 20, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Mereu, M.; Contarini, G.; Buonaguro, E.F.; Latte, G.; Managò, F.; Iasevoli, F.; De Bartolomeis, A.; Papaleo, F. Dopamine transporter (DAT) genetic hypofunction in mice produces alterations consistent with ADHD but not schizophrenia or bipolar disorder. Neuropharmacology 2017, 121, 179–194. [Google Scholar] [CrossRef] [PubMed]
- Somkuwar, S.S.; Kantak, K.M.; Bardo, M.T.; Dwoskin, L.P. Adolescent methylphenidate treatment differentially alters adult impulsivity and hyperactivity in the spontaneously hypertensive rat model of ADHD. Pharmacol. Biochem. Behav. 2016, 141, 66–77. [Google Scholar] [CrossRef] [PubMed]
- Hoogman, M.; Onnink, M.; Cools, R.; Aarts, E.; Kan, C.; Vasquez, A.A.; Buitelaar, J.; Franke, B. The dopamine transporter haplotype reward-related striatal responses in adult, A.D.H.D. Eur. Neuropsychopharmacol. 2013, 23, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Jaén, A.; López-Martín, S.; Albert, J.; Fernández-Mayoralas, D.M.; Fernández-Perrone, A.L.; de La Peña, M.J.; Calleja-Pérez, B.; Rodríguez, M.R.; López-Arribas, S.; Muñoz-Jareño, N. Cortical thickness differences in the prefrontal cortex in children and adolescents with ADHD in relation to dopamine transporter (DAT1) genotype. Psychiatry Res. 2015, 233, 409–417. [Google Scholar] [CrossRef]
- Sánchez-Mora, C.; Richarte, V.; Garcia-Martínez, I.; Pagerols, M.; Corrales, M.; Bosch, R.; Vidal, R.; Viladevall, L.; Casas, M.; Cormand, B.; et al. Dopamine receptor DRD4 gene and stressful life events in persistent attention deficit hyperactivity disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2015, 168, 480–491. [Google Scholar] [CrossRef]
- Senior, S.L.; Ninkina, N.; Deacon, R.; Bannerman, D.; Buchman, V.L.; Cragg, S.J.; Wade-Martins, R. Increased striatal dopamine release and hyperdopaminergic-like behaviour in mice lacking both alpha-synuclein and gamma-synuclein. Eur. J. Neurosci. 2008, 27, 947–957. [Google Scholar] [CrossRef]
- Kim, D.E.; Cho, C.-H.; Sim, K.M.; Kwon, O.; Hwang, E.M.; Kim, H.-W.; Park, J.-Y. 14–3-3γ haploinsufficient Mice Display Hyperactive and Stress-sensitive Behaviors. Exp. Neurobiol. 2019, 28, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Creese, I.; Iversen, S.D. Blockage of amphetamine induced motor stimulation and stereotypy in the adult rat following neonatal treatment with 6-hydroxydopamine. Brain Res. 1973, 55, 369–382. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, X.; Xu, Y.; Spencer, T.J.; Biederman, J.; Bhide, P.G. Prenatal nicotine exposure mouse model showing hyperactivity, reduced cingulate cortex volume, reduced dopamine turnover, and responsiveness to oral methylphenidate treatment. J. Neurosci. 2012, 32, 9410–9418. [Google Scholar] [CrossRef]
- Zhang, L.; Spencer, T.J.; Biederman, J.; Bhide, P.G. Attention and working memory deficits in a perinatal nicotine exposure mouse model. PLoS ONE 2018, 13, e0198064. [Google Scholar] [CrossRef] [PubMed]
- Wasserman, R.C.; Kelleher, K.J.; Bocian, A.; Baker, A.; Childs, G.E.; Indacochea, F.; Stulp, C.; Gardner, W.P. Identification of attentional and hyperactivity problems in primary care: A report from pediatric research in office settings and the ambulatory sentinel practice network. Pediatrics 1999, 103, E38. [Google Scholar] [CrossRef] [PubMed]
- Mick, E.; Biederman, J.; Faraone, S.V.; Sayer, J.; Kleinman, S. Case-control study of attention-deficit hyperactivity disorder and maternal smoking, alcohol use, and drug use during pregnancy. J. Am. Acad. Child Adolesc. Psychiatry 2002, 41, 378–385. [Google Scholar] [CrossRef]
- Slotkin, T.A. Fetal nicotine or cocaine exposure: Which one is worse? J. Pharmacol. Exp. Ther. 1998, 285, 931–945. [Google Scholar]
- Mabunga, D.F.N.; Park, D.; Ryu, O.; Valencia, S.T.; Adil, K.J.L.; Kim, S.; Kwon, K.J.; Shin, C.Y.; Jeon, S.J. Recapitulation of neuropsychiatric behavioral features in mice using acute low-dose MK-801 administration. Exp. Neurobiol. 2019, 28, 697–708. [Google Scholar] [CrossRef]
- Ma, C.L.; Qi, X.L.; Peng, J.Y.; Li, B.M. Selective deficit in no-go performance induced by blockade of prefrontal cortical alpha 2-adrenoceptors in monkeys. NeuroReport 2003, 14, 1013–1016. [Google Scholar] [CrossRef]
- Ma, C.L.; Arnsten, A.F.; Li, B.M. Locomotor hyperactivity induced by blockade of prefrontal cortical alpha2-adrenoceptors in monkeys. Biol. Psychiatry 2005, 57, 192–195. [Google Scholar] [CrossRef] [PubMed]
- Donzelli, G.; Carducci, A.; Llopis-Gonzalez, A.; Verani, M.; Llopis-Morales, A.; Cioni, L.; Morales-Suárez-Varela, M. The association between lead and attention-deficit/hyperactivity disorder: A systematic review. Int. J. Environ. Res. Public Health 2019, 16, 382. [Google Scholar] [CrossRef]
- Lanphear, B.P.; Hornung, R.; Khoury, J.; Yolton, K.; Baghurst, P.; Bellinger, D.C.; Canfield, R.L.; Dietrich, K.N.; Bornschein, R.; Greene, T.; et al. Low-level environmental lead exposure and children’s intellectual function: An international pooled analysis. Environ. Health Perspect. 2005, 113, 894–899. [Google Scholar] [CrossRef]
- Hernández-Coro, A.; Sánchez-Hernández, B.E.; Montes, S.; Martínez-Lazcano, J.C.; González-Guevara, E.; Pérez-Severiano, F. Alterations in gene expression due to chronic lead exposure induce behavioral changes. Neurosci. Biobehav. Rev. 2021, 126, 361–367. [Google Scholar] [CrossRef]
- Nowak, P.; Dabrowska, J.; Bortel, A.; Izabela, B.; Kostrzewa, R.M.; Brus, R. Prenatal cadmium and ethanol increase amphetamine-evoked dopamine release in rat striatum. Neurotoxicol. Teratol. 2006, 28, 563–572. [Google Scholar] [CrossRef]
- Schantz, S.L.; Widholm, J.J.; Rice, D.C. Effects of PCB exposure on neuropsychological function in children. Environ. Health Perspect. 2003, 111, 357–576. [Google Scholar] [CrossRef] [PubMed]
- Holene, E.; Nafstad, I.; Skaare, J.U.; Sagvolden, T. Behavioural hyperactivity in rats following postnatal exposure to sub-toxic doses of polychlorinated biphenyl congeners 153 and 126. Behav. Brain Res. 1998, 94, 213–224. [Google Scholar] [CrossRef]
- Masuo, Y.; Morita, M.; Oka, S.; Ishido, M. Motor hyperactivity caused by a deficit in dopaminergic neurons and the effects of endocrine disruptors: A study inspired by the physiological roles of PACAP in the brain. Regul. Pept. 2004, 123, 225–234. [Google Scholar] [CrossRef]
- Ghisari, M.; Bonefeld-Jorgensen, E.C. Effects of plasticizers and their mixtures on estrogen receptor and thyroid hormone functions. Toxicol. Lett. 2009, 189, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Quinnies, K.M.; Harris, E.P.; Snyder, R.W.; Sumner, S.S.; Rissman, E.F. Direct and transgenerational effects of low doses of perinatal di-(2-ethylhexyl) phthalate (DEHP) on social behaviors in mice. PLoS ONE 2017, 12, e0171977. [Google Scholar] [CrossRef] [PubMed]
- Miguel, P.M.; Schuch, C.P.; Rojas, J.J.; Carletti, J.V.; Deckmann, I.; Martinato, L.H.M.; Pires, A.V.; Bizarro, L.; Pereira, L.O. Neonatal hypoxia-ischemia induces attention-deficit hyperactivity disorder-like behavior in rats. Behav. Neurosci. 2015, 129, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Saito, S.; Aoki, I.; Sawada, K.; Sun, X.-Z.; Chuang, K.-H.; Kershaw, J.; Kanno, I.; Suhara, T. Quantitative and noninvasive assessment of prenatal X-ray-induced CNS abnormalities using magnetic resonance imaging. Radiat. Res. 2011, 175, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Hee Jin, K.; Seung Hwa, P.; Kyeong Man, K.; Jong Hoon, R.; Jae Hoon, C.; Chan Young, S. Ever increasing number of the animal model systems for attention deficit/hyperactivity disorder: Attention, please. Biomol. Ther. 2008, 16, 312–319. [Google Scholar] [CrossRef]
- Caceres, L.G.; Bertolino, L.A.; Saraceno, G.E.; Zubilete, M.A.Z.; Uran, S.L.; Capani, F.; Guelman, L.R. Hippocampal-related memory deficits and histological damage induced by neonatal ionizing radiation exposure. Role of oxidative status. Brain Res. 2010, 1312, 67–78. [Google Scholar] [CrossRef]
- Moreira, C.; Bueno, J.L. Conditional discrimination learning and negative patterning in rats with neonatal hippocampal lesion induced by ionizing radiation. Behav. Brain Res. 2003, 138, 29–44. [Google Scholar] [CrossRef] [PubMed]
- Son, G.H.; Chung, S.; Geum, D.; Kang, S.S.; Choi, W.S.; Kim, K.; Choi, S. Hyperactivity and alteration of the midbrain dopaminergic system in maternally stressed male mice offspring. Biochem. Biophys. Res. Commun. 2007, 352, 823–829. [Google Scholar] [CrossRef] [PubMed]
- Laucht, M.; Esser, G.; Baving, L.; Gerhold, M.; Hoesch, I.; Ihle, W.; Steigleider, P.; Stock, B.; Stoehr, R.M.; Weindrich, D.; et al. Behavioral sequelae of perinatal insults and early family adversity at 8 years of age. J. Am. Acad. Child Adolesc. Psychiatry 2000, 39, 1229–1237. [Google Scholar] [CrossRef]
- McIntosh, D.E.; Mulkins, R.S.; Dean, R.S. Utilization of maternal perinatal risk indicators in the differential diagnosis of ADHD and UADD children. Int. J. Neurosci. 1995, 81, 35–46. [Google Scholar] [CrossRef]
- Radhakrishnan, A.; Aswathy, B.S.; Kumar, V.M.; Gulia, K.K. Sleep deprivation during late pregnancy produces hyperactivity and increased risk-taking behavior in offspring. Brain Res. 2015, 1596, 88–98. [Google Scholar] [CrossRef]
- Jeon, S.C.; Kim, H.J.; Ko, E.A.; Jung, S.C. Prenatal exposure to high cortisol induces ADHD-like behaviors with delay in spatial cognitive functions during the post-weaning period in rats. Exp. Neurobiol. 2021, 30, 87–100. [Google Scholar] [CrossRef]
- Banerjee, T.D.; Middleton, F.; Faraone, S.V. Environmental risk factors for attention-deficit hyperactivity disorder. Acta Paediatr. 2007, 96, 1269–1274. [Google Scholar] [CrossRef]
- Choi, I.-A.; Kim, P.; Joo, S.-H.; Kim, M.-K.; Park, J.-H.; Kim, H.-J.; Ryu, J.-H.; Cheong, J.-H.; Shin, C.-Y. Effects of preconceptional ethanol consumption on ADHD-like symptoms in Sprague-Dawley rat offsprings. Biomol. Ther. 2012, 20, 226–233. [Google Scholar] [CrossRef]
- Atalar, E.G.; Uzbay, T.; Karakaş, S. Modeling symptoms of attention-deficit hyperactivity disorder in a rat model of fetal alcohol syndrome. Alcohol Alcohol. 2016, 51, 684–690. [Google Scholar] [CrossRef] [PubMed]
- Johansen, E.B.; Fonnum, F.; Lausund, P.L.; Walaas, S.I.; Bærland, N.E.; Wøien, G.; Sagvolden, T. Behavioral changes following PCB 153 exposure in the spontaneously hypertensive rat—An animal model of Attention-Deficit/Hyperactivity Disorder. Behav. Brain Funct. 2014, 10, 1. [Google Scholar] [CrossRef]
- Choi, J.; Kim, Y.S.; Kim, M.H.; Kim, H.J.; Yoon, B.E. Maternal lead exposure induces sex-dependent cerebellar glial alterations and repetitive behaviors. Front. Cell. Neurosci. 2022, 16, 954807. [Google Scholar] [CrossRef] [PubMed]
Model | Mechanism | Representative Feature | Limitation | Others |
---|---|---|---|---|
DAT1-KO | Dopamine transporter 1 | -Hyperactivity. -Deficit in learning and memory [15,16]. -Attention deficit in auditory prepulse inhibition (PPI). -Recover by methylphenidate. -Deficit in cliff avoidance reaction (CAR). | Dependency in the background (strain) No clear evidence about dopamine transportation in patients with human ADHD | |
Drd4-KO | Dopamine receptor 4 | Attention deficit in a 5-choice continuous performance test (5C-CPT). [17] | No deficit in PPI and spontaneous exploratory behavior | |
GC-C-KO | Guanylyl cyclase C | Hyperactivity in the home and novel open field. Attention deficit in go/no-go test. Recovered by amphetamine injection (systemic) or GMP-dependent protein kinase agonist (VTA, SNc infusion) [18]. | No further study | Selective expression in DA neurons in VTA and SNc |
5-HT2C-KO | Serotonin 2c receptor | Impaired 5-choice serial reaction time task (5CSRTT) [19]. | ||
nAchR-KO | Nicotinic acetylcholine receptor | Beta 2: deficit in sustained attention (5CSRTT) [20]. Alpha 5: decrease in accuracy [21]. Alpha 7: attention deficit in 5CSRTT [22]. | Phenotypes could be paradigm dependent | |
GIT1-KO | G-protein-coupled receptor kinase-interacting protein-1 | Exhibit hyperactivity and impaired learning and memory. Enhanced electroencephalography (EEG) theta rhythms. Amphetamine normalizes all phenotypes. At the cellular level, inhibitory transmission but not excitatory transmission is attenuated at GIT1-KO synapses [23]. | Controversial report [24] | Association in Brazilian children and adolescents [25] |
GAT1-KO | Gamma-aminobutyric acid transporter subtype 1 | Hyperactivity, deficits in spatial reference memory. Impaired attentional focusing in an incentive runway test, impulsivity in an incentive passive avoidance test. | [26,27] | |
TR-beta 1 transgenic mouse | Carries a mutant human TRb 1 gene | Hyperactivity, impulsivity, inattention. All symptoms are reduced by methylphenidate. Alterations in the dopaminergic system. | [28] | |
GFAP-DNSynCAM1 | Carrying a dominant-negative form of SynCAM1 specifically targeted to astrocytes | Hyperactivity (disrupted diurnal locomotor activity) with enhanced and more frequent episodes of activity than that of control littermates during the day (when the animals are usually sleeping) accompanied by shorter periods of rest. High levels of basal activity in the dark period (the rodent’s awake/active time) attenuated by amphetamine. | [29] | Specifically targeted to astrocytes |
Colombia mutant | SNAP-25 gene | Hyperactivity, impulsivity alterations in the dopaminergic, and noradrenergic systems [30]. | Not recovered by methylphenidate [31] | |
NF1-KO | Neurofibromatosis type 1 | Attention deficits in the lateralized reaction time task. Excitation/inhibition imbalance. | [32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, W.-S.; Yoon, B.-E. Necessity of an Integrative Animal Model for a Comprehensive Study of Attention-Deficit/Hyperactivity Disorder. Biomedicines 2023, 11, 1260. https://doi.org/10.3390/biomedicines11051260
Lee W-S, Yoon B-E. Necessity of an Integrative Animal Model for a Comprehensive Study of Attention-Deficit/Hyperactivity Disorder. Biomedicines. 2023; 11(5):1260. https://doi.org/10.3390/biomedicines11051260
Chicago/Turabian StyleLee, Won-Seok, and Bo-Eun Yoon. 2023. "Necessity of an Integrative Animal Model for a Comprehensive Study of Attention-Deficit/Hyperactivity Disorder" Biomedicines 11, no. 5: 1260. https://doi.org/10.3390/biomedicines11051260
APA StyleLee, W. -S., & Yoon, B. -E. (2023). Necessity of an Integrative Animal Model for a Comprehensive Study of Attention-Deficit/Hyperactivity Disorder. Biomedicines, 11(5), 1260. https://doi.org/10.3390/biomedicines11051260