Chorioamnionitis: An Update on Diagnostic Evaluation
Abstract
:1. Introduction
1.1. Definitions
1.1.1. Microbial Invasion of Amniotic Cavity (MIAC)
- Positive microbial culture or PCR from amniotic fluid [7]
1.1.2. Intra-Amniotic Infection (IAI)
- Presence of microorganisms and inflammation within the amniotic cavity based on presence of intrauterine microbials on amniotic culture or PCR and raised amniotic fluid IL6 > 2.6 ng/mL [7].
1.1.3. “Triple I” (Intrauterine Inflammation, Infection or Both)
- Proposed by an expert panel on chorioamnionitis at the National Institute of Child Health and Human Development, criteria includes maternal fever (≥39 °C or ≥38 °C for 30 min) accompanied by one or more of the following [12]:
- Fetal tachycardia (>160 bpm for ≥ 10 min)
- Maternal leukocytosis (WCC >15,000/mm3)
- Purulent fluid from the cervical os
- Biochemical or microbiologic amniotic fluid results consistent with MIAC
- ▪
- The authors noted the current paucity of evidence of current biomarkers and agreed on the critical need for further validation and discovery.
1.1.4. Histological Chorioamnionitis (HCA)
- The presence of diffuse leukocyte infiltration into the chorioamniotic membranes. HCA is staged based on the anatomical region of neutrophil infiltration and graded based on the extent of infiltration. The system reported by Redline et al. (2003) [13] is widely used and classifies acute chorioamnionitis into two categories: maternal inflammatory response and fetal inflammatory response (See Table 1).
1.1.5. Fetal Inflammatory Response Syndrome (FIRS)
1.2. Epidemiology/Incidence
1.3. Pathogenesis of the Intra-amniotic Inflammatory Response
Pattern Recognition Receptor | Associated Inflammatory Response |
---|---|
TLR-2 | Plays a major role in Gram-positive bacterial recognition. TLR2 hetero-dimerizes with either TLR-1 or TLR-6 and these dimers recognize constituents of Gram-positive bacteria such as peptidoglycan (PGN), and lipoteichoic acid (LTA) [22,25]. |
TLR-3 | Involved in the response to viral infection by recognizing double-stranded RNA [22,25]. |
TLR-4 | Recognizes Gram-negative lipopolysaccharide [22,25]. |
NOD-2 | Recognizes muramyl dipeptide (MDP) which is found in peptidoglycan of both Gram-negative and Gram-positive bacteria [26]. |
MCP-1 | Recruitment of monocytes/macrophages to inflammatory sites [27]. |
IL-1ß | Increases expression of neutrophil chemotactic and activating chemokines as well enhances MMP expression IL-1β also increases the production of cyclooxygenase (COX)-2 and prostaglandin E2 (PGE2) [28,29]. |
TNF-α | Produced primarily by macrophages and T cells, a potent proinflammatory cytokine which promotes vasodilation, oedema, leukocyte adhesion and indirectly induces fever [30]. |
IL-6 | Activates T cells and natural killer cells; increases the expression of oxytocin receptors on myometrial cells and oxytocin secretion by myometrial cells [29] |
IL-8 | Recruits neutrophils; cervical remodeling and rupture of the gestational membrane [31]. |
MMP | Promotes preterm delivery via decidual, gestational membrane, and cervical extracellular matrix degradation [32]. |
PGE2 | Increases intracellular calcium concentrations in myometrial cells and works synergistically with IL-8 in cervical ripening [32,33]. |
1.4. Infectious Causes of Chorioamnionitis
1.5. Complications
1.5.1. Maternal Complications
1.5.2. Fetal/Neonatal Complications
1.5.3. Neonatal Sepsis
1.5.4. Bronchopulmonary Dysplasia (BPD)
1.5.5. Cerebral Palsy and Cystic Periventricular Leukomalacia
1.5.6. Necrotizing Enterocolitis (NEC)
1.6. Mode of Delivery
2. Diagnosis
2.1. Clinical Signs and Symptoms
2.2. Maternal Plasma Biomarkers
2.2.1. Full Blood Count
2.2.2. CRP
2.2.3. Other Cytokine Markers of Inflammation
2.2.4. Procalcitonin
2.3. Vaginal Biomarkers
2.3.1. IL-6
2.3.2. IL-8
2.3.3. Other Targets
2.4. Continuous Electronic Fetal Monitoring
2.5. Amniocentesis
2.5.1. Amniotic Fluid Culture/Gram Stain
2.5.2. IL-6
2.5.3. MMP-8
2.5.4. Glucose Concentration
2.5.5. Leukocyte Esterase
Marker | Reference Range | Sensitivity of MIAC Detection | Specificity of MIAC Detection |
---|---|---|---|
Glucose concentration * | <14 mg/dl | 85% | 87% |
Interleukin 6 | >7.9 ng/mL | 81% | 75% |
Matrix metalloproteinase | Positive result | 90% | 80% |
White blood cell count | >30/cubic mm | 57% | 78% |
Leukocyte esterase | Positive result | 85–91% | 95–100% |
2.6. Investigations in the Setting of Intrauterine Fetal Demise (IUFD)/Stillbirth
2.7. Ultrasound
2.7.1. Biophysical Profile (BPP)
2.7.2. Doppler Assessment of the Fetal Umbilical (UA) and Middle Cerebral Arteries (MCA)
2.8. Future Directions: Non-Invasive Diagnostic Techniques
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Blencowe, H.; Cousens, S.; Chou, D.; Oestergaard, M.; Say, L.; Moller, A.-B.; Kinney, M.; Lawn, J.; the Born Too Soon Preterm Birth Action Group. Born Too Soon: The global epidemiology of 15 million preterm births. Reprod. Health 2013, 10 (Suppl. S1), S2. [Google Scholar] [CrossRef] [PubMed]
- Tita, A.T.; Andrews, W.W. Diagnosis and Management of Clinical Chorioamnionitis. Clin. Perinatol. 2010, 37, 339–354. [Google Scholar] [CrossRef]
- Yoon, B.H.; Romero, R.; Bin Moon, J.; Shim, S.-S.; Kim, M.; Kim, G.; Jun, J.K. Clinical significance of intra-amniotic inflammation in patients with preterm labor and intact membranes. Am. J. Obstet. Gynecol. 2001, 185, 1130–1136. [Google Scholar] [CrossRef] [PubMed]
- Romero, R.; Miranda, J.; Chaiworapongsa, T.; Korzeniewski, S.J.; Chaemsaithong, P.; Gotsch, F.; Dong, Z.; Ahmed, A.I.; Yoon, B.H.; Hassan, S.S.; et al. Prevalence and Clinical Significance of Sterile Intra-amniotic Inflammation in Patients with Preterm Labor and Intact Membranes. Am. J. Reprod. Immunol. 2014, 72, 458–474. [Google Scholar] [CrossRef] [PubMed]
- Fung, G.; Bawden, K.; Chow, P.; Yu, V. Chorioamnionitis and Outcome in Extremely Preterm Infants; Annals of the Academy of Medicine: Singapore, 2003; Volume 32, pp. 305–310. [Google Scholar]
- Gibbs, R.S.; Blanco, J.E.; Clair, P.J.S.; Castaneda, Y.S. Quantitative Bacteriology of Amniotic Fluid from Women with Clinical Intraamniotic Infection at Term. J. Infect. Dis. 1982, 145, 1–8. [Google Scholar] [CrossRef]
- Romero, R.; Chaemsaithong, P.; Korzeniewski, S.J.; Kusanovic, J.P.; Docheva, N.; Martinez-Varea, A.; Yeo, L. Clinical chorioamnionitis at term III: How well do clinical criteria perform in the identification of proven intra-amniotic infection? J. Perinat. Med. 2016, 44, 23–32. [Google Scholar] [CrossRef]
- Gibbs, R.; Romero, R.; Hillier, S.; Eschenbach, D.; Sweet, R. A review of premature birth and subclinical infection. Am. J. Obstet. Gynecol. 1992, 166, 1515–1528. [Google Scholar] [CrossRef]
- Romero, R.; Miranda, J.; Kusanovic, J.P.; Chaiworapongsa, T.; Chaemsaithong, P.; Martinez, A.; Gotsch, F.; Dong, Z.; Ahmed, A.I.; Shaman, M.; et al. Clinical chorioamnionitis at term I: Microbiology of the amniotic cavity using cultivation and molecular techniques. J. Perinat. Med. 2015, 43, 19–36. [Google Scholar] [CrossRef]
- Gibbs, R.S.; Duff, P. Progress in pathogenesis and management of clinical intraamniotic infection. Am. J. Obstet. Gynecol. 1991, 164, 1317–1326. [Google Scholar] [CrossRef]
- Smulian, J.C.; Shen-Schwarz, S.; Vintzileos, A.M.; Lake, M.F.; Ananth, C.V. Clinical chorioamnionitis and histologic placental inflammation. Obstet. Gynecol. 1999, 94, 1000–1005. [Google Scholar]
- Higgins, R.D.; Saade, G.; Polin, R.A.; Grobman, W.A.; Buhimschi, I.A.; Watterberg, K.; Raju, T.N. Evaluation and management of women and newborns with a maternal diagnosis of chorioamnionitis: Summary of a workshop. Obstet. Gynecol. 2016, 127, 426. [Google Scholar] [CrossRef]
- Redline, R.W.; Faye-Petersen, O.; Heller, D.; Qureshi, F.; Savell, V.; Vogler, C. Amniotic Infection Syndrome: Nosology and Reproducibility of Placental Reaction Patterns. Pediatr. Dev. Pathol. 2003, 6, 435–448. [Google Scholar] [CrossRef]
- Aziz, N.; Cheng, Y.W.; Caughey, A.B. Neonatal outcomes in the setting of preterm premature rupture of membranes complicated by chorioamnionitis. J. Matern. Fetal Neonatal Med. 2009, 22, 780–784. [Google Scholar] [CrossRef] [PubMed]
- Hofer, N.; Kothari, R.; Morris, N.; Müller, W.; Resch, B. The fetal inflammatory response syndrome is a risk factor for morbidity in preterm neonates. Am. J. Obstet. Gynecol. 2013, 209, 542.e1–542.e11. [Google Scholar] [CrossRef] [PubMed]
- Woodd, S.L.; Montoya, A.; Barreix, M.; Pi, L.; Calvert, C.; Rehman, A.M.; Chou, D.; Campbell, O.M.R. Incidence of maternal peripartum infection: A systematic review and meta-analysis. PLOS Med. 2019, 16, e1002984. [Google Scholar] [CrossRef] [PubMed]
- Zaki, D.; Balayla, J.; Beltempo, M.; Gazil, G.; Nuyt, A.M.; Boucoiran, I. Interaction of chorioamnionitis at term with maternal, fetal and obstetrical factors as predictors of neonatal mortality: A population-based cohort study. BMC Pregnancy Childbirth 2020, 20, 454. [Google Scholar] [CrossRef]
- Rouse, D.J.; Landon, M.; Leveno, K.J.; Leindecker, S.; Varner, M.W.; Caritis, S.N.; O’Sullivan, M.J.; Wapner, R.J.; Meis, P.J.; Miodovnik, M.; et al. The maternal-fetal medicine units cesarean registry: Chorioamnionitis at term and its duration—Relationship to outcomes. Am. J. Obstet. Gynecol. 2004, 191, 211–216. [Google Scholar] [CrossRef]
- Anand, A.J.; Sabapathy, K.; Sriram, B.; Rajadurai, V.S.; Agarwal, P.K. Single Center Outcome of Multiple Births in the Premature and Very Low Birth Weight Cohort in Singapore. Am. J. Perinatol. 2020, 39, 409–415. [Google Scholar] [CrossRef]
- Vince, G.; Starkey, P.; Jackson, M.; Sargent, I.; Redman, C. Flow cytometric characterisation of cell populations in human pregnancy decidua and isolation of decidual macrophages. J. Immunol. Methods 1990, 132, 181–189. [Google Scholar] [CrossRef]
- Anders, A.P.; Gaddy, J.A.; Doster, R.S.; Aronoff, D.M. Current concepts in maternal-fetal immunology: Recognition and response to microbial pathogens by decidual stromal cells. Am. J. Reprod. Immunol. 2017, 77, e12623. [Google Scholar] [CrossRef]
- Patni, S.; Flynn, P.; Wynen, L.; Seager, A.; Morgan, G.; White, J.; Thornton, C. An introduction to Toll-like receptors and their possible role in the initiation of labour. BJOG Int. J. Obstet. Gynaecol. 2007, 114, 1326–1334. [Google Scholar] [CrossRef]
- Goldenberg, R.L.; Andrews, W.W.; Hauth, J.C. Choriodecidual Infection and Preterm Birth. Nutr. Rev. 2002, 60 (Suppl. S5), S19–S25. [Google Scholar] [CrossRef]
- Romero, R.; Miranda, J.; Chaemsaithong, P.; Chaiworapongsa, T.; Kusanovic, J.P.; Dong, Z.; Ahmed, A.I.; Shaman, M.; Lannaman, K.; Yoon, B.H.; et al. Sterile and microbial-associated intra-amniotic inflammation in preterm prelabor rupture of membranes. J. Matern. Neonatal Med. 2014, 28, 1394–1409. [Google Scholar] [CrossRef]
- Kawai, T.; Akira, S. The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors. Nat. Immunol. 2010, 11, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Girardin, S.E.; Boneca, I.G.; Viala, J.; Chamaillard, M.; Labigne, A.; Thomas, G.; Sansonetti, P.J. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem. 2003, 278, 8869–8872. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Wang, Q.; Deng, B.; Wang, H.; Dong, Z.; Qu, X.; Kong, B. Monocyte Chemoattractant Protein-1 Secreted by Decidual Stromal Cells Inhibits NK Cells Cytotoxicity by Up-Regulating Expression of SOCS3. PLoS ONE 2012, 7, e41869. [Google Scholar] [CrossRef]
- Arcuri, F.; Toti, P.; Buchwalder, L.; Casciaro, A.; Cintorino, M.; Schatz, F.; Rybalov, B.; Lockwood, C.J. Mechanisms of Leukocyte Accumulation and Activation in Chorioamnionitis: Interleukin 1β and Tumor Necrosis Factor A Enhance Colony Stimulating Factor 2 Expression in Term Decidua. Reprod. Sci. 2009, 16, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Friebe-Hoffmann, U.; Chiao, J.-P.; Rauk, P.N. Effect of IL-1β and IL-6 on Oxytocin Secretion in Human Uterine Smooth Muscle Cells. Am. J. Reprod. Immunol. 2001, 46, 226–231. [Google Scholar] [CrossRef]
- Zelová, H.; Hošek, J. TNF-α signalling and inflammation: Interactions between old acquaintances. Inflamm. Res. 2013, 62, 641–651. [Google Scholar] [CrossRef]
- Kelly, R.W. Inflammatory mediators and cervical ripening. J. Reprod. Immunol. 2002, 57, 217–224. [Google Scholar] [CrossRef]
- Oner, C.; Schatz, F.; Kizilay, G.; Murk, W.; Buchwalder, L.F.; Kayisli, U.A.; Arici, A.; Lockwood, C.J. Progestin-Inflammatory Cytokine Interactions Affect Matrix Metalloproteinase-1 and -3 Expression in Term Decidual Cells: Implications for Treatment of Chorioamnionitis-Induced Preterm Delivery. J. Clin. Endocrinol. Metab. 2008, 93, 252–259. [Google Scholar] [CrossRef]
- Todd, H.M.; Dundoo, V.L.; Gerber, W.R.; Cwiak, C.A.; Baldassare, J.J.; Hertelendy, F. Effect of cytokines on prostaglandin E2 and prostacyclin production in primary cultures of human myometrial cells. J. Matern. Fetal Med. 1996, 5, 161–167. [Google Scholar] [CrossRef]
- Fahey, J.O. Clinical management of intra-amniotic infection and chorioamnionitis: A review of the literature. J. Midwifery Women’s Health 2008, 53, 227–235. [Google Scholar] [CrossRef]
- Romero, R.; Schaudinn, C.; Kusanovic, J.P.; Gorur, A.; Gotsch, F.; Webster, P.; Costerton, J.W. Detection of a microbial biofilm in intraamniotic infection. Am. J. Obstet. Gynecol. 2008, 198, 135.e1–135.e5. [Google Scholar] [CrossRef]
- Waites, K.B.; Katz, B.; Schelonka, R.L. Mycoplasmas and Ureaplasmas as Neonatal Pathogens. Clin. Microbiol. Rev. 2005, 18, 757–789. [Google Scholar] [CrossRef] [PubMed]
- Sperling, R.S.; Newton, E.; Gibbs, R.S. Intraamniotic Infection in Low-Hirth-Weight Infants. J. Infect. Dis. 1988, 157, 113–117. [Google Scholar] [CrossRef]
- Czikk, M.; McCarthy, F.; Murphy, K. Chorioamnionitis: From pathogenesis to treatment. Clin. Microbiol. Infect. 2011, 17, 1304–1311. [Google Scholar] [CrossRef] [PubMed]
- Doyle, R.; Alber, D.; Jones, H.; Harris, K.; Fitzgerald, F.; Peebles, D.; Klein, N. Term and preterm labour are associated with distinct microbial community structures in placental membranes which are independent of mode of delivery. Placenta 2014, 35, 1099–1101. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, R.L.; Andrews, W.W.; Goepfert, A.R.; Faye-Petersen, O.; Cliver, S.P.; Carlo, W.A.; Hauth, J.C. The Alabama Preterm Birth Study: Umbilical cord blood Ureaplasma urealyticum and Mycoplasma hominis cultures in very preterm newborn infants. Am. J. Obstet. Gynecol. 2008, 198, 43.e1–43.e5. [Google Scholar] [CrossRef]
- Shurin, P.A.; Alpert, S.; Rosner, B.; Driscoll, S.G.; Lee, Y.-H.; McCormack, W.M.; Santamarina, B.A.; Kass, E.H. Chorioamnionitis and Colonization of the Newborn Infant with Genital Mycoplasmas. N. Engl. J. Med. 1975, 293, 5–8. [Google Scholar] [CrossRef]
- Maranto, M.; Zaami, S.; Restivo, V.; Termini, D.; Gangemi, A.; Tumminello, M.; Culmone, S.; Billone, V.; Cucinella, G.; Gullo, G. Symptomatic COVID-19 in Pregnancy: Hospital Cohort Data between May 2020 and April 2021, Risk Factors and Medicolegal Implications. Diagnostics 2023, 13, 1009. [Google Scholar] [CrossRef] [PubMed]
- Gullo, G.; Scaglione, M.; Cucinella, G.; Riva, A.; Coldebella, D.; Cavaliere, A.F.; Signore, F.; Buzzaccarini, G.; Spagnol, G.; Laganà, A.S.; et al. Congenital Zika Syndrome: Genetic Avenues for Diagnosis and Therapy, Possible Management and Long-Term Outcomes. J. Clin. Med. 2022, 11, 1351. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, P.; Sarno, L.; Maruotti, G.M.; Paludetto, R. Chorioamnionitis and prematurity: A critical review. J. Matern. Neonatal Med. 2012, 25 (Suppl. S5), 21–23. [Google Scholar] [CrossRef]
- Mark, S.P.; Croughan-Minihane, M.S.; Kilpatrick, S.J. Chorioamnionitis and uterine function. Obstet. Gynecol. 2000, 95, 909–912. [Google Scholar]
- Tang, Q.; Zhang, L.; Li, H.; Shao, Y. The fetal inflammation response syndrome and adverse neonatal outcomes: A meta-analysis. J. Matern. Neonatal Med. 2019, 34, 3902–3914. [Google Scholar] [CrossRef]
- Gotsch, F.; Romero, R.; Kusanovic, J.P.; Mazaki-Tovi, S.; Pineles, B.L.; Erez, O.; Hassan, S.S. The fetal inflammatory response syndrome. Am. J. Obstet. Gynecol. 1998, 179, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.-C.; Wang, Y.-C.; Yu, M.-H.; Su, H.-Y. Major risk factors for stillbirth in different trimesters of pregnancy—A systematic review. Taiwan. J. Obstet. Gynecol. 2014, 53, 141–145. [Google Scholar] [CrossRef]
- Beck, C.; Gallagher, K.; Taylor, L.A.; Goldstein, J.A.; Mithal, L.B.; Gernand, A.D. Chorioamnionitis and risk for maternal and neonatal sepsis: A systematic review and meta-analysis. Obstet. Gynecol. 2021, 137, 1007. [Google Scholar] [CrossRef] [PubMed]
- Villamor-Martinez, E.; Alvarez-Fuente, M.; Ghazi, A.M.; Degraeuwe, P.; Zimmermann, L.J.; Kramer, B.W.; Villamor, E. Association of chorioamnionitis with bronchopulmonary dysplasia among preterm infants: A systematic review, meta-analysis, and metaregression. JAMA Netw. Open 2019, 2, e1914611. [Google Scholar] [CrossRef]
- Yoon, B.H.; Romero, R.; Kim, K.S.; Park, J.S.; Ki, S.H.; Kim, B.I.; Jun, J.K. A systemic fetal inflammatory response and the development of bronchopulmonary dysplasia. Am. J. Obstet. Gynecol. 1999, 181, 773–779. [Google Scholar] [CrossRef]
- Jain, V.G.; Willis, K.A.; Jobe, A.; Ambalavanan, N. Chorioamnionitis and neonatal outcomes. Pediatr. Res. 2021, 91, 289–296. [Google Scholar] [CrossRef]
- Wu, Y.W.; Colford, J.M. Chorioamnionitis as a Risk Factor for Cerebral Palsy: A Meta-Analysis. Obstet. Gynecol. Surv. 2001, 56, 255–256. [Google Scholar] [CrossRef]
- Garzoni, L.; Faure, C.; Frasch, M. Fetal cholinergic anti-inflammatory pathway and necrotizing enterocolitis: The brain-gut connection begins in utero. Front. Integr. Neurosci. 2013, 7, 57. [Google Scholar] [CrossRef] [PubMed]
- Been, J.V.; Lievense, S.; Zimmermann, L.J.; Kramer, B.W.; Wolfs, T.G. Chorioamnionitis as a Risk Factor for Necrotizing Enterocolitis: A Systematic Review and Meta-Analysis. J. Pediatr. 2013, 162, 236–242.e2. [Google Scholar] [CrossRef] [PubMed]
- Conde-Agudelo, A.; Romero, R.; Jung, E.J.; Sánchez, J.G. Management of clinical chorioamnionitis: An evidence-based approach. Am. J. Obstet. Gynecol. 2020, 223, 848–869. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, K.K.; Glover, A.; Vladutiu, C.J.; Stamilio, D.M. Association of chorioamnionitis and its duration with adverse maternal outcomes by mode of delivery: A cohort study. BJOG Int. J. Obstet. Gynaecol. 2018, 126, 719–727. [Google Scholar] [CrossRef] [PubMed]
- Segal, S. Labor Epidural Analgesia and Maternal Fever. Obstet. Anesth. Dig. 2010, 111, 1467–1475. [Google Scholar] [CrossRef]
- Maki, Y.; Furukawa, S.; Nakayama, T.; Oohashi, M.; Shiiba, N.; Furuta, K.; Tokunaga, S.; Sameshima, H. Clinical chorioamnionitis criteria are not sufficient for predicting intra-amniotic infection. J. Matern. Neonatal Med. 2020, 35, 52–57. [Google Scholar] [CrossRef]
- Sabogal, C.P.C.; Fonseca, J.; García-Perdomo, H.A. Validation of diagnostic tests for histologic chorioamnionitis: Systematic review and meta-analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2018, 228, 13–26. [Google Scholar] [CrossRef] [PubMed]
- Joo, E.; Park, K.H.; Kim, Y.M.; Ahn, K.; Hong, S. Maternal Plasma and Amniotic Fluid LBP, Pentraxin 3, Resistin, and IGFBP-3: Biomarkers of Microbial Invasion of Amniotic Cavity and/or Intra-amniotic Inflammation in Women with Preterm Premature Rupture of Membranes. J. Korean Med. Sci. 2021, 36, e279. [Google Scholar] [CrossRef]
- Musilova, I.; Kacerovsky, M.; Stepan, M.; Bestvina, T.; Pliskova, L.; Zednikova, B.; Jacobsson, B. Maternal serum C-reactive protein concentration and intra-amniotic inflammation in women with preterm prelabor rupture of membranes. PLoS ONE 2017, 12, e0182731. [Google Scholar] [CrossRef]
- Stepan, M.; Cobo, T.; Musilova, I.; Hornychova, H.; Jacobsson, B.; Kacerovsky, M. Maternal Serum C-Reactive Protein in Women with Preterm Prelabor Rupture of Membranes. PLoS ONE 2016, 11, e0150217. [Google Scholar] [CrossRef] [PubMed]
- Rewatkar, M.; Jain, S.; Jain, M.; Mohod, K. C-reactive protein and white blood cell count as predictors of maternal and neonatal infections in prelabour rupture of membranes between 34 and 41 weeks of gestation. J. Obstet. Gynaecol. 2018, 38, 622–628. [Google Scholar] [CrossRef]
- Dulay, A.T.; Buhimschi, I.A.; Zhao, G.; Bahtiyar, M.O.; Thung, S.F.; Cackovic, M.; Buhimschi, C.S. Compartmentalization of acute phase reactants Interleukin-6, C-Reactive Protein and Procalcitonin as biomarkers of intra-amniotic infection and chorioamnionitis. Cytokine 2015, 76, 236–243. [Google Scholar] [CrossRef]
- Trochez-Martinez, R.; Smith, P.; Lamont, R. Use of C-reactive protein as a predictor of chorioamnionitis in preterm prelabour rupture of membranes: A systematic review. BJOG Int. J. Obstet. Gynaecol. 2007, 114, 796–801. [Google Scholar] [CrossRef] [PubMed]
- van de Laar, R.; van der Ham, D.P.; Oei, S.G.; Willekes, C.; Weiner, C.P.; Mol, B.W. Accuracy of C-reactive protein determination in predicting chorioamnionitis and neonatal infection in pregnant women with premature rupture of membranes: A systematic review. Eur. J. Obstet. Gynecol. Reprod. Biol. 2009, 147, 124–129. [Google Scholar] [CrossRef]
- Romero, R.; Chaemsaithong, P.; Docheva, N.; Korzeniewski, S.J.; Tarca, A.L.; Bhatti, G.; Xu, Z.; Kusanovic, J.P.; Dong, Z.; Chaiyasit, N.; et al. Clinical chorioamnionitis at term IV: The maternal plasma cytokine profile. J. Perinat. Med. 2015, 44, 77–98. [Google Scholar] [CrossRef] [PubMed]
- Mercer, B.M.; Crouse, D.T.; Goldenberg, R.L.; Miodovnik, M.; Mapp, D.C.; Meis, P.J.; Dombrowski, M.P. The antibiotic treatment of PPROM study: Systemic maternal and fetal markers and perinatal outcomes. Am. J. Obstet. Gynecol. 2012, 206, 145.e1–145.e9. [Google Scholar] [CrossRef]
- Qiu, L.; Pan, M.; Zhang, R.; Ren, K. Maternal peripheral blood platelet-to-white blood cell ratio and platelet count as potential diagnostic markers of histological chorioamnionitis-related spontaneous preterm birth. J. Clin. Lab. Anal. 2019, 33, e22840. [Google Scholar] [CrossRef]
- Thornburg, L.L.; Queenan, R.; Brandt-Griffith, B.; Pressman, E.K. Procalcitonin for prediction of chorioamnionitis in preterm premature rupture of membranes. J. Matern. Neonatal Med. 2015, 29, 2056–2061. [Google Scholar] [CrossRef]
- Lee, S.M.; Park, K.H.; Jung, E.Y.; Kook, S.Y.; Park, H.; Jeon, S.J. Inflammatory proteins in maternal plasma, cervicovaginal and amniotic fluids as predictors of intra-amniotic infection in preterm premature rupture of membranes. PLoS ONE 2018, 13, e0200311. [Google Scholar] [CrossRef] [PubMed]
- Holst, R.M.; Mattsby-Baltzer, I.; Wennerholm, U.B.; Hagberg, H.; Jacobsson, B. Interleukin-6 and interleukin-8 in cervical fluid in a population of Swedish women in preterm labor: Relationship to microbial invasion of the amniotic fluid, intra-amniotic inflammation, and preterm delivery. Acta Obstet. Gynecol. Scand. 2005, 84, 551–557. [Google Scholar] [CrossRef]
- Cobo, T.; Jacobsson, B.; Kacerovsky, M.; Hougaard, D.M.; Skogstrand, K.; Gratacós, E.; Palacio, M. Systemic and local inflammatory response in women with preterm prelabor rupture of membranes. PLoS ONE 2014, 9, e85277. [Google Scholar] [CrossRef] [PubMed]
- Combs, C.A.; Garite, T.J.; Lapidus, J.A.; Lapointe, J.P.; Gravett, M.; Rael, J.; Amon, E.; Baxter, J.K.; Brady, K.; Clewell, W.; et al. Detection of microbial invasion of the amniotic cavity by analysis of cervicovaginal proteins in women with preterm labor and intact membranes. Am. J. Obstet. Gynecol. 2015, 212, 482.e1–482.e12. [Google Scholar] [CrossRef]
- Jun, J.K.; Yoon, B.H.; Romero, R.; Kim, M.; Bin Moon, J.; Ki, S.H.; Park, J.S. Interleukin 6 determinations in cervical fluid have diagnostic and prognostic value in preterm premature rupture of membranes. Am. J. Obstet. Gynecol. 2000, 183, 868–873. [Google Scholar] [CrossRef]
- Mikołajczyk, M.; Wirstlein, P.; Adamczyk, M.; Skrzypczak, J.; Wender-Ożegowska, E. Value of cervicovaginal fluid cytokines in prediction of fetal inflammatory response syndrome in pregnancies complicated with preterm premature rupture of membranes (pPROM). J. Perinat. Med. 2020, 48, 249–255. [Google Scholar] [CrossRef]
- Seliger, G.; Bergner, M.; Haase, R.; Stepan, H.; Schleußner, E.; Zöllkau, J.; Seeger, S.; Kraus, F.B.; Hiller, G.G.R.; Wienke, A.; et al. Daily monitoring of vaginal interleukin 6 as a predictor of intraamniotic inflammation after preterm premature rupture of membranes–a new method of sampling studied in a prospective multicenter trial. J. Perinat. Med. 2021, 49, 572–582. [Google Scholar] [CrossRef]
- Jung, E.Y.; Park, K.H.; Han, B.R.; Cho, S.-H.; Ryu, A. Measurement of Interleukin 8 in Cervicovaginal Fluid in Women With Preterm Premature Rupture of Membranes: A Comparison of Amniotic Fluid Samples. Reprod. Sci. 2016, 24, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Buhimschi, I.A.; Zambrano, E.; Pettker, C.M.; Bahtiyar, M.O.; Paidas, M.; Rosenberg, V.A.; Thung, S.; Salafia, C.M.; Buhimschi, C.S. Using Proteomic Analysis of the Human Amniotic Fluid to Identify Histologic Chorioamnionitis. Obstet. Gynecol. 2008, 111, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Buhimschi, C.S.; Bhandari, V.; Hamar, B.D.; Bahtiyar, M.-O.; Zhao, G.; Sfakianaki, A.K.; Pettker, C.M.; Magloire, L.; Funai, E.; Norwitz, E.R.; et al. Proteomic Profiling of the Amniotic Fluid to Detect Inflammation, Infection, and Neonatal Sepsis. PLOS Med. 2007, 4, e18. [Google Scholar] [CrossRef]
- Intrapartum Fetal Surveillance Clinical Guideline Fourth Edition. 2019. Available online: https://fsep.ranzcog.edu.au/what-we-offer/2-clinical-guideline (accessed on 15 March 2023).
- Ghidini, A.; Salafia, C.M.; Kirn, V.; Doria, V.; Spong, C.Y. Biophysical profile in predicting acute ascending infection in preterm rupture of membranes before 32 weeks. Obstet. Gynecol. 2000, 96, 201–206. [Google Scholar] [PubMed]
- Sameshima, H.; Ikenoue, T.; Ikeda, T.; Kamitomo, M.; Ibara, S. Association of Nonreassuring Fetal Heart Rate Patterns and Subsequent Cerebral Palsy in Pregnancies with Intrauterine Bacterial Infection. Am. J. Perinatol. 2005, 22, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.J.; Romero, R.; Chaemsaithong, P.; Chaiyasit, N.; Yoon, B.H.; Kim, Y.M. Acute chorioamnionitis and funisitis: Definition, pathologic features, and clinical significance. Am. J. Obstet. Gynecol. 2015, 213 (Suppl. S4), S29–S52. [Google Scholar] [PubMed]
- Kim, K.W.; Romero, R.; Park, H.S.; Park, C.-W.; Shim, S.-S.; Jun, J.K.; Yoon, B.H. A rapid matrix metalloproteinase-8 bedside test for the detection of intraamniotic inflammation in women with preterm premature rupture of membranes. Am. J. Obstet. Gynecol. 2007, 197, 292.e1–292.e5. [Google Scholar] [CrossRef]
- Park, H.S.; Kim, S.A. 322: The value of the genedia MMP-8 rapid test for diagnosing intraamniotic infection/inflammation and predicting adverse pregnancy outcomes in women with preterm premature rupture of membranes. Am. J. Obstet. Gynecol. 2015, 212, S174. [Google Scholar] [CrossRef]
- Romero, R.; Yoon, B.H.; Kenney, J.S.; Gomez, R.; Allison, A.C.; Sehgal, P.B. Amniotic Fluid Interleukin-6 Determinations Are of Diagnostic and Prognostic Value in Preterm Labor. Am. J. Reprod. Immunol. 1993, 30, 167–183. [Google Scholar] [CrossRef]
- Chaemsaithong, P.; Romero, R.; Korzeniewski, S.J.; Martinez-Varea, A.; Dong, Z.; Yoon, B.H.; Hassan, S.S.; Chaiworapongsa, T.; Yeo, L. A point of care test for interleukin-6 in amniotic fluid in preterm prelabor rupture of membranes: A step toward the early treatment of acute intra-amniotic inflammation/infection. J. Matern. Neonatal Med. 2015, 29, 360–367. [Google Scholar] [CrossRef]
- Elbastawissi, A. Amniotic fluid interleukin-6 and preterm delivery: A review *1. Obstet. Gynecol. 2000, 95, 1056–1064. [Google Scholar] [CrossRef]
- Ghi, T.; Sotiriadis, A.; Calda, P.; Da Silva Costa, F.; Raine-Fenning, N.; Alfirevic, Z.; McGillivray, G. ISUOG Practice Guidelines: Invasive procedures for prenatal diagnosis. Ultrasound Obstet. Gynecol. 2016, 48, 256–268. [Google Scholar] [CrossRef]
- Salomon, L.J.; Sotiriadis, A.; Wulff, C.B.; Odibo, A.; Akolekar, R. Risk of miscarriage following amniocentesis or chorionic villus sampling: Systematic review of literature and updated meta-analysis. Ultrasound Obstet. Gynecol. 2019, 54, 442–451. [Google Scholar] [CrossRef]
- Lisonkova, S.; Sabr, Y.; Joseph, K. Diagnosis of Subclinical Amniotic Fluid Infection Prior to Rescue Cerclage Using Gram Stain and Glucose Tests: An Individual Patient Meta-Analysis. J. Obstet. Gynaecol. Can. 2014, 36, 116–122. [Google Scholar]
- Romero, R.; Chaiworapongsa, T.; Savasan, Z.A.; Hussein, Y.; Dong, Z.; Kusanovic, J.P.; Kim, C.J.; Hassan, S.S. Clinical chorioamnionitis is characterized by changes in the expression of the alarmin HMGB1 and one of its receptors, sRAGE. J. Matern. Neonatal Med. 2012, 25, 558–567. [Google Scholar]
- Kim, S.M.; Romero, R.; Park, J.W.; Oh, K.J.; Jun, J.K.; Yoon, B.H. The relationship between the intensity of intra-amniotic inflammation and the presence and severity of acute histologic chorioamnionitis in preterm gestation. J. Matern. Neonatal Med. 2014, 28, 1500–1509. [Google Scholar]
- Romero, R.; Miranda, J.; Chaiworapongsa, T.; Chaemsaithong, P.; Gotsch, F.; Dong, Z.; Ahmed, A.I.; Yoon, B.H.; Hassan, S.S.; Kim, C.J.; et al. A Novel Molecular Microbiologic Technique for the Rapid Diagnosis of Microbial Invasion of the Amniotic Cavity and Intra-Amniotic Infection in Preterm Labor with Intact Membranes. Am. J. Reprod. Immunol. 2014, 71, 330–358. [Google Scholar]
- Romero, R.; Jimenez, C.; Lohda, A.K.; Nores, J.; Hanaoka, S.; Avila, C.; Callahan, R.; Mazor, M.; Hobbins, J.C.; Diamond, M.P. Amniotic fluid glucose concentration: A rapid and simple method for the detection of intraamniotic infection in preterm labor. Am. J. Obstet. Gynecol. 1990, 163, 968–974. [Google Scholar] [PubMed]
- Riggs, J.W.; Blanco, J.D. Pathophysiology, diagnosis, and management of intraamniotic infection. In Seminars in Perinatology; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Hoskins, I.A.; Marks, F.; Ordorica, S.A.; Young, B.K. Leukocyte Esterase Activity in Amniotic Fluid: Normal Values During Pregnancy. Am. J. Perinatol. 1990, 7, 130–132. [Google Scholar] [PubMed]
- Romero, R.; Yoon, B.H.; Mazor, M.; Gomez, R.; Gonzalez, R.; Diamond, M.P.; Baumann, P.; Araneda, H.; Kenney, J.S.; Cotton, D.B.; et al. A comparative study of the diagnostic performance of amniotic fluid glucose, white blood cell count, interleukin-6, and Gram stain in the detection of microbial invasion in patients with preterm premature rupture of membranes. Am. J. Obstet. Gynecol. 1993, 169, 839–851. [Google Scholar]
- Bonasoni, M.P.; Palicelli, A.; Dea, G.D.; Comitini, G.; Nardini, P.; Vizzini, L.; Russello, G.; Bardaro, M.; Carretto, E. Klebsiella pneumoniae Chorioamnionitis: An Underrecognized Cause of Preterm Premature Rupture of Membranes in the Second Trimester. Microorganisms 2021, 9, 96. [Google Scholar] [CrossRef] [PubMed]
- Bonasoni, M.P.; Comitini, G.; Pati, M.; Russello, G.; Vizzini, L.; Bardaro, M.; Pini, P.; Marrollo, R.; Palicelli, A.; Dea, G.D.; et al. Second Trimester Fetal Loss Due to Citrobacter koseri Infection: A Rare Cause of Preterm Premature Rupture of Membranes (PPROM). Diagnostics 2022, 12, 159. [Google Scholar]
- Bonasoni, M.P.; Palicelli, A.; Dea, G.D.; Comitini, G.; Pazzola, G.; Russello, G.; Bertoldi, G.; Bardaro, M.; Zuelli, C.; Carretto, E. Kingella kingae Intrauterine Infection: An Unusual Cause of Chorioamnionitis and Miscarriage in a Patient with Undifferentiated Connective Tissue Disease. Diagnostics 2021, 11, 243. [Google Scholar]
- Carroll, S.G.; Papaioannou, S.; Nicolaides, K.H. Doppler studies of the placental and fetal circulation in pregnancies with preterm prelabor amniorrhexis. Ultrasound Obstet. Gynecol. 1995, 5, 184–188. [Google Scholar]
- Aviram, A.; Quaglietta, P.; Warshafsky, C.; Zaltz, A.; Weiner, E.; Melamed, N.; Ng, E.; Barrett, J.; Ronzoni, S. Utility of ultrasound assessment in management of pregnancies with preterm prelabor rupture of membranes. Ultrasound Obstet. Gynecol. 2019, 55, 806–814. [Google Scholar] [CrossRef]
- Leizer, J.M.; Ibrahim, A.M.; A Foulke, L.; A Tauber, K.; Feustel, P.; Zelig, C.M.; Foulke, L.A.; Tauber, K.A. Using Middle Cerebral Artery Doppler Ultrasound to Predict Clinical Chorioamnionitis After Preterm Prelabor Rupture of Membranes. Cureus 2023, 15, e41508. [Google Scholar] [CrossRef]
- Urushiyama, D.; Ohnishi, E.; Suda, W.; Kurakazu, M.; Kiyoshima, C.; Hirakawa, T.; Miyata, K.; Yotsumoto, F.; Nabeshima, K.; Setoue, T.; et al. Vaginal microbiome as a tool for prediction of chorioamnionitis in preterm labor: A pilot study. Sci. Rep. 2021, 11, 1–10. [Google Scholar]
- Oh, K.J.; Lee, J.H.; Romero, R.; Park, H.S.; Hong, J.-S.; Yoon, B.H. A new rapid bedside test to diagnose and monitor intraamniotic inflammation in preterm PROM using transcervically collected fluid. Am. J. Obstet. Gynecol. 2020, 223, 423.e1–423.e15. [Google Scholar]
- Aksakal, S.E.; Kandemir, O.; Altınbas, S.; Esin, S.; Muftuoglu, K.H. Fetal tyhmus size as a predictor of histological chorioamnionitis in preterm premature rupture of membranes. J. Matern. Neonatal Med. 2013, 27, 1118–1122. [Google Scholar] [CrossRef] [PubMed]
- Caissutti, C.; Familiari, A.; Khalil, A.; Flacco, M.E.; Manzoli, L.; Scambia, G.; Cagnacci, A.; D’Antonio, F. Small fetal thymus and adverse obstetrical outcome: A systematic review and a meta-analysis. Acta Obstet. Gynecol. Scand. 2017, 97, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.; Hutter, J.; Suff, N.; Zampieri, C.A.; Tribe, R.M.; Shennan, A.; Rutherford, M.; Story, L. Antenatal diagnosis of chorioamnionitis: A review of the potential role of fetal and placental imaging. Prenat. Diagn. 2022, 42, 1049–1058. [Google Scholar] [PubMed]
Maternal Inflammatory Response | Fetal Inflammatory Response | |
---|---|---|
Stage | ||
Stage 1 | Neutrophil infiltration of the subchorionic space (Acute subchorionitis) | Neutrophil infiltration of the chorionic plate vessels and/or umbilical vein (Chorionic vasculitis/umbilical phlebitis) |
Stage 2 | Neutrophil infiltration of the chorionic plate or chorionic connective tissue and/or amnion (Acute chorioamnionitis) | Neutrophil infiltration in one or both umbilical arteries (Umbilical vasculitis) |
Stage 3 | Degenerating neutrophils, amnion epithelial necrosis, amnion basement membrane thickening/hypereosinophilia (Necrotizing chorioamnionitis) | Neutrophils and associated debris in a concentric band, ring, or halo around one or more umbilical vessels (Necrotizing funisitis or concentric umbilical perivasculitis) |
Grade | ||
Grade 1 (Mild to moderate) | Individual or small clusters of neutrophils infiltrating the chorion leave, chorionic plate sub chorionic plate, sub chorionic fibrin or amnion | Scattered neutrophilic infiltrate in the subendothelial or intramural portions of any chorionic (or umbilical) vessel |
Grade 2 (Severe) | Three or more chorionic micro-abscesses (confluent neutrophils measuring at least 10 × 20 cells in extent) or continuous band of confluent chorionic neutrophils | Near confluent neutrophils in chorionic plate (or umbilical) vessels with attenuation and/or degeneration of vascular smooth muscle cells |
Pathogen Origin | Pathogens |
---|---|
Ascending infection | Genital mycoplasma:
|
Hematogenous | Bacterial
|
Clinical Sign/Symptom | Sensitivity MIAC Detection | Specificity MIAC Detection |
---|---|---|
Maternal fever (temperature > 37.8 °C) | 42% | 86.5% |
Maternal tachycardia (heart rate > 100 beats/min) | 88% | 5% |
Uterine tenderness | 12%, | 95% |
Foul-smelling amniotic fluid/vaginal discharge | 8% | 95% |
Fetal tachycardia (heart rate > 160 beats/min); | 80% | 30% |
Maternal leukocytosis (leukocyte count > 15,000 cells/mm3) | 76% | 30% |
Any three or more of above criteria | 56% | 55% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carter, S.W.D.; Neubronner, S.; Su, L.L.; Dashraath, P.; Mattar, C.; Illanes, S.E.; Choolani, M.A.; Kemp, M.W. Chorioamnionitis: An Update on Diagnostic Evaluation. Biomedicines 2023, 11, 2922. https://doi.org/10.3390/biomedicines11112922
Carter SWD, Neubronner S, Su LL, Dashraath P, Mattar C, Illanes SE, Choolani MA, Kemp MW. Chorioamnionitis: An Update on Diagnostic Evaluation. Biomedicines. 2023; 11(11):2922. https://doi.org/10.3390/biomedicines11112922
Chicago/Turabian StyleCarter, Sean W. D., Samantha Neubronner, Lin Lin Su, Pradip Dashraath, Citra Mattar, Sebastián E. Illanes, Mahesh A. Choolani, and Matthew W. Kemp. 2023. "Chorioamnionitis: An Update on Diagnostic Evaluation" Biomedicines 11, no. 11: 2922. https://doi.org/10.3390/biomedicines11112922
APA StyleCarter, S. W. D., Neubronner, S., Su, L. L., Dashraath, P., Mattar, C., Illanes, S. E., Choolani, M. A., & Kemp, M. W. (2023). Chorioamnionitis: An Update on Diagnostic Evaluation. Biomedicines, 11(11), 2922. https://doi.org/10.3390/biomedicines11112922