Prior Anti-Angiogenic TKI-Based Treatment as Potential Predisposing Factor to Nivolumab-Mediated Recurrent Thyroid Disorder Adverse Events in mRCC Patients: A Case Series
Abstract
:1. Introduction
2. Case Presentation
2.1. Patient 1
2.2. Patient 2
2.3. Patient 3
2.4. Patient 4
2.5. Patient 5
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Postow, M.A.; Callahan, M.K.; Wolchok, J.D. Immune Checkpoint Blockade in Cancer Therapy. J. Clin. Oncol. 2015, 33, 1974–1982. [Google Scholar] [CrossRef]
- Sharma, P.; Siddiqui, B.A.; Anandhan, S.; Yadav, S.S.; Subudhi, S.K.; Gao, J.; Goswami, S.; Allison, J.P. The Next Decade of Immune Checkpoint Therapy. Cancer Discov. 2021, 11, 838–857. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Escudier, B.; McDermott, D.F.; George, S.; Hammers, H.J.; Srinivas, S.; Tykodi, S.S.; Sosman, J.A.; Procopio, G.; Plimack, E.R.; et al. Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2015, 373, 1803–1813. [Google Scholar] [CrossRef]
- Quhal, F.; Mori, K.; Bruchbacher, A.; Resch, I.; Mostafaei, H.; Pradere, B.; Schuettfort, V.M.; Laukhtina, E.; Egawa, S.; Fajkovic, H.; et al. First-Line Immunotherapy-Based Combinations for Metastatic Renal Cell Carcinoma: A Systematic Review and Network Meta-Analysis. Eur. Urol. Oncol. 2021, 4, 755–765. [Google Scholar] [CrossRef]
- Motzer, R.J.; Tannir, N.M.; McDermott, D.F.; Arén Frontera, O.; Melichar, B.; Choueiri, T.K.; Plimack, E.R.; Barthélémy, P.; Porta, C.; George, S.; et al. Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2018, 378, 1277–1290. [Google Scholar] [CrossRef]
- Motzer, R.J.; Penkov, K.; Haanen, J.; Rini, B.; Albiges, L.; Campbell, M.T.; Venugopal, B.; Kollmannsberger, C.; Negrier, S.; Uemura, M.; et al. Avelumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2019, 380, 1103–1115. [Google Scholar] [CrossRef]
- Rini, B.I.; Plimack, E.R.; Stus, V.; Gafanov, R.; Hawkins, R.; Nosov, D.; Pouliot, F.; Alekseev, B.; Soulières, D.; Melichar, B.; et al. Pembrolizumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2019, 380, 1116–1127. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Powles, T.; Burotto, M.; Escudier, B.; Bourlon, M.T.; Zurawski, B.; Oyervides Juárez, V.M.; Hsieh, J.J.; Basso, U.; Shah, A.Y.; et al. Nivolumab plus Cabozantinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2021, 384, 829–841. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.; Alekseev, B.; Rha, S.-Y.; Porta, C.; Eto, M.; Powles, T.; Grünwald, V.; Hutson, T.E.; Kopyltsov, E.; Méndez-Vidal, M.J.; et al. Lenvatinib plus Pembrolizumab or Everolimus for Advanced Renal Cell Carcinoma. N. Engl. J. Med. 2021, 384, 1289–1300. [Google Scholar] [CrossRef] [PubMed]
- Rini, B.I.; Powles, T.; Atkins, M.B.; Escudier, B.; McDermott, D.F.; Suarez, C.; Bracarda, S.; Stadler, W.M.; Donskov, F.; Lee, J.L.; et al. Atezolizumab plus Bevacizumab versus Sunitinib in Patients with Previously Untreated Metastatic Renal Cell Carcinoma (IMmotion151): A Multicentre, Open-Label, Phase 3, Randomised Controlled Trial. Lancet 2019, 393, 2404–2415. [Google Scholar] [CrossRef] [PubMed]
- Choueiri, T.K.; Powles, T.; Albiges, L.; Burotto, M.; Szczylik, C.; Zurawski, B.; Yanez Ruiz, E.; Maruzzo, M.; Suarez Zaizar, A.; Fein, L.E.; et al. Cabozantinib plus Nivolumab and Ipilimumab in Renal-Cell Carcinoma. N. Engl. J. Med. 2023, 388, 1767–1778. [Google Scholar] [CrossRef] [PubMed]
- Conroy, M.; Naidoo, J. Immune-Related Adverse Events and the Balancing Act of Immunotherapy. Nat. Commun. 2022, 13, 392. [Google Scholar] [CrossRef]
- Williams, K.C.; Gault, A.; Anderson, A.E.; Stewart, C.J.; Lamb, C.A.; Speight, R.A.; Rajan, N.; Plummer, R.; Pratt, A.G. Immune-Related Adverse Events in Checkpoint Blockade: Observations from Human Tissue and Therapeutic Considerations. Front. Immunol. 2023, 14, 1122430. [Google Scholar] [CrossRef]
- Barroso-Sousa, R.; Barry, W.T.; Garrido-Castro, A.C.; Hodi, F.S.; Min, L.; Krop, I.E.; Tolaney, S.M. Incidence of Endocrine Dysfunction Following the Use of Different Immune Checkpoint Inhibitor Regimens: A Systematic Review and Meta-Analysis. JAMA Oncol. 2018, 4, 173–182. [Google Scholar] [CrossRef]
- Byun, D.J.; Wolchok, J.D.; Rosenberg, L.M.; Girotra, M. Cancer Immunotherapy–Immune Checkpoint Blockade and Associated Endocrinopathies. Nat. Rev. Endocrinol. 2017, 13, 195–207. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.-S.; Barroso-Sousa, R.; Tolaney, S.M.; Hodi, F.S.; Kaiser, U.B.; Min, L. Endocrine Toxicity of Cancer Immunotherapy Targeting Immune Checkpoints. Endocr. Rev. 2019, 40, 17–65. [Google Scholar] [CrossRef] [PubMed]
- Morganstein, D.L.; Lai, Z.; Spain, L.; Diem, S.; Levine, D.; Mace, C.; Gore, M.; Larkin, J. Thyroid Abnormalities Following the Use of Cytotoxic T-Lymphocyte Antigen-4 and Programmed Death Receptor Protein-1 Inhibitors in the Treatment of Melanoma. Clin. Endocrinol. 2017, 86, 614–620. [Google Scholar] [CrossRef]
- Drui, D.; Illouz, F.; Do Cao, C.; Caron, P. Expert Opinion on Thyroid Complications of New Anti-Cancer Therapies: Tyrosine Kinase Inhibitors. Ann Endocrinol 2018, 79, 569–573. [Google Scholar] [CrossRef]
- Lechner, M.G.; Vyas, C.M.; Hamnvik, O.-P.R.; Alexander, E.K.; Larsen, P.R.; Choueiri, T.K.; Angell, T.E. Risk Factors for New Hypothyroidism During Tyrosine Kinase Inhibitor Therapy in Advanced Nonthyroidal Cancer Patients. Thyroid 2018, 28, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rahman, O.; Fouad, M. Risk of Thyroid Dysfunction in Patients with Solid Tumors Treated with VEGF Receptor Tyrosine Kinase Inhibitors: A Critical Literature Review and Meta Analysis. Expert. Rev. Anticancer. Ther. 2014, 14, 1063–1073. [Google Scholar] [CrossRef]
- Delivanis, D.A.; Gustafson, M.P.; Bornschlegl, S.; Merten, M.M.; Kottschade, L.; Withers, S.; Dietz, A.B.; Ryder, M. Pembrolizumab-Induced Thyroiditis: Comprehensive Clinical Review and Insights Into Underlying Involved Mechanisms. J. Clin. Endocrinol. Metab. 2017, 102, 2770–2780. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Hodi, F.S.; Giobbie-Hurder, A.; Ott, P.A.; Buchbinder, E.I.; Haq, R.; Tolaney, S.; Barroso-Sousa, R.; Zhang, K.; Donahue, H.; et al. Characterization of Thyroid Disorders in Patients Receiving Immune Checkpoint Inhibition Therapy. Cancer Immunol. Res. 2017, 5, 1133–1140. [Google Scholar] [CrossRef] [PubMed]
- Gan, E.H.; Mitchell, A.L.; Plummer, R.; Pearce, S.; Perros, P. Tremelimumab-Induced Graves Hyperthyroidism. Eur. Thyroid. J. 2017, 6, 167–170. [Google Scholar] [CrossRef] [PubMed]
- Peiffert, M.; Cugnet-Anceau, C.; Dalle, S.; Chikh, K.; Assaad, S.; Disse, E.; Raverot, G.; Borson-Chazot, F.; Abeillon-du Payrat, J. Graves’ Disease during Immune Checkpoint Inhibitor Therapy (A Case Series and Literature Review). Cancers 2021, 13, 1944. [Google Scholar] [CrossRef]
- Brancatella, A.; Viola, N.; Brogioni, S.; Montanelli, L.; Sardella, C.; Vitti, P.; Marcocci, C.; Lupi, I.; Latrofa, F. Graves’ Disease Induced by Immune Checkpoint Inhibitors: A Case Report and Review of the Literature. Eur. Thyroid. J. 2019, 8, 192–195. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.-L.; Choi, H.C.-W.; Ho, P.P.-Y.; Lau, J.K.-S.; Tse, R.P.-Y.; Au, J.; Lam, V.; Liu, R.; Ho, I.; Wong, C.; et al. Immune-Related Endocrine Dysfunctions in Combined Modalities of Treatment: Real-World Data. Cancers 2021, 13, 3797. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.L. Tyrosine Kinase Inhibitor-Induced Hypothyroidism: Incidence, Etiology, and Management. Target. Oncol. 2011, 6, 217–226. [Google Scholar] [CrossRef]
- Shinohara, N.; Takahashi, M.; Kamishima, T.; Ikushima, H.; Otsuka, N.; Ishizu, A.; Shimizu, C.; Kanayama, H.; Nonomura, K. The Incidence and Mechanism of Sunitinib-Induced Thyroid Atrophy in Patients with Metastatic Renal Cell Carcinoma. Br. J. Cancer 2011, 104, 241–247. [Google Scholar] [CrossRef]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New Response Evaluation Criteria in Solid Tumours: Revised RECIST Guideline (Version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef]
- Common Terminology Criteria for Adverse Events (CTCAE)|Protocol Development|CTEP. Available online: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/ctc.htm#ctc_40 (accessed on 23 October 2023).
- Motzer, R.J.; Hutson, T.E.; Tomczak, P.; Michaelson, M.D.; Bukowski, R.M.; Oudard, S.; Negrier, S.; Szczylik, C.; Pili, R.; Bjarnason, G.A.; et al. Overall Survival and Updated Results for Sunitinib Compared with Interferon Alfa in Patients with Metastatic Renal Cell Carcinoma. J. Clin. Oncol. 2009, 27, 3584–3590. [Google Scholar] [CrossRef]
- Rini, B.I.; Tamaskar, I.; Shaheen, P.; Salas, R.; Garcia, J.; Wood, L.; Reddy, S.; Dreicer, R.; Bukowski, R.M. Hypothyroidism in Patients with Metastatic Renal Cell Carcinoma Treated with Sunitinib. J. Natl. Cancer Inst. 2007, 99, 81–83. [Google Scholar] [CrossRef]
- Torino, F.; Corsello, S.M.; Longo, R.; Barnabei, A.; Gasparini, G. Hypothyroidism Related to Tyrosine Kinase Inhibitors: An Emerging Toxic Effect of Targeted Therapy. Nat. Rev. Clin. Oncol. 2009, 6, 219–228. [Google Scholar] [CrossRef]
- Yamauchi, I.; Sakane, Y.; Fukuda, Y.; Fujii, T.; Taura, D.; Hirata, M.; Hirota, K.; Ueda, Y.; Kanai, Y.; Yamashita, Y.; et al. Clinical Features of Nivolumab-Induced Thyroiditis: A Case Series Study. Thyroid 2017, 27, 894–901. [Google Scholar] [CrossRef]
- Orlov, S.; Salari, F.; Kashat, L.; Walfish, P.G. Induction of Painless Thyroiditis in Patients Receiving Programmed Death 1 Receptor Immunotherapy for Metastatic Malignancies. J. Clin. Endocrinol. Metab. 2015, 100, 1738–1741. [Google Scholar] [CrossRef] [PubMed]
- Sbardella, E.; Tenuta, M.; Sirgiovanni, G.; Gianfrilli, D.; Pozza, C.; Venneri, M.A.; Cortesi, E.; Marchetti, P.; Lenzi, A.; Gelibter, A.J.; et al. Thyroid Disorders in Programmed Death 1 Inhibitor-Treated Patients: Is Previous Therapy with Tyrosine Kinase Inhibitors a Predisposing Factor? Clin. Endocrinol. 2020, 92, 258–265. [Google Scholar] [CrossRef]
- Kobayashi, T.; Iwama, S.; Yasuda, Y.; Okada, N.; Tsunekawa, T.; Onoue, T.; Takagi, H.; Hagiwara, D.; Ito, Y.; Morishita, Y.; et al. Patients With Antithyroid Antibodies Are Prone To Develop Destructive Thyroiditis by Nivolumab: A Prospective Study. J. Endocr. Soc. 2018, 2, 241–251. [Google Scholar] [CrossRef]
- Scott, E.S.; Long, G.V.; Guminski, A.; Clifton-Bligh, R.J.; Menzies, A.M.; Tsang, V.H. The Spectrum, Incidence, Kinetics and Management of Endocrinopathies with Immune Checkpoint Inhibitors for Metastatic Melanoma. Eur. J. Endocrinol. 2018, 178, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Nuzzo, P.V.; Pond, G.R.; Abou Alaiwi, S.; Nassar, A.H.; Flippot, R.; Curran, C.; Kilbridge, K.L.; Wei, X.X.; McGregor, B.A.; Choueiri, T.; et al. Conditional Immune Toxicity Rate in Patients with Metastatic Renal and Urothelial Cancer Treated with Immune Checkpoint Inhibitors. J. Immunother. Cancer 2020, 8, e000371. [Google Scholar] [CrossRef] [PubMed]
- Klein, M.; Catargi, B. VEGF in Physiological Process and Thyroid Disease. Ann. Endocrinol. 2007, 68, 438–448. [Google Scholar] [CrossRef]
- Hirschi, K.K.; D’Amore, P.A. Control of Angiogenesis by the Pericyte: Molecular Mechanisms and Significance. EXS 1997, 79, 419–428. [Google Scholar] [CrossRef]
- Saharinen, P.; Eklund, L.; Pulkki, K.; Bono, P.; Alitalo, K. VEGF and Angiopoietin Signaling in Tumor Angiogenesis and Metastasis. Trends Mol. Med. 2011, 17, 347–362. [Google Scholar] [CrossRef] [PubMed]
- Folkman, J.; Klagsbrun, M. Angiogenic Factors. Science 1987, 235, 442–447. [Google Scholar] [CrossRef]
- Klagsbrun, M.; D’Amore, P.A. Regulators of Angiogenesis. Annu. Rev. Physiol. 1991, 53, 217–239. [Google Scholar] [CrossRef]
- Polverini, P.J. The Pathophysiology of Angiogenesis. Crit. Rev. Oral. Biol. Med. 1995, 6, 230–247. [Google Scholar] [CrossRef]
- Klein, M.; Picard, E.; Vignaud, J.M.; Marie, B.; Bresler, L.; Toussaint, B.; Weryha, G.; Duprez, A.; Leclère, J. Vascular Endothelial Growth Factor Gene and Protein: Strong Expression in Thyroiditis and Thyroid Carcinoma. J. Endocrinol. 1999, 161, 41–49. [Google Scholar] [CrossRef]
- Le Tourneau, C.; Faivre, S.; Raymond, E. New Developments in Multitargeted Therapy for Patients with Solid Tumours. Cancer Treat. Rev. 2008, 34, 37–48. [Google Scholar] [CrossRef]
- Arora, A.; Scholar, E.M. Role of Tyrosine Kinase Inhibitors in Cancer Therapy. J. Pharmacol. Exp. Ther. 2005, 315, 971–979. [Google Scholar] [CrossRef] [PubMed]
- Ahmadieh, H.; Salti, I. Tyrosine Kinase Inhibitors Induced Thyroid Dysfunction: A Review of Its Incidence, Pathophysiology, Clinical Relevance, and Treatment. Biomed. Res. Int. 2013, 2013, 725410. [Google Scholar] [CrossRef]
- Kamba, T.; Tam, B.Y.Y.; Hashizume, H.; Haskell, A.; Sennino, B.; Mancuso, M.R.; Norberg, S.M.; O’Brien, S.M.; Davis, R.B.; Gowen, L.C.; et al. VEGF-Dependent Plasticity of Fenestrated Capillaries in the Normal Adult Microvasculature. Am. J. Physiol. Heart Circ. Physiol. 2006, 290, H560–H576. [Google Scholar] [CrossRef] [PubMed]
- Baffert, F.; Le, T.; Sennino, B.; Thurston, G.; Kuo, C.J.; Hu-Lowe, D.; McDonald, D.M. Cellular Changes in Normal Blood Capillaries Undergoing Regression after Inhibition of VEGF Signaling. Am. J. Physiol. Heart Circ. Physiol. 2006, 290, H547–H559. [Google Scholar] [CrossRef]
- Yamada, E.; Yamazaki, K.; Takano, K.; Obara, T.; Sato, K. Iodide Inhibits Vascular Endothelial Growth Factor-A Expression in Cultured Human Thyroid Follicles: A Microarray Search for Effects of Thyrotropin and Iodide on Angiogenesis Factors. Thyroid 2006, 16, 545–554. [Google Scholar] [CrossRef]
- Jebreel, A.; England, J.; Bedford, K.; Murphy, J.; Karsai, L.; Atkin, S. Vascular Endothelial Growth Factor (VEGF), VEGF Receptors Expression and Microvascular Density in Benign and Malignant Thyroid Diseases. Int. J. Exp. Pathol. 2007, 88, 271–277. [Google Scholar] [CrossRef]
- Mannavola, D.; Coco, P.; Vannucchi, G.; Bertuelli, R.; Carletto, M.; Casali, P.G.; Beck-Peccoz, P.; Fugazzola, L. A Novel Tyrosine-Kinase Selective Inhibitor, Sunitinib, Induces Transient Hypothyroidism by Blocking Iodine Uptake. J. Clin. Endocrinol. Metab. 2007, 92, 3531–3534. [Google Scholar] [CrossRef] [PubMed]
- Abdulrahman, R.M.; Verloop, H.; Hoftijzer, H.; Verburg, E.; Hovens, G.C.; Corssmit, E.P.; Reiners, C.; Gelderblom, H.; Pereira, A.M.; Kapiteijn, E.; et al. Sorafenib-Induced Hypothyroidism Is Associated with Increased Type 3 Deiodination. J. Clin. Endocrinol. Metab. 2010, 95, 3758–3762. [Google Scholar] [CrossRef] [PubMed]
- Braun, D.; Kim, T.D.; le Coutre, P.; Köhrle, J.; Hershman, J.M.; Schweizer, U. Tyrosine Kinase Inhibitors Noncompetitively Inhibit MCT8-Mediated Iodothyronine Transport. J. Clin. Endocrinol. Metab. 2012, 97, E100–E105. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.U.; Hwang, H.S.; Park, J.-M.; Yoon, S.Y.; Shin, S.-J.; Go, H.; Lee, J.-L.; Jeong, G.; Cho, Y.M. PD-L1 Upregulation by the mTOR Pathway in VEGFR-TKI-Resistant Metastatic Clear Cell Renal Cell Carcinoma. Cancer Res. Treat. 2023, 55, 231–244. [Google Scholar] [CrossRef] [PubMed]
Median Age | 69 Years (48–83 Years) |
---|---|
Sex: | |
Male | 42 (84.00%) |
Female | 8 (16.00%) |
ECOG PS: | |
0 | 20 (40.00%) |
1 | 20 (40.00%) |
2 | 2 (10.00%) |
Smoking Status: | |
Never smoker | 3 (6.00%) |
Previous smoker | 33 (66.00%) |
Current smoker | 14 (28.00%) |
Comorbidities: | |
Hypertension | 37 (74.00%) |
Dyslipidemia | 20 (40.00%) |
Diabetes | 15 (30.00%) |
COPD | 13 (26.00%) |
HF | 3 (6.00%) |
Immune disorder | 0 (0.00%) |
Previous Nephrectomy: | |
Yes | 42 (84.00%) |
No | 8 (16.00%) |
IMDC Risk Score: | |
Favorable risk | 12 (24.00%) |
Intermediate risk | 28 (56.00%) |
Poor risk | 10 (20.00%) |
Histology: | |
ccRCC | 45 (90.00%) |
sRCC | 5 (10.00%) |
Other | 0 (0.00%) |
Asymptomatic Brain Metastases: | |
Yes | 4 (8.00%) |
No | 46 (92.00%) |
Type of TKI: | |
Sunitinib | 40 (80.00%) |
Pazopanib | 10 (20.00%) |
Patient 1 | Patient 2 | Patient 3 | Patient 4 | Patient 5 | |
---|---|---|---|---|---|
Age | 53 | 60 | 51 | 72 | 51 |
Sex | Male | Male | Male | Male | Male |
IMDC Risk Score | Intermediate | Intermediate | Intermediate | Intermediate | Poor |
Histology | sRCC | ccRCC | ccRCC | ccRCC | ccRCC |
Prior TKI | Pazopanib | Sunitinib | Sunitinib | Sunitinib | Sunitinib |
Best Response to TKI | PD | PR | PD | PD | PD |
TKI-Induced TDAE | Grade 2 | Grade 1 | Grade 3 | Grade 2 | Grade 1 |
Levothyroxine Replacement Therapy before First Nivolumab Administration | 50 μg/day | 50 μg/day | 50 μg/day | 50 μg/day | 25 μg/day |
Serum Values of TSH, fT3 and fT4 before First Nivolumab Administration | Normal | Normal | Normal | Normal | Normal |
Levels of TgAbs, TPOAbs and TRAbs before First Nivolumab Administration | Negative | Negative | Negative | Negative | Negative |
Patients with Previous TKI-Mediated TDAE | |||||
Patient 1 | Patient 2 | Patient 3 | Patient 4 | Patient 5 | |
Onset of Thyrotoxicosis (Days from First Nivolumab Administration) | 469 | 49 | 15 | 14 | 21 |
Duration of Thyrotoxicosis (Days) | 10 | 21 | 15 | 14 | 16 |
Onset of Hypothyroidism (Days from the Start of Thyrotoxicosis) | 14 | 49 | 19 | 20 | 21 |
Time to Normalization of Serum Values of TSH, fT3 and fT4 (Days) | 25 | 21 | 42 | 30 | 15 |
Clinical Course of Thyrotoxicosis | Asymptomatic | Asymptomatic | Symptomatic | Asymptomatic | Asymptomatic |
Clinical Course of Hypothyroidism | Subclinical | Subclinical | Overt | Subclinical | Subclinical |
Nivolumab-Mediated Recurrent TDAE | Grade 1 | Grade 1 | Grade 2 | Grade 1 | Grade 1 |
Levothyroxine Replacement Therapy | 75 μg/day | 75 μg/day | 125 μg/day | 75 μg/day | 50 μg/day |
Levels of TgAbs, TPOAbs and TRAbs | Negative | Negative | Negative | Negative | Negative |
Best Response to Nivolumab | PR | PR | PD | CR | PD |
Patients with No Previous TKI-Mediated TDAE | |||||
Patient 7 | Patient 8 | ||||
Onset of Thyrotoxicosis (Days from First Nivolumab Administration) | 42 | 22 | |||
Duration of Thyrotoxicosis (Days) | 20 | 15 | |||
Onset of Hypothyroidism (Days from the Start of Thyrotoxicosis) | 48 | 21 | |||
Time to Normalization of Serum Values of TSH, fT3 and fT4 (Days) | 30 | 20 | |||
Clinical Course of Thyrotoxicosis | Asymptomatic | Asymptomatic | |||
Clinical Course of Hypothyroidism | Subclinical | Subclinical | |||
Nivolumab-Mediated TDAE | Grade 1 | Grade 1 | |||
Levothyroxine Replacement Therapy | 50 μg/day | 25 μg/day | |||
Levels of TgAbs, TPOAbs and TRAbs | Negative | Negative | |||
Best Response to Nivolumab | PR | SD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liguori, L.; Luciano, A.; Polcaro, G.; Ottaiano, A.; Cascella, M.; Perri, F.; Pepe, S.; Sabbatino, F. Prior Anti-Angiogenic TKI-Based Treatment as Potential Predisposing Factor to Nivolumab-Mediated Recurrent Thyroid Disorder Adverse Events in mRCC Patients: A Case Series. Biomedicines 2023, 11, 2974. https://doi.org/10.3390/biomedicines11112974
Liguori L, Luciano A, Polcaro G, Ottaiano A, Cascella M, Perri F, Pepe S, Sabbatino F. Prior Anti-Angiogenic TKI-Based Treatment as Potential Predisposing Factor to Nivolumab-Mediated Recurrent Thyroid Disorder Adverse Events in mRCC Patients: A Case Series. Biomedicines. 2023; 11(11):2974. https://doi.org/10.3390/biomedicines11112974
Chicago/Turabian StyleLiguori, Luigi, Angelo Luciano, Giovanna Polcaro, Alessandro Ottaiano, Marco Cascella, Francesco Perri, Stefano Pepe, and Francesco Sabbatino. 2023. "Prior Anti-Angiogenic TKI-Based Treatment as Potential Predisposing Factor to Nivolumab-Mediated Recurrent Thyroid Disorder Adverse Events in mRCC Patients: A Case Series" Biomedicines 11, no. 11: 2974. https://doi.org/10.3390/biomedicines11112974