Oral Cavity Squamous Cell Carcinoma: An Update of the Pharmacological Treatment
Abstract
:1. Introduction
2. Research Strategy
3. Results
3.1. In Vitro Studies
3.1.1. Nanographene Oxide Loaded with Doxorubicin
3.1.2. Metformin Combined with 4SC-202
3.1.3. Procyanidin B2 (PB2)
3.1.4. Cetuximab and Cisplatinum-Conjugated Gold Nanoparticles
3.1.5. Cisplatin + Paclitaxel
3.1.6. Anlotinib
3.2. In Vivo Studies
3.2.1. Nimotuzumab
3.2.2. Metformin Combined with 4SC-202
3.3. Clinical Studies
3.3.1. Trametinib
3.3.2. Nivolumab
3.3.3. Nanoengineered Cisplatin
3.3.4. Camrelizumab + Apatinib
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chamoli, A.; Gosavi, A.S.; Shirwadkar, U.P.; Wangdale, K.V.; Behera, S.K.; Kurrey, N.K.; Kalia, K.; Mandoli, A. Overview of oral cavity squamous cell carcinoma: Risk factors, mechanisms, and diagnostics. Oral Oncol. 2021, 121, 105451. [Google Scholar] [CrossRef] [PubMed]
- Bugshan, A.; Farooq, I. Oral squamous cell carcinoma: Metastasis, potentially associated malignant disorders, etiology and recent advancements in diagnosis. F1000Research 2020, 9, 229. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Lin, C.; Zhang, L. Novel Prediction Models for Patients With Oral Squamous Cell Carcinoma at Different Anatomical Sites. J. Oral Maxillofac Surg. 2021, 79, 2358–2369. [Google Scholar] [CrossRef] [PubMed]
- Peres, M.A.; Macpherson, L.M.D.; Weyant, R.J.; Daly, B.; Venturelli, R.; Mathur, M.R.; Listl, S.; Celeste, R.K.; Guarnizo-Herreño, C.C.; Kearns, C.; et al. Oral diseases: A global public health challenge. Lancet 2019, 394, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Al Feghali, K.A.; Ghanem, A.I.; Burmeister, C.; Chang, S.S.; Ghanem, T.; Keller, C.; Siddiqui, F. Impact of smoking on pathological features in oral cavity squamous cell carcinoma. J. Cancer Res. Ther. 2019, 15, 582–588. [Google Scholar]
- Rivera, C. Essentials of oral cancer. Int. J. Clin. Exp. Pathol. 2015, 8, 11884–11894. [Google Scholar]
- Walker, D.M.; Boey, G.; McDonald, L.A. The pathology of oral cancer. Pathology 2003, 35, 376–383. [Google Scholar] [CrossRef]
- Anneroth, G.; Hansen, L.S. A methodologic study of histologic classification and grading of malignancy in oral squamous cell carcinoma. Scand. J. Dent. Res. 1984, 92, 448–468. [Google Scholar] [CrossRef]
- Almangush, A.; Mäkitie, A.A.; Triantafyllou, A.; de Bree, R.; Strojan, P.; Rinaldo, A.; Hernandez-Prera, J.C.; Suárez, C.; Kowalski, L.P.; Ferlito, A.; et al. Staging and grading of oral squamous cell carcinoma: An update. Oral Oncol. 2020, 107, 104799. [Google Scholar] [CrossRef]
- Bryne, M.; Koppang, H.S.; Lilleng, R.; Stene, T.; Bang, G.; Dabelsteen, E. New malignancy grading is a better prognostic indicator than Broders’ grading in oral squamous cell carcinomas. J. Oral Pathol. Med. 1989, 18, 432–437. [Google Scholar] [CrossRef]
- Lin, X.; Wu, X.; Gomaa, A.; Chen, J.; Wu, L.; Xie, X.; Hu, Y.; Jiang, C. Analysis of risk factors for multiple primary oral squamous cell carcinoma: A cohort study. Clin. Oral Investig. 2020, 24, 3147–3155. [Google Scholar] [CrossRef] [PubMed]
- Choudhari, S.K.; Chaudhary, M.; Gadbail, A.R.; Sharma, A.; Tekade, S. Oxidative and antioxidative mechanisms in oral cancer and precancer: A review. Oral Oncol. 2014, 50, 10–18. [Google Scholar] [CrossRef] [PubMed]
- De Menezes, R.F.; Bergmann, A.; Thuler, L.C. Alcohol consumption and risk of cancer: A systematic literature review. Asian Pac. J. Cancer Prev. 2013, 14, 4965–4972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, P.H.; Mahmood, Q.; Mariottini, G.L.; Chiang, T.A.; Lee, K.W. Adverse health effects of betel quid and the risk of oral and pharyn- geal cancers. Biomed. Res. Int. 2017, 2017, 3904098. [Google Scholar] [CrossRef] [Green Version]
- Gupta, B.; Johnson, N.W. Systematic review and meta-analysis of association of smokeless tobacco and of betel quid without tobacco with incidence of oral cancer in South Asia and the Pacific. PLoS ONE 2014, 9, 113385. [Google Scholar] [CrossRef]
- Guha, N.; Warnakulasuriya, S.; Vlaanderen, J.; Straif, K. Betel quid chewing and the risk of oral and oropharyngeal cancers: A meta-analysis with implications for cancer control. Int. J. Cancer 2014, 135, 1433–1443. [Google Scholar] [CrossRef]
- Gupta, K.; Metgud, R. Evidences suggesting involvement of viruses in oral squamous cell carcinoma. Pathol. Res. Int. 2013, 2013, 642496. [Google Scholar] [CrossRef] [Green Version]
- Nauta, I.H.; Heideman, D.A.M.; Brink, A.; van der Steen, B.; Bloemena, E.; Koljenović, S.; Baatenburg de Jong, R.J.; Leemans, C.R.; Brakenhoff, R.H. The unveiled reality of human papillomavirus as risk factor for oral cavity squamous cell carcinoma. Int. J. Cancer 2021, 149, 420–430. [Google Scholar] [CrossRef]
- Christianto, S.; Li, K.Y.; Huang, T.H.; Su, Y.X. The Prognostic Value of Human Papilloma Virus Infection in Oral Cavity Squamous Cell Carcinoma: A Meta-Analysis. Laryngoscope 2022, 13, 1760–1770. [Google Scholar] [CrossRef]
- Melo, B.A.C.; Vilar, L.G.; Oliveira, N.R.; Lima, P.O.; Pinheiro, M.B.; Domingueti, C.P.; Pereira, M.C. Human papillomavirus infection and oral squamous cell carcinoma—A systematic review. Braz. J. Otorhinolaryngol. 2021, 87, 346–352. [Google Scholar] [CrossRef]
- Lewis, J.S., Jr.; Smith, M.H.; Wang, X.; Tong, F.; Mehrad, M.; Lang-Kuhs, K.A. Human Papillomavirus-Associated Oral Cavity Squamous Cell Carcinoma: An Entity with Distinct Morphologic and Clinical Features. Head Neck Pathol. 2022, 16, 1073–1081. [Google Scholar] [CrossRef] [PubMed]
- Yosefof, E.; Hilly, O.; Stern, S.; Bachar, G.; Shpitzer, T.; Mizrachi, A. Squamous cell carcinoma of the oral tongue: Distinct epidemiological profile disease. Head Neck 2020, 42, 2316–2320. [Google Scholar] [CrossRef]
- Gormley, M.; Gray, E.; Richards, C.; Gormley, A.; Richmond, R.C.; Vincent, E.E.; Dudding, T.; Ness, A.R.; Thomas, S.J. An update on oral cavity cancer: Epidemiological trends, prevention strategies and novel approaches in diagnosis and prognosis. Community Dent. Health 2022, 39, 197–205. [Google Scholar]
- Liu, L.; Chen, J.; Cai, X.; Yao, Z.; Huang, J. Progress in targeted therapeutic drugs for oral squamous cell carcinoma. Surg. Oncol. 2019, 31, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Tirelli, G.; Piccinato, A.; Antonucci, P.; Gatto, A.; Marcuzzo, A.V.; Tofanelli, M. Surgical resection of oral cancer: En-bloc versus discontinuous approach. Eur. Arch. Otorhinolaryngol. 2020, 277, 3127–3135. [Google Scholar] [CrossRef] [PubMed]
- Brouwer de Koning, S.G.; Schaeffers, A.W.M.A.; Schats, W.; van den Brekel, M.W.M.; Ruers, T.J.M.; Karakullukcu, M.B. Assessment of the deep resection margin during oral cancer surgery: A systematic review. Eur. J. Surg. Oncol. 2021, 47, 2220–2232. [Google Scholar] [CrossRef]
- Kain, J.J.; Birkeland, A.C.; Udayakumar, N.; Morlandt, A.B.; Stevens, T.M.; Carroll, W.R.; Rosenthal, E.L.; Warram, J.M. Surgical margins in oral cavity squamous cell carcinoma: Current practices and future directions. Laryngoscope 2020, 130, 128–138. [Google Scholar] [CrossRef]
- Brennan, P.A.; Dylgjeri, F.; Coletta, R.D.; Arakeri, G.; Goodson, A.M. Surgical tumour margins and their significance in oral squamous cell carcinoma. J. Oral Pathol. Med. 2022, 51, 311–314. [Google Scholar] [CrossRef]
- Kamat, M.; Rai, B.D.; Puranik, R.S.; Datar, U.V. A comprehensive review of surgical margin in oral squamous cell carcinoma highlighting the significance of tumor-free surgical margins. J. Cancer Res. Ther. 2019, 15, 449–454. [Google Scholar] [CrossRef]
- Biglioli, F. Surgical therapy of oral cancer. Minerva Stomatol. 2009, 58, 157–180. [Google Scholar]
- Yamada, S.; Kurita, H.; Shimane, T.; Kamata, T.; Uehara, S.; Tanaka, H.; Yamamoto, T. Estimation of the width of free margin with a significant impact on local recurrence in surgical resection of oral squamous cell carcinoma. Int. J. Oral Maxillofac. Surg. 2016, 45, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Yadav, G.S.; Donoghue, M.; Tauro, D.P.; Yadav, A.; Agarwal, S. Intraoperative imprint evaluation of surgical margins in oral squamous cell carcinoma. Acta Cytol. 2013, 57, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Wang, C.; Cheng, A.; Kim, K.; Liu, H.; Li, M.; Mao, M.; Han, Z.; Feng, Z. Modified in-continuity resection is advantageous for prognosis and as a new surgical strategy for management of oral tongue cancer. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2020, 129, 453–460. [Google Scholar] [CrossRef]
- Missale, F.; Marchi, F.; Iandelli, A.; Subramaniam, N.; Dokhe, Y.; Sampieri, C.; Mattavelli, D.; Bresciani, L.; Carobbio, A.L.C.; Grammatica, A.; et al. Oncological outcomes of compartmental surgery and wide local excision in oral tongue and floor of the mouth cancer. Oral Oncol. 2022, 135, 106210. [Google Scholar] [CrossRef] [PubMed]
- McMahon, J.; Steele, P.; Kyzas, P.; Pollard, C.; Jampana, R.; MacIver, C.; Subramaniam, S.; Devine, J.; Wales, C.; McCaul, J. Operative tactics in floor of mouth and tongue cancer resection—The importance of imaging and planning. Br. J. Oral Maxillofac. Surg. 2021, 59, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Picciolo, G.; Pallio, G.; Altavilla, D.; Vaccaro, M.; Oteri, G.; Irrera, N.; Squadrito, F. β-Caryophyllene Reduces the Inflammatory Phenotype of Periodontal Cells by Targeting CB2 Receptors. Biomedicines 2020, 8, 164. [Google Scholar] [CrossRef] [PubMed]
- Bagnato, G.L.; Irrera, N.; Pizzino, G.; Santoro, D.; Roberts, W.N.; Bagnato, G.; Pallio, G.; Vaccaro, M.; Squadrito, F.; Saitta, A.; et al. Dual αvβ3 and αvβ5 blockade attenuates fibrotic and vascular alterations in a murine model of systemic sclerosis. Clin. Sci. 2018, 132, 231–242. [Google Scholar] [CrossRef]
- Micali, A.; Pallio, G.; Irrera, N.; Marini, H.; Trichilo, V.; Puzzolo, D.; Pisani, A.; Malta, C.; Santoro, G.; Laurà, R.; et al. Flavocoxid, a Natural Antioxidant, Protects Mouse Kidney from Cadmium-Induced Toxicity. Oxid. Med. Cell Longev. 2018, 2018, 9162946. [Google Scholar] [CrossRef] [Green Version]
- Vaccaro, M.; Irrera, N.; Cutroneo, G.; Rizzo, G.; Vaccaro, F.; Anastasi, G.P.; Borgia, F.; Cannavò, S.P.; Altavilla, D.; Squadrito, F. Differential Expression of Nitric Oxide Synthase Isoforms nNOS and iNOS in Patients with Non-Segmental Generalized Vitiligo. Int. J. Mol. Sci. 2017, 18, 2533. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Gao, R.; Zhao, Y.; Zhang, F.; Wang, X.; Li, B.; Wang, L.; Ma, L.; Du, J. pH-responsive graphene oxide loaded with targeted peptide and anticancer drug for OSCC therapy. Front. Oncol. 2022, 12, 930920. [Google Scholar] [CrossRef]
- He, Y.; Fan, Z.; He, L.; Zhang, C.; Ping, F.; Deng, M.; Liu, S.; Wang, Y.; Cheng, B.; Xia, J. Metformin Combined with 4SC-202 Inhibited the Migration and Invasion of OSCC via STAT3/TWIST1. Onco Targets Ther. 2020, 13, 11019–11029. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Zhang, T.; Xiao, Q.; Mei, B.; Zhang, X. Procyanidin B2 inhibits angiogenesis and cell growth in oral squamous cell carcinoma cells through the vascular endothelial growth factor (VEGF)/VEGF receptor 2 (VEGFR2) pathway. Bioengineered 2022, 13, 6500–6508. [Google Scholar] [CrossRef] [PubMed]
- Sürer, Ş.İ.; Elçitepe, T.B.; Akçay, D.; Daşkın, E.; Çalıbaşı Kocal, G.; Arıcan Alıcıkuş, Z.; Eskiizmir, G.; Yapıcı, K.; Başbınar, Y. A Promising, Novel Radiosensitizer Nanodrug Complex for Oral Cavity Cancer: Cetuximab and Cisplatin-Conjugated Gold Nanoparticles. Balkan Med. J. 2021, 38, 278–286. [Google Scholar] [CrossRef]
- Choi, H.S.; Kim, Y.K.; Hwang, K.G.; Yun, P.Y. Increased FOXM1 Expression by Cisplatin Inhibits Paclitaxel-Related Apoptosis in Cisplatin-Resistant Human Oral Squamous Cell Carcinoma (OSCC) Cell Lines. Int. J. Mol. Sci. 2020, 21, 8897. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Liu, P.; Shi, R. Anlotinib as a molecular targeted therapy for tumors. Oncol. Lett. 2020, 20, 1001–1014. [Google Scholar] [CrossRef]
- Deng, Z.; Liao, W.; Wei, W.; Zhong, G.; He, C.; Zhang, H.; Liu, Q.; Xu, X.; Liang, J.; Liu, Z. Anlotinib as a promising inhibitor on tumor growth of oral squamous cell carcinoma through cell apoptosis and mitotic catastrophe. Cancer Cell Int. 2021, 21, 37. [Google Scholar] [CrossRef]
- Lu, Y.; Lin, J.; Duan, M.; Rui, Y.; Zheng, H.; Zhu, L.; Zhu, X.; Wei, J. Anlotinib Suppresses Oral Squamous Cell Carcinoma Growth and Metastasis by Targeting the RAS Protein to Inhibit the PI3K/Akt Signalling Pathway. Anal. Cell Pathol. 2021, 2021, 5228713. [Google Scholar] [CrossRef]
- He, X.; Hu, N.; Yang, S.; Yang, Z.; Hu, L.; Wang, X.; Wen, N. Nimotuzumab shows an additive effect to inhibit cell growth of ALA-PDT treated oral cancer cells. Photodiagnosis Photodyn. Ther. 2022, 38, 102817. [Google Scholar] [CrossRef]
- He, Y.; Tai, S.; Deng, M.; Fan, Z.; Ping, F.; He, L.; Zhang, C.; Huang, Y.; Cheng, B.; Xia, J. Metformin and 4SC-202 synergistically promote intrinsic cell apoptosis by accelerating ΔNp63 ubiquitination and degradation in oral squamous cell carcinoma. Cancer Med. 2019, 8, 3479–3490. [Google Scholar] [CrossRef] [Green Version]
- Uppaluri, R.; Winkler, A.E.; Lin, T.; Law, J.H.; Haughey, B.H.; Nussenbaum, B.; Paniello, R.C.; Rich, J.T.; Diaz, J.A.; Michel, L.P.; et al. Biomarker and Tumor Responses of Oral Cavity Squamous Cell Carcinoma to Trametinib: A Phase II Neoadjuvant Window-of-Opportunity Clinical Trial. Clin. Cancer Res. 2017, 23, 2186–2194. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Y.; Neskey, D.M.; Horton, J.D.; Paulos, C.M.; Knochelmann, H.M.; Armeson, K.E.; Young, M.R.I. Immunological effects of nivolumab immunotherapy in patients with oral cavity squamous cell carcinoma. BMC Cancer 2020, 20, 229. [Google Scholar] [CrossRef] [Green Version]
- Shah, H.; Wang, Y.; Cheng, S.C.; Gunasti, L.; Chen, Y.H.; Lako, A.; Guenette, J.; Rodig, S.; Jo, V.Y.; Uppaluri, R.; et al. Use of Fluoro-[18F]-Deoxy-2-D-Glucose Positron Emission Tomography/Computed Tomography to Predict Immunotherapy Treatment Response in Patients With Squamous Cell Oral Cavity Cancers. JAMA Otolaryngol. Head Neck Surg. 2022, 148, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Shen, P.; Qiao, B.; Jin, N.; Wang, S. Neoadjuvant immunoradiotherapy in patients with locally advanced oral cavity squamous cell carcinoma: A retrospective study. Investig. New Drugs 2022, 40, 1282–1289. [Google Scholar] [CrossRef] [PubMed]
- Knochelmann, H.M.; Horton, J.D.; Liu, S.; Armeson, K.; Kaczmar, J.M.; Wyatt, M.M.; Richardson, M.S.; Lomeli, S.H.; Xiong, Y.; Graboyes, E.M.; et al. Neoadjuvant presurgical PD-1 inhibition in oral cavity squamous cell carcinoma. Cell Rep Med. 2021, 2, 100426. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, M.; Manzi, A.; Birdi, A.; Laporte, B.; Conway, P.; Cantin, S.; Mishra, V.; Singh, A.; Pearson, A.T.; Goldberg, E.R.; et al. A nanoengineered topical transmucosal cisplatin delivery system induces anti-tumor response in animal models and patients with oral cancer. Nat. Commun. 2022, 13, 4829. [Google Scholar] [CrossRef]
- Ju, W.T.; Xia, R.H.; Zhu, D.W.; Dou, S.J.; Zhu, G.P.; Dong, M.J.; Wang, L.Z.; Sun, Q.; Zhao, T.C.; Zhou, Z.H.; et al. A pilot study of neoadjuvant combination of anti-PD-1 camrelizumab and VEGFR2 inhibitor apatinib for locally advanced resectable oral squamous cell carcinoma. Nat. Commun. 2022, 13, 5378. [Google Scholar] [CrossRef]
Study | Reference | Cell Line | Pharmacological Treatment | Effect |
---|---|---|---|---|
Li et al., 2022 | [40] | HS3 | DOX@NGO-BBN-AF750 | Increase drug half-life. Decrease drug degradation. |
He et al., 2020 | [41] | HSC6 CAL33 | Metformin + 4SC-202 | Inhibition of STAT3/TWIST1. Suppression of invasion and migration of OSCC. |
Sun et al., 2022 | [42] | SCC-25 | Procyanidin B2 | Inhibition of VEGF/VEGFR2 pathway. Suppress the cell growth and angiogenesis. |
Sürer et al., 2021 | [43] | UPCI-SCC-131 | Cetuximab and Cisplatinum-conjugated Gold Nanoparticles | Increase cytotoxicity. Overcome resistance to radiotherapy. |
Choi et al., 2020 | [44] | YD-8, YD-9, YD-38, YD-8/CIS, YD-9/CIS, YD-38/CIS | Cisplatino + Paclitaxel | Combination of cisplatin and paclitaxel had an antagonistic effect. |
Lu et al., 2021 | [47] | HSC-3 | Anlotinib | Inhibit PI3K/Akt/Bad phosphorylation and promote apoptosis by activating RAS protein expression. |
Study | Reference | Pharmacological Treatment | Effect |
---|---|---|---|
He et al., 2022 | [48] | Nimotuzumab | Inhibit cell proliferation and promote apoptosis in OSCC, increasing the cure rate. |
He et al., 2019 | [49] | Metformin + 4SC-202 | Inhibit cancer cell growth and induce intrinsic cell apoptosis through increasing ΔNp63 ubiquitination and degradation. |
Study | Reference | Pharmacological Treatment | Effect |
---|---|---|---|
Uppaluri et al., 2017 | [50] | Trametinib | Reduction of Ras/MEK/ERK pathway activation and in clinical and metabolic tumor reponses. |
Knochelmann et al., 2021 | [54] | Nivolumab | Overall response rate of 33% with a median follow up of 2.23 years. |
Goldberg et al., 2022 | [55] | Nanoengineered Cisplatin (PRV111) | 69% tumor reduction in ~7 days and over-87% response rate. No DLTs or drug-related serious adverse events were reported. |
Ju et al., 2022 | [56] | Camrelizumab + Apatinib | MPR rate of 40%. At 18 months, 10.5% of locoregional recurrence and 95% of survival rates. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imbesi Bellantoni, M.; Picciolo, G.; Pirrotta, I.; Irrera, N.; Vaccaro, M.; Vaccaro, F.; Squadrito, F.; Pallio, G. Oral Cavity Squamous Cell Carcinoma: An Update of the Pharmacological Treatment. Biomedicines 2023, 11, 1112. https://doi.org/10.3390/biomedicines11041112
Imbesi Bellantoni M, Picciolo G, Pirrotta I, Irrera N, Vaccaro M, Vaccaro F, Squadrito F, Pallio G. Oral Cavity Squamous Cell Carcinoma: An Update of the Pharmacological Treatment. Biomedicines. 2023; 11(4):1112. https://doi.org/10.3390/biomedicines11041112
Chicago/Turabian StyleImbesi Bellantoni, Martina, Giacomo Picciolo, Igor Pirrotta, Natasha Irrera, Mario Vaccaro, Federico Vaccaro, Francesco Squadrito, and Giovanni Pallio. 2023. "Oral Cavity Squamous Cell Carcinoma: An Update of the Pharmacological Treatment" Biomedicines 11, no. 4: 1112. https://doi.org/10.3390/biomedicines11041112
APA StyleImbesi Bellantoni, M., Picciolo, G., Pirrotta, I., Irrera, N., Vaccaro, M., Vaccaro, F., Squadrito, F., & Pallio, G. (2023). Oral Cavity Squamous Cell Carcinoma: An Update of the Pharmacological Treatment. Biomedicines, 11(4), 1112. https://doi.org/10.3390/biomedicines11041112