Photodynamic Therapy in Pigmented Basal Cell Carcinoma—A Review
Abstract
:1. Introduction
2. Melanin in Photodynamic Therapy
2.1. Melanin as a Light-Absorber
2.2. Melanin as an Intracellular Antioxidant
3. Photodynamic Therapy in Pigmented Basal Cell Carcinoma
3.1. PDT in pBCC without Prior Debulking
3.2. PDT in pBCC with Prior Debulking/Curettage
3.3. PDT in pBCC with Prior Fractional CO2 Laser
4. Other Photodynamic Therapy Resistance Factors of Basal Cell Carcinomas
5. Future Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Apalla, Z.; Lallas, A.; Sotiriou, E.; Lazaridou, E.; Ioannides, D. Epidemiological trends in skin cancer. Dermatol. Pract. Concept. 2017, 7, 1–6. [Google Scholar] [CrossRef]
- Lesiak, A.; Czuwara, J.; Kamińska-Winciorek, G.; Kiprian, D.; Maj, J.; Owczarek, W.; Placek, W.; Rudnicka, L.; Rutkowski, P.; Sobjanek, M.; et al. Basal cell carcinoma. Diagnostic and therapeutic recommendations of Polish Dermatological Society. Dermatol. Rev./Przegl. Dermatol. 2019, 106, 107–126. [Google Scholar] [CrossRef]
- Basset-Seguin, N.; Herms, F. Update in the Management of Basal Cell Carcinoma. Acta Derm. Venereol. 2020, 100, adv00140. [Google Scholar] [CrossRef]
- Paoli, J.; Gyllencreutz, J.D.; Fougelberg, J.; Backman, E.J.; Modin, M.; Polesie, S.; Zaar, O. Nonsurgical Options for the Treatment of Basal Cell Carcinoma. Dermatol. Pract. Concept. 2019, 9, 75–81. [Google Scholar] [CrossRef]
- Cramer, G.M.; Cengel, K.A.; Busch, T.M. Forging Forward in Photodynamic Therapy. Cancer Res. 2022, 82, 534–536. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Banerjee, S.; Qiu, K.; Zhang, P.; Blacque, O.; Malcomson, T.; Paterson, M.J.; Clarkson, G.J.; Staniforth, M.; Stavros, V.G.; et al. Targeted photoredox catalysis in cancer cells. Nat. Chem. 2019, 11, 1041–1048. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Xu, Y.; Pu, Z.; Xiong, T.; Huang, H.; Long, S.; Son, S.; Yu, L.; Singh, N.; Tong, Y.; et al. Photoredox catalysis may be a general mechanism in photodynamic therapy. Proc. Natl. Acad. Sci. USA 2022, 119, e2210504119. [Google Scholar] [CrossRef]
- Mishchenko, T.; Balalaeva, I.; Gorokhova, A.; Vedunova, M.; Krysko, D.V. Which cell death modality wins the contest for photodynamic therapy of cancer? Cell Death Dis. 2022, 13, 455. [Google Scholar] [CrossRef] [PubMed]
- Moloudi, K.; Abrahamse, H.; George, B.P. Photodynamic therapy induced cell cycle arrest and cancer cell synchronization: Review. Front. Oncol. 2023, 13, 1225694. [Google Scholar] [CrossRef]
- Jiang, W.; Liang, M.; Lei, Q.; Li, G.; Wu, S. The Current Status of Photodynamic Therapy in Cancer Treatment. Cancers 2023, 15, 585. [Google Scholar] [CrossRef]
- Nelson, J.S.; McCullough, J.L.; Berns, M.W. Photodynamic therapy of human malignant melanoma xenografts in athymic nude mice. J. Natl. Cancer Inst. 1988, 80, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, E.F.; Thomas, G.F.; Smith, P.D.; Mitchell, J.B.; Glatstein, E.; Kantor, G.R.; Spielvogel, R.L.; Maiese, S.C.; Russo, A. Response of black and white guinea pig skin to photodynamic treatment using 514-nm light and dihematoporphyrin ether. Arch. Dermatol. 1990, 126, 1303–1307. [Google Scholar] [CrossRef]
- Jacques, S.L. Optical properties of biological tissues: A review. Phys. Med. Biol. 2013, 58, R37. [Google Scholar] [CrossRef]
- Nishidate, I.; Maeda, T.; Niizeki, K.; Aizu, Y. Estimation of melanin and hemoglobin using spectral reflectance images reconstructed from a digital RGB image by the Wiener estimation method. Sensors 2013, 13, 7902–7915. [Google Scholar] [CrossRef] [PubMed]
- Alaluf, S.; Atkins, D.; Barrett, K.; Blount, M.; Carter, N.; Heath, A. Ethnic variation in melanin content and composition in photoexposed and photoprotected human skin. Pigment. Cell Res. 2002, 15, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Jacques, S.L. Origins of tissue optical properties in the uva, visible, and nir regions. In OSA TOPS on Advances in Optical Imaging and Photon Migration; Optica Publishing Group: Washington, DC, USA, 1996; pp. 364–371. [Google Scholar]
- Shimojo, Y.; Nishimura, T.; Hazama, H.; Ozawa, T.; Awazu, K. Measurement of absorption and reduced scattering coefficients in Asian human epidermis, dermis, and subcutaneous fat tissues in the 400- to 1100-nm wavelength range for optical penetration depth and energy deposition analysis. J. Biomed. Opt. 2020, 25, 1–14. [Google Scholar] [CrossRef]
- Tseng, S.H.; Bargo, P.; Durkin, A.; Kollias, N. Chromophore concentrations, absorption and scattering properties of human skin in-vivo. Opt. Express. 2009, 17, 14599–14617. [Google Scholar] [CrossRef]
- Huang, Y.Y.; Vecchio, D.; Avci, P.; Yin, R.; Garcia-Diaz, M.; Hamblin, M.R. Melanoma resistance to photodynamic therapy: New insights. Biol. Chem. 2013, 394, 239–250. [Google Scholar] [CrossRef]
- Bigliardi, P.L.; Rout, B.; Pant, A.; Krishnan-Kutty, V.; Eberle, A.N.; Srinivas, R.; Burkett, B.A.; Bigliardi-Qi, M. Specific Targeting of Melanotic Cells with Peptide Ligated Photosensitizers for Photodynamic Therapy. Sci. Rep. 2017, 7, 15750. [Google Scholar] [CrossRef]
- Sadiq, I.; Kollias, N.; Baqer, A. Spectroscopic observations on human pigmentation. Photodermatol. Photoimmunol. Photomed. 2019, 35, 415–419. [Google Scholar] [CrossRef]
- Masuda, H.; Kimura, M.; Nishioka, A.; Kato, H.; Morita, A. Dual wavelength 5-aminolevulinic acid photodynamic therapy using a novel flexible light-emitting diode unit. J. Dermatol. Sci. 2019, 93, 109–115. [Google Scholar] [CrossRef]
- Lee, S.Y.; Lee, R.; Kim, E.; Lee, S.; Park, Y.I. Near-Infrared Light-Triggered Photodynamic Therapy and Apoptosis Using Upconversion Nanoparticles With Dual Photosensitizers. Front. Bioeng. Biotechnol. 2020, 8, 275. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Chen, M.; Zhou, Y.; Ye, C.; Liu, R. NIR Photosensitizer for Two-Photon Fluorescent Imaging and Photodynamic Therapy of Tumor. Front. Chem. 2021, 9, 629062. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Li, H.; Shi, C.; Xu, F.; Zhang, Z.; Yao, Q.; Ma, H.; Sun, W.; Shao, K.; Du, J.; et al. An APN-activated NIR photosensitizer for cancer photodynamic therapy and fluorescence imaging. Biomaterials 2020, 253, 120089. [Google Scholar] [CrossRef]
- de Cássia RGoncalves, R.; Pombeiro-Sponchiado, S.R. Antioxidant activity of the melanin pigment extracted from Aspergillus nidulans. Biol. Pharm. Bull. 2005, 28, 1129–1131. [Google Scholar] [CrossRef]
- Micillo, R.; Panzella, L.; Koike, K.; Monfrecola, G.; Napolitano, A.; d’Ischia, M. “Fifty Shades” of Black and Red or How Carboxyl Groups Fine Tune Eumelanin and Pheomelanin Properties. Int. J. Mol. Sci. 2016, 17, 746. [Google Scholar] [CrossRef]
- Del Bino, S.; Ito, S.; Sok, J.; Nakanishi, Y.; Bastien, P.; Wakamatsu, K.; Bernerd, F. Chemical analysis of constitutive pigmentation of human epidermis reveals constant eumelanin to pheomelanin ratio. Pigment. Cell Melanoma Res. 2015, 28, 707–717. [Google Scholar] [CrossRef]
- Del Bino, S.; Ito, S.; Sok, J.; Wakamatsu, K. 5,6-Dihydroxyindole eumelanin content in human skin with varying degrees of constitutive pigmentation. Pigment. Cell Melanoma Res. 2022, 35, 622–626. [Google Scholar] [CrossRef]
- Vera, R.E.; Lamberti, M.J.; Rivarola, V.A.; Rumie Vittar, N.B. Developing strategies to predict photodynamic therapy outcome: The role of melanoma microenvironment. Tumour Biol. 2015, 36, 9127–9136. [Google Scholar] [CrossRef]
- Napolitano, A.; Panzella, L.; Monfrecola, G.; d’Ischia, M. Pheomelanin-induced oxidative stress: Bright and dark chemistry bridging red hair phenotype and melanoma. Pigment. Cell Melanoma Res. 2014, 27, 721–733. [Google Scholar] [CrossRef]
- Jiang, S.; Liu, X.M.; Dai, X.; Zhou, Q.; Lei, T.C.; Beermann, F.; Wakamatsu, K.; Xu, S.Z. Regulation of DHICA-mediated antioxidation by dopachrome tautomerase: Implication for skin photoprotection against UVA radiation. Free Radic. Biol. Med. 2010, 48, 1144–1151. [Google Scholar] [CrossRef] [PubMed]
- Panzella, L.; Gentile, G.; D’Errico, G.; Della Vecchia, N.F.; Errico, M.E.; Napolitano, A.; Carfagna, C.; D’Ischia, M. Atypical structural and π-electron features of a melanin polymer that lead to superior free-radical-scavenging properties. Angew. Chem. Int. Ed. 2013, 52, 12684–12687. [Google Scholar] [CrossRef] [PubMed]
- Blarzino, C.; Mosca, L.; Foppoli, C.; Coccia, R.; De Marco, C.; Rosei, M.A. Lipoxygenase/H2O2-catalyzed oxidation of dihydroxyindoles: Synthesis of melanin pigments and study of their antioxidant properties. Free Radic. Biol. Med. 1998, 26, 446–453. [Google Scholar] [CrossRef]
- Silvestri, B.; Vitiello, G.; Luciani, G.; Calcagno, V.; Costantini, A.; Gallo, M.; Parisi, S.; Paladino, S.; Iacomino, M.; D’Errico, G.; et al. Probing the eumelanin-silica interface in chemically engineered bulk hybrid nanoparticles for targeted subcellular antioxidant protection. ACS Appl. Mater. Interfaces 2017, 9, 37615–37622. [Google Scholar] [CrossRef]
- Cecchi, T.; Pezzella, A.; Di Mauro, E.; Cestola, S.; Ginsburg, D.; Luzi, M.; Rigucci, A.; Santato, C. On the antioxidant activity of eumelanin biopigments: A quantitative comparison between free radical scavenging and redox properties. Nat. Prod. Res. 2019, 34, 2465–2473. [Google Scholar] [CrossRef] [PubMed]
- Liberti, D.; Alfieri, M.L.; Monti, D.M.; Panzella, L.; Napolitano, A. A Melanin-Related Phenolic Polymer with Potent Photoprotective and Antioxidant Activities for Dermo-Cosmetic Applications. Antioxidants 2020, 9, 270. [Google Scholar] [CrossRef]
- Hill, H.Z.; Hill, G.J. UVA, pheomelanin and the carcinogenesis of melanoma. Pigment. Cell Res. 2000, 13, 140–144. [Google Scholar] [CrossRef]
- Panzella, L.; Leone, L.; Greco, G.; Vitiello, G.; D′Errico, G.; Napolitano, A.; d′Ischia, M. Red human hair pheomelanin is a potent pro-oxidant mediating UV-independent contributory mechanisms of melanomagenesis. Pigment. Cell Melanoma Res. 2014, 27, 244–252. [Google Scholar] [CrossRef]
- Tanaka, H.; Yamashita, Y.; Umezawa, K.; Hirobe, T.; Ito, S.; Wakamatsu, K. The Pro-Oxidant Activity of Pheomelanin is Significantly Enhanced by UVA Irradiation: Benzothiazole Moieties Are More Reactive than Benzothiazine Moieties. Int. J. Mol. Sci. 2018, 19, 2889. [Google Scholar] [CrossRef]
- Lawrence, K.P.; Douki, T.; Sarkany, R.P.E.; Acker, S.; Herzog, B.; Young, A.R. The UV/Visible Radiation Boundary Region (385–405 nm) Damages Skin Cells and Induces “dark” Cyclobutane Pyrimidine Dimers in Human Skin in vivo. Sci. Rep. 2018, 24, 12722. [Google Scholar] [CrossRef]
- You, Y.H.; Lee, D.H.; Yoon, J.H.; Nakajima, S.; Yasui, A.; Pfeifer, G.P. Cyclobutane Pyrimidine Dimers Are Responsible for the Vast Majority of Mutations Induced by UVB Irradiation in Mammalian Cells. J. Biol. Chem. 2001, 276, 44688–44694. [Google Scholar] [CrossRef]
- Brash, D.E. UV signature mutations. Photochem. Photobiol. 2015, 91, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Mallet, J.D.; Rochette, P.J. Wavelength-dependent ultraviolet induction of cyclobutane pyrimidine dimers in the human cornea. Photochem. Photobiol. Sci. 2013, 12, 1310. [Google Scholar] [CrossRef] [PubMed]
- Mudambi, S.; Pera, P.; Washington, D.; Remenyik, E.; Fidrus, E.; Shafirstein, G.; Bellnier, D.; Paragh, G. Photodynamic therapy does not induce cyclobutane pyrimidine dimers in the presence of melanin. Photodiagnosis Photodyn. Ther. 2018, 22, 241–244. [Google Scholar] [CrossRef] [PubMed]
- Castano, A.P.; Demidova, T.N.; Hamblin, M.R. Mechanisms in photodynamic therapy: Part three—Photosensitizer pharmacokinetics, biodistribution, tumor localization and modes of tumor destruction. Photodiagnosis Photodyn. Ther. 2005, 2, 91–106. [Google Scholar] [CrossRef]
- Premi, S.; Wallisch, S.; Manu, C.M.; Weiner, A.B.; Bacchiocchi, A.; Wakamatsu, K.; Bechara, E.J.; Halaban, R.; Douki, T.; Brash, D.E. Chemexcitation of melanin derivatives induces DNA photoproducts long after UV exposure. Science 2015, 80, 842–847. [Google Scholar] [CrossRef]
- Baldea, I.; Danescu, S.; Tabaran, F.; Filip, A.G.; Ion, R.M.; Olteanu, D.E.; Sevastre-Berghian, A.C.; Decea, R.M.; Iacovita, C.; Hanganu, D.; et al. Inhibition of Survival Mechanisms and Cell Death Induction in Melanoma Following Photodynamic Therapy Mediated by Meso-5,10,15,20-tetrakis-(4-hydroxyphenyl)-porphyrin. Processes 2023, 11, 917. [Google Scholar] [CrossRef]
- Kim, S.K.; Oh, S.J.; Park, S.Y.; Kim, W.J.; Kim, Y.S.; Kim, Y.C. Photodynamic therapy inhibits melanogenesis through paracrine effects by keratinocytes and fibroblasts. Pigment. Cell Melanoma Res. 2018, 31, 277–286. [Google Scholar] [CrossRef]
- Sanclemente, G.; Mancilla, G.A.; Hernandez, G. A double-blind randomized controlled trial to assess the efficacy of daylight photodynamic therapy with methyl-aminolevulinate vs. Placebo and daylight in patients with facial photodamage. Actas Dermosifiliogr. 2016, 107, 224–234. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, Z.; Wang, P.; Zhang, G.; Wang, B.; Shi, L.; Liu, X.; Zhou, Z.; Wang, X. Long-term improvement on photoaging after ALA photodynamic therapy for actinic keratosis: A retrospective study. Photodiagnosis Photodyn. Ther. 2021, 33, 102181. [Google Scholar] [CrossRef]
- Baldea, I.; Olteanu, D.E.; Bolfa, P.; Tabaran, F.; Ion, R.M.; Filip, G.A. Melanogenesis and DNA damage following photodynamic therapy in melanoma with two meso-substituted porphyrins. J. Photochem. Photobiol. B 2016, 161, 402–410. [Google Scholar] [CrossRef] [PubMed]
- Monfrecola, G.; Procaccini, E.M.; D’Onofrio, D.; Roberti, G.; Liuzzi, R.; Staibano, S.; Manco, A.; De Rosa, G.; Santoianni, P. Hyperpigmentation induced by topical 5-aminolaevulinic acid plus visible light. J. Photochem. Photobiol. B 2002, 68, 147–155. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Green, S. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions; Version 5.1.0 [Updated March 2011]; The Cochrane Collaboration: London, UK, 2011; Available online: www.handbook.cochrane.org (accessed on 30 September 2023).
- Kaviani, A.; Ataie-Fashtami, L.; Fateh, M.; Sheikhbahaee, N.; Ghodsi, M.; Zand, N.; Djavid, G.E. Photodynamic therapy of head and neck basal cell carcinoma according to different clinicopathologic features. Lasers Surg. Med. 2005, 36, 377–382. [Google Scholar] [CrossRef]
- Ramirez, D.P.; Kurachi, C.; Inada, N.M.; Moriyama, L.T.; Salvio, A.G.; Filho, J.D.V.; Pires, L.; Buzzá, H.H.; de Andrade, C.T.; Greco, C.; et al. Experience and BCC subtypes as determinants of MAL-PDT response: Preliminary results of a national Brazilian project. Photodiagnosis Photodyn. Ther. 2014, 11, 22–26. [Google Scholar] [CrossRef]
- Lin, M.H.; Lee, J.Y.; Ou, C.Y.; Wong, T.W. Sequential systemic retinoid and photodynamic therapy for multiple keratotic pigmented nodular basal cell carcinomas on the scalp. J. Dermatol. 2009, 36, 518–521. [Google Scholar] [CrossRef]
- Souza, C.S.; Neves, A.B.; Felício, L.A.; Ferreira, J.; Kurachi, C.; Bagnato, V.S. Optimized photodynamic therapy with systemic photosensitizer following debulking technique for nonmelanoma skin cancers. Dermatol. Surg. 2007, 33, 194–198. [Google Scholar] [CrossRef]
- Itoh, Y.; Henta, T.; Ninomiya, Y.; Tajima, S.; Ishibashi, A. Repeated 5-aminolevulinic acid-based photodynamic therapy following electro-curettage for pigmented basal cell carcinoma. J. Dermatol. 2000, 27, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Gracia-Cazaña, T.; González, S.; Juarranz, A.; Gilaberte, Y. Methyl aminolevulinate photodynamic therapy combined with curettage debulking for pigmented basal cell carcinoma. Photodermatol. Photoimmunol. Photomed. 2017, 33, 228–232. [Google Scholar] [CrossRef]
- Pereyra-Rodriguez, J.J.; Bernabew-Wittel, J.J.; Gacto-Sanchez, P.; Conejo-Mir, J. Pigmented basal cell carcinomas treated with photodynamic therapy. Indian. J. Dermatol. Venereol. Leprol. 2009, 75, 530–531. [Google Scholar] [CrossRef]
- Salvio, A.G.; Requena, M.B.; Stringasci, M.D.; Bagnato, V.S. Photodynamic therapy as a treatment option for multiple pigmented basal cell carcinoma: Long-term follow-up results. Photodiagnosis Photodyn. Ther. 2021, 33, 102154. [Google Scholar] [CrossRef] [PubMed]
- Sung, J.M.; Kim, Y.C. Photodynamic therapy with epidermal ablation using fractional CO2 laser for treating superficial basal cell carcinoma: A case series. Photodiagnosis Photodyn. Ther. 2017, 19, 202–204. [Google Scholar] [CrossRef]
- Nissen, C.V.; Philipsen, P.A.; Wulf, H.C. Protoporphyrin IX formation after topical application of methyl aminolaevulinate and BF-200 aminolaevulinic acid declines with age. Br. J. Dermatol. 2015, 173, 760–766. [Google Scholar] [CrossRef]
- Fritsch, C.; Homey, B.; Stahl, W.; Lehmann, P.; Ruzicka, T.; Sies, H. Preferential relative porphyrin enrichment in solar keratoses upon topical application of delta-aminolevulinic acid methylester. Photochem. Photobiol. 1998, 68, 218–221. [Google Scholar] [PubMed]
- Gracia-Cazaña, T.; Mascaraque, M.; Lucena, S.R.; Vera-Álvarez, J.; Gonzalez, S.; Juarranz, Á.; Gilaberte, Y. Biomarkers of basal cell carcinoma resistance to methyl-aminolevulinate photodynamic therapy. PLoS ONE 2019, 14, e0215537. [Google Scholar] [CrossRef] [PubMed]
- Apalla, Z.; Lallas, A.; Tzellos, T.; Sidiropoulos, T.; Lefaki, I.; Trakatelli, M.; Sotiriou, E.; Lazaridou, E.; Evangelou, G.; Patsatsi, A.; et al. Applicability of dermoscopy for evaluation of patients’ response to nonablative therapies for the treatment of superficial basal cell carcinoma. Br. J. Dermatol. 2014, 170, 809–815. [Google Scholar] [CrossRef]
- Navarro-Bielsa, A.; Cerro-Muñoz, P.; Almenara-Blasco, M.; Gracia-Cazaña, T.; Gilaberte, Y. Dermoscopic Structures Predictive of Response to Photodynamic Therapy in Basal Cell Carcinoma. Acta Derm. Venereol. 2023, 103, adv00892. [Google Scholar] [CrossRef]
- Ko, D.; Kim, K.; Song, K. A randomized trial comparing methyl aminolaevulinate photodynamic therapy with and without Er:YAG ablative fractional laser treatment in Asian patients with lower extremity Bowen disease: Results from a 12-month follow-up. Br. J. Dermatol. 2014, 170, 165–172. [Google Scholar] [CrossRef]
- Kim, S.; Park, J.-Y.; Song, H.; Kim, Y.-S.; Kim, Y. Photodynamic therapy with ablative carbon dioxide fractional laser for treating Bowen disease. Ann. Dermatol. 2013, 25, 335–339. [Google Scholar] [CrossRef]
- Genouw, E.; Verheire, B.; Ongenae, K.; De Schepper, S.; Creytens, D.; Verhaeghe, E.; Boone, B. Laser-assisted photodynamic therapy for superficial basal cell carcinoma and Bowen’s disease: A randomized intrapatient comparison between a continuous and a fractional ablative CO2 laser mode. J. Eur. Acad. Dermatol. Venereol. 2018, 32, 1897–1905. [Google Scholar] [CrossRef]
- Zhang, P.; Han, T.; Xia, H.; Dong, L.; Chen, L.; Lei, L. Advances in Photodynamic Therapy Based on Nanotechnology and Its Application in Skin Cancer. Front. Oncol. 2022, 12, 836397. [Google Scholar] [CrossRef] [PubMed]
- Udrea, A.M.; Smarandache, A.; Dinache, A.; Mares, C.; Nistorescu, S.; Avram, S.; Staicu, A. Photosensitizers-Loaded Nanocarriers for Enhancement of Photodynamic Therapy in Melanoma Treatment. Pharmaceutics 2023, 15, 2124. [Google Scholar] [CrossRef] [PubMed]
Study | Patient Number | Sex/Age | Lesion Number | Tumor Localisation | Tumor Subtype | PS | Number of PDT Sessions | Light Dose per PDT Session | Debulking/Curettage | Light Length | Response Rate |
---|---|---|---|---|---|---|---|---|---|---|---|
Kaviani et al. (2004); [56] | 1 | M/47 | 1–7 | cheek 1 8vertex 2 8nose 3 8glabella 1 | NS | PHD | 1 | 200 J/cm2 | no | 632 nm | no response |
2 | M/65 | 1–9 | frontal 1 8temporal 2 8vertex 1 8neck 1 8occipital 2 8parietal 2 | NS | PHD | 1 | 100 J/cm2 | no | 632 nm | no response | |
10 | retro-auricular | NS | PHD | 1 | 100 J/cm2 | no | 632 nm | partial response (40–74%) | |||
Ramirez et al. (2014); [57] | NS | NS | 1–16 | NS | NS | MAL 20% | 2 | 150 J/cm2 | yes (surface debridement (in sBCC, curettage without local anesthesia for nBCC) | 630 ± 10 nm | complete response in 50% and partial response in another 50% of the cases |
Lin et al. (2009); [58] | 4 | F/68 | 1–2 | scalp | Nodular | 2% ALA solution | 3 | 120 J/cm2 | 2-month course of oral etretinate 0.5 mg⁄kg per day | 630 ± 40 nm | complete response |
Souza et al. (2007); [59] | 5 | F/75 | 1 | scalp | nodular-ulcerative | PHD | 1 | 300 J/cm2 | curettage | 630 nm | complete response * |
2 | temporal | superficial | PHD | 1 | 300 J/cm2 | no | 630 nm | partial response | |||
Itoh et al. (2000); [60] | 6 | F/60 | 1 | right inner canthus | nodular | 10% ALA instillation plus 20% ALA emulsion | 3 | 100–500 J/cm2 | electro-curettage of pigmentation under local anesthesia | 630 nm | complete response |
7 | M/75 | 1 | nose | superficial | 10% ALA instillation plus 20% ALA emulsion | 3 | 100–500 J/cm2 | electro-curettage of pigmentation under local anesthesia | 630 nm | compete response | |
8 | F/71 | 1 | right lower eyelid | nodular | 10% ALA instillation plus 20% ALA emulsion | 3 | 100–500 J/cm2 | electro-curettage of pigmentation under local anesthesia | 630 nm | complete response | |
9 | F/79 | 1 | head | superficial | 10% ALA instillation plus 20% ALA emulsion | 5 | 100–500 J/cm2 | electro-curettage of pigmentation under local anesthesia | 630 nm | compete response | |
10 | M/65 | 1 | right nasolabial fold | nodular | 10% ALA instillation plus 20% ALA emulsion | 4 | 100–500 J/cm2 | electro-curettage of pigmentation under local anesthesia | 630 nm | complete response | |
11 | F/56 | 1 | nose | ulcerative | 10% ALA instillation plus 20% ALA emulsion | 3 | 100–500 J/cm2 | electro-curettage of pigmentation under local anesthesia | 630 nm | compete response | |
12 | F/78 | 1 | head | nodular | 10% ALA instillation plus 20% ALA emulsion | 3 | 100–500 J/cm2 | electro-curettage of pigmentation under local anesthesia | 630 nm | complete response | |
13 | M/76 | 1 | right lower eyelid | nodular | 10% ALA instillation plus 20% ALA emulsion | 3 | 100–500 J/cm2 | electro-curettage of pigmentation under local anesthesia | 630 nm | partial response | |
14 | M/77 | 1 | right upper eyelid | nodular | 10% ALA instillation plus 20% ALA emulsion | 4 | 100–500 J/cm2 | electro-curettage of pigmentation under local anesthesia | 630 nm | no response | |
15 | M/73 | 1 | left ala nasi | nodular | 10% ALA instillation plus 20% ALA emulsion | 3 | 100–500 J/cm2 | electro-curettage of pigmentation under local anesthesia | 630 nm | complete response | |
16 | M/69 | 1 | left auricle | ulcerative | 10% ALA instillation plus 20% ALA emulsion | 5 | 100–500 J/cm2 | electro-curettage of pigmentation under local anesthesia | 630 nm | complete response | |
Ramirez et al. (2014); [57] | 17 | F/76 | 1 | left auricle | nodular | 10% ALA instillation plus 20% ALA emulsion | 4 | 100–500 J/cm2 | electro-curettage of pigmentation under local anesthesia | 630 nm | complete response |
2 | left auricle | nodular | 10% ALA instillation plus 20% ALA emulsion | 3 | 100–500 J/cm2 | electro-curettage of pigmentation under local anesthesia | 630 nm | complete response | |||
18 | F/64 | 1 | nose tip | nodular | 10% ALA instillation plus 20% ALA emulsion | 4 | 100–500 J/cm2 | electro-curettage of pigmentation under local anesthesia | 630 nm | complete response | |
19 | M/85 | 1 | nose | ulcerative | 10% ALA instillation plus 20% ALA emulsion | 3 | 100–500 J/cm2 | electro-curettage of pigmentation under local anesthesia | 630 nm | complete response | |
20 | M/65 | 1 | left ala nasi | nodular | 10% ALA instillation plus 20% ALA emulsion | 3 | 100–500 J/cm2 | electro-curettage of pigmentation under local anesthesia | 630 nm | complete response | |
Garcia-Cazana et al. (2017) #; [61] | # 21–41 | # 12M and 9F aged 40–100 (mean 73.05) | # 1–21 | # Nose 1 Cheek 1 Forehead 2 Scalp 5 8Ear 3 8Neck 2 8Back 2 8Chest 5 | NS | 16% MAL | 2–3 | 37 J/cm2 | curettage with local anesthesia when deeper pigmentation | 630 nm | complete response in 76.2% of treated lesions |
Pereyra-Rodriguez et al. (2009); [62] | 42 | F/79 | 1–2 | temporal | Nodular diffusely pigmented | 16% MAL | 2 | 37 J/cm2 | blade debulking | 630 nm | complete response |
3 | F/71 | 3–4 | frontal 1 8cheek 1 | Superficial partially pigmented | 16% MAL | 2 | 37 J/cm2 | debridement | 630 nm | complete response | |
4 | F/79 | 5 | cheek | Nodular partially pigmented | 16% MAL | 2 | 37 J/cm2 | blade debulking | 630 nm | complete response | |
Salvio et al. (2021); [63] | 43 | F/56 | 1–13 | upper limb 8 8trunk 6 | Nodular | 20% MAL | 2 | 150 J/cm2 | blade debulking | 630 nm | complete response |
6 | F/56 | 14–20 | trunk | Superficial | 20% MAL | 2 | 150 J/cm2 | blade debulking | 630 nm | complete response | |
44 | F/52 | 1–11 | upper limb 8 8trunk 3 | Nodular | 20% MAL | 2 | 150 J/cm2 | blade debulking | 630 nm | complete response | |
Sung et al. (2017); [64] | 45 | F/80 | 1 | thigh | Superficial | 16% MAL | 3 | 37 J/cm2 | fractional CO2 laser | 630 nm | complete resolution |
46 | M/59 | 1 | back | Superficial | 16% MAL | 4 | 37 J/cm2 | fractional CO2 laser | 630 nm | complete resolution | |
47 | M/66 | 1 | shoulder | Superficial | 16% MAL | 5 | 37 J/cm2 | fractional CO2 laser | 630 nm | complete resolution |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazur, E.; Kwiatkowska, D.; Reich, A. Photodynamic Therapy in Pigmented Basal Cell Carcinoma—A Review. Biomedicines 2023, 11, 3099. https://doi.org/10.3390/biomedicines11113099
Mazur E, Kwiatkowska D, Reich A. Photodynamic Therapy in Pigmented Basal Cell Carcinoma—A Review. Biomedicines. 2023; 11(11):3099. https://doi.org/10.3390/biomedicines11113099
Chicago/Turabian StyleMazur, Ewelina, Dominika Kwiatkowska, and Adam Reich. 2023. "Photodynamic Therapy in Pigmented Basal Cell Carcinoma—A Review" Biomedicines 11, no. 11: 3099. https://doi.org/10.3390/biomedicines11113099
APA StyleMazur, E., Kwiatkowska, D., & Reich, A. (2023). Photodynamic Therapy in Pigmented Basal Cell Carcinoma—A Review. Biomedicines, 11(11), 3099. https://doi.org/10.3390/biomedicines11113099