Novel Insights into Pathophysiology of Delayed Cerebral Ischemia: Effects of Current Rescue Therapy on Microvascular Perfusion Heterogeneity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inclusion and Exclusion Criteria
2.2. aSAH Management
2.3. Timing of Perfusion CT
2.4. Multimodal Rescue Therapy
2.5. Analysis of Perfusion CT Imaging
2.6. Definition of Outcome Measures
2.7. Statistical Analysis
3. Results
3.1. Patient Cohort
3.2. Influence of Multimodal Rescue Therapy on Blood Pressure and Cerebral Perfusion Pressure
3.3. Influence of Multimodal Rescue Therapy on Microvascular Perfusion Heterogeneity (cvMTT)
3.4. Influence of Multimodal Rescue Therapy on General Microvascular Perfusion (mean MTT)
3.5. Correlation of MAP and CPP with mean MTT and cvMTT
3.6. Correlation of MAP and MTT Changes Induced by Multimodal Rescue Therapy
3.7. Timing of Multimodal Therapy Initiation
4. Discussion
5. Limitations
- The retrospective study design results in lower data quality than in a prospective study, which might influence the results. Thanks to our internal hospital documentation system with up-to-the-second recording of all vital parameters and electronic progress documentation, we believe that we nevertheless achieved good data quality in the present study.
- As described in detail before [38], due to technical limitations, there was a time delay between the recorded blood pressure values and the CTP imaging performed. The blood and intracranial pressure values given were therefore not recorded at the exact time of imaging, which represents a major limitation of the study. Influences of positioning and transport to the CT on the measurement parameters are possible, although in our opinion these affect all patients to a comparable extent and should not significantly influence the results of this study as discussed in detail previously [38].
- Again, our CTP setup is likely neither able to measure capillary perfusion nor capillary transit times heterogeneity as described by Østergaard et al. The MTT is most likely a correlate of the microvascular tissue perfusion and the cvMTT of its microvascular perfusion heterogeneity. Standard values of the cvMTT for normal brain tissue have not been established. Furthermore, possible influencing factors such as intracranial pressure or other variables are unclear. Since patients without ICP measurement are awake according to our treatment guideline, we assume a comparable intracranial pressure, which means that ICP should not have a strong influence on the results of this study.
- In the present study, the focus was on the changes due to the multimodal therapy, and we did not analyse for a possible correlation with the outcome of the patients. A correlation of cvMTT and MTT with outcome has already been reported on in previous studies.
- Due to the variety of different CTP protocols and post-processing, CTP imaging data are more difficult to compare and may not be transferable one-to-one to other sites. It is also not clear to what extent different medications or pre-existing conditions affecting the microvasculature (e.g., diabetes, hypertension, or arteriosclerosis) influence CTP imaging.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Hop, J.W.; Rinkel, G.J.; Algra, A.; van Gijn, J. Case-fatality rates and functional outcome after subarachnoid hemorrhage: A systematic review. Stroke 1997, 28, 660–664. [Google Scholar] [CrossRef]
- Lovelock, C.E.; Rinkel, G.J.; Rothwell, P.M. Time trends in outcome of subarachnoid hemorrhage: Population-based study and systematic review. Neurology 2010, 74, 1494–1501. [Google Scholar] [CrossRef]
- van Gijn, J.; Kerr, R.S.; Rinkel, G.J. Subarachnoid haemorrhage. Lancet 2007, 369, 306–318. [Google Scholar] [CrossRef]
- Stienen, M.N.; Germans, M.; Burkhardt, J.-K.; Neidert, M.C.; Fung, C.; Bervini, D.; Zumofen, D.; Roethlisberger, M.; Marbacher, S.; Maduri, R.; et al. Predictors of In-Hospital Death After Aneurysmal Subarachnoid Hemorrhage. Stroke 2018, 49, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Dodd, W.S.; Laurent, D.; Dumont, A.S.; Hasan, D.M.; Jabbour, P.M.; Starke, R.M.; Hosaka, K.; Polifka, A.J.; Hoh, B.L.; Chalouhi, N. Pathophysiology of Delayed Cerebral Ischemia After Subarachnoid Hemorrhage: A Review. J. Am. Heart Assoc. 2021, 10, e021845. [Google Scholar] [CrossRef] [PubMed]
- Ecker, A.; Riemenschneider, P.A. Arteriographic demonstration of spasm of the intracranial arteries, with special reference to saccular arterial aneurysms. J. Neurosurg. 1951, 8, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Hijdra, A.; Van Gijn, J.; Stefanko, S.; Van Dongen, K.J.; Vermeulen, M.; Van Crevel, H. Delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage: Clinicoanatomic correlations. Neurology 1986, 36, 329–333. [Google Scholar] [CrossRef]
- Weir, B.; Grace, M.; Hansen, J.; Rothberg, C. Time course of vasospasm in man. J. Neurosurg. 1978, 48, 173–178. [Google Scholar] [CrossRef]
- Etminan, N.; Vergouwen, M.D.; Ilodigwe, D.; Macdonald, R.L. Effect of pharmaceutical treatment on vasospasm, delayed cerebral ischemia, and clinical outcome in patients with aneurysmal subarachnoid hemorrhage: A systematic review and meta-analysis. J. Cereb. Blood Flow Metab. 2011, 31, 1443–1451. [Google Scholar] [CrossRef]
- Macdonald, R.L.; Kassell, N.F.; Mayer, S.; Ruefenacht, D.; Schmiedek, P.; Weidauer, S.; Frey, A.; Roux, S.; Pasqualin, A. Clazosentan to overcome neurological ischemia and infarction occurring after subarachnoid hemorrhage (CONSCIOUS-1): Randomized, double-blind, placebo-controlled phase 2 dose-finding trial. Stroke 2008, 39, 3015–3021. [Google Scholar] [CrossRef]
- Philippon, J.; Grob, R.; Dagreou, F.; Guggiari, M.; Rivierez, M.; Viars, P. Prevention of vasospasm in subarachnoid haemorrhage. A controlled study with nimodipine. Acta Neurochir. 1986, 82, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Barker, F.G.; Ogilvy, C.S. Efficacy of prophylactic nimodipine for delayed ischemic deficit after subarachnoid hemorrhage: A metaanalysis. J. Neurosurg. 1996, 84, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Feigin, V.L.; Rinkel, G.J.E.; Algra, A.; Vermeulen, M.; van Gijn, J. Calcium antagonists in patients with aneurysmal subarachnoid hemorrhage. Neurology 1998, 50, 876. [Google Scholar] [CrossRef] [PubMed]
- Biondi, A.; Ricciardi, G.K.; Puybasset, L.; Abdennour, L.; Longo, M.; Chiras, J.; Van Effenterre, R. Intra-Arterial Nimodipine for the Treatment of Symptomatic Cerebral Vasospasm after Aneurysmal Subarachnoid Hemorrhage: Preliminary Results. Am. J. Neuroradiol. 2004, 25, 1067. [Google Scholar]
- Hui, C.; Lau, K.P. Efficacy of intra-arterial nimodipine in the treatment of cerebral vasospasm complicating subarachnoid haemorrhage. Clin. Radiol. 2005, 60, 1030–1036. [Google Scholar] [CrossRef]
- Macdonald, R.L.; Higashida, R.T.; Keller, E.; Mayer, S.A.; Molyneux, A.; Raabe, A.; Vajkoczy, P.; Wanke, I.; Bach, D.; Frey, A.; et al. Clazosentan, an endothelin receptor antagonist, in patients with aneurysmal subarachnoid haemorrhage undergoing surgical clipping: A randomised, double-blind, placebo-controlled phase 3 trial (CONSCIOUS-2). Lancet Neurol. 2011, 10, 618–625. [Google Scholar] [CrossRef]
- Macdonald, R.L.; Higashida, R.T.; Keller, E.; Mayer, S.A.; Molyneux, A.; Raabe, A.; Vajkoczy, P.; Wanke, I.; Bach, D.; Frey, A. Randomized trial of clazosentan in patients with aneurysmal subarachnoid hemorrhage undergoing endovascular coiling. Stroke 2012, 43, 1463–1469. [Google Scholar] [CrossRef]
- Jespersen, S.N.; Ostergaard, L. The roles of cerebral blood flow, capillary transit time heterogeneity, and oxygen tension in brain oxygenation and metabolism. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 2012, 32, 264–277. [Google Scholar] [CrossRef]
- Ostergaard, L.; Aamand, R.; Karabegovic, S.; Tietze, A.; Blicher, J.U.; Mikkelsen, I.K.; Iversen, N.K.; Secher, N.; Engedal, T.S.; Anzabi, M.; et al. The role of the microcirculation in delayed cerebral ischemia and chronic degenerative changes after subarachnoid hemorrhage. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 2013, 33, 1825–1837. [Google Scholar] [CrossRef]
- Friedrich, B.; Muller, F.; Feiler, S.; Scholler, K.; Plesnila, N. Experimental subarachnoid hemorrhage causes early and long-lasting microarterial constriction and microthrombosis: An in-vivo microscopy study. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 2012, 32, 447–455. [Google Scholar] [CrossRef]
- Dreier, J.P.; Woitzik, J.; Fabricius, M.; Bhatia, R.; Major, S.; Drenckhahn, C.; Lehmann, T.N.; Sarrafzadeh, A.; Willumsen, L.; Hartings, J.A.; et al. Delayed ischaemic neurological deficits after subarachnoid haemorrhage are associated with clusters of spreading depolarizations. Brain J. Neurol. 2006, 129, 3224–3237. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, B.B.; Fischer, I.; Donaldson, D.M.; Abusabha, Y.; Karadag, C.; Muhammad, S.; Beseoglu, K.; Hänggi, D.; Turowski, B.; Rubbert, C.; et al. Evaluation of MTT Heterogeneity of Perfusion CT Imaging in the Early Brain Injury Phase: An Insight into aSAH Pathopysiology. Brain Sci. 2023, 13, 824. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, B.B.; Fischer, I.; Engel, A.; Jannusch, K.; Donaldson, D.M.; Karadag, C.; van Lieshout, J.H.; Beseoglu, K.; Muhammad, S.; Turowski, B.; et al. MTT Heterogeneity in Perfusion CT Imaging as a Predictor of Outcome after Aneurysmal SAH. AJNR Am. J. Neuroradiol. 2021, 42, 1387–1395. [Google Scholar] [CrossRef] [PubMed]
- Origitano, T.C.; Wascher, T.M.; Reichman, H.O.; Anderson, D.E. Sustained increased cerebral blood flow with prophylactic hypertensive hypervolemic hemodilution (“triple-H” therapy) after subarachnoid hemorrhage. Neurosurgery 1990, 27, 729–740. [Google Scholar] [CrossRef] [PubMed]
- Sen, J.; Belli, A.; Albon, H.; Morgan, L.; Petzold, A.; Kitchen, N. Triple-H therapy in the management of aneurysmal subarachnoid haemorrhage. Lancet Neurol. 2003, 2, 614–621. [Google Scholar] [CrossRef]
- Lee, K.H.; Lukovits, T.; Friedman, J.A. “Triple-H” therapy for cerebral vasospasm following subarachnoid hemorrhage. Neurocritical Care 2006, 4, 68–76. [Google Scholar] [CrossRef]
- Meyer, R.; Deem, S.; David Yanez, N.; Souter, M.; Lam, A.; Treggiari, M.M. Current Practices of Triple-H Prophylaxis and Therapy in Patients with Subarachnoid Hemorrhage. Neurocritical Care 2011, 14, 24–36. [Google Scholar] [CrossRef]
- Kimball, M.M.; Velat, G.J.; Hoh, B.L. Critical care guidelines on the endovascular management of cerebral vasospasm. Neurocritical Care 2011, 15, 336–341. [Google Scholar] [CrossRef]
- Francoeur, C.L.; Mayer, S.A. Management of delayed cerebral ischemia after subarachnoid hemorrhage. Crit Care 2016, 20, 277. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet (Lond. Engl.) 2007, 370, 1453–1457. [Google Scholar] [CrossRef]
- Petridis, A.K.; Kamp, M.A.; Cornelius, J.F.; Beez, T.; Beseoglu, K.; Turowski, B.; Steiger, H.J. Aneurysmal Subarachnoid Hemorrhage. Dtsch. Arztebl. Int. 2017, 114, 226–236. [Google Scholar] [CrossRef] [PubMed]
- Connolly, E.S., Jr.; Rabinstein, A.A.; Carhuapoma, J.R.; Derdeyn, C.P.; Dion, J.; Higashida, R.T.; Hoh, B.L.; Kirkness, C.J.; Naidech, A.M.; Ogilvy, C.S.; et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: A guideline for healthcare professionals from the American Heart Association/american Stroke Association. Stroke 2012, 43, 1711–1737. [Google Scholar] [CrossRef] [PubMed]
- Vergouwen, M.D.I.; Vermeulen, M.; Gijn, J.v.; Rinkel, G.J.E.; Wijdicks, E.F.; Muizelaar, J.P.; Mendelow, A.D.; Juvela, S.; Yonas, H.; Terbrugge, K.G.; et al. Definition of Delayed Cerebral Ischemia After Aneurysmal Subarachnoid Hemorrhage as an Outcome Event in Clinical Trials and Observational Studies. Stroke 2010, 41, 2391–2395. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, B.B.; Donaldson, D.M.; Fischer, I.; Karadag, C.; Neyazi, M.; Piedade, G.S.; Abusabha, Y.; Muhammad, S.; Rubbert, C.; Hänggi, D.; et al. Blood Pressure Affects the Early CT Perfusion Imaging in Patients with aSAH Reflecting Early Disturbed Autoregulation. Neurocritical Care 2023, 39, 125–134. [Google Scholar] [CrossRef]
- Hänggi, D.; Turowski, B.; Beseoglu, K.; Yong, M.; Steiger, H.J. Intra-Arterial Nimodipine for Severe Cerebral Vasospasm after Aneurysmal Subarachnoid Hemorrhage: Influence on Clinical Course and Cerebral Perfusion. Am. J. Neuroradiol. 2008, 29, 1053. [Google Scholar] [CrossRef]
- Ishiguro, M.; Wellman, T.L.; Honda, A.; Russell, S.R.; Tranmer, B.I.; Wellman, G.C. Emergence of a R-type Ca2+ channel (CaV 2.3) contributes to cerebral artery constriction after subarachnoid hemorrhage. Circ. Res. 2005, 96, 419–426. [Google Scholar] [CrossRef]
- Ishiguro, M.; Wellman, G.C. Cellular basis of vasospasm: Role of small diameter arteries and voltage-dependent Ca2+ channels. Acta Neurochir. Suppl. 2008, 104, 95–98. [Google Scholar] [CrossRef]
- Kamp, M.A.; Dibue, M.; Schneider, T.; Steiger, H.J.; Hanggi, D. Calcium and potassium channels in experimental subarachnoid hemorrhage and transient global ischemia. Stroke Res. Treat. 2012, 2012, 382146. [Google Scholar] [CrossRef]
- Sabri, M.; Ai, J.; Knight, B.; Tariq, A.; Jeon, H.; Shang, X.; Marsden, P.A.; Loch Macdonald, R. Uncoupling of endothelial nitric oxide synthase after experimental subarachnoid hemorrhage. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 2011, 31, 190–199. [Google Scholar] [CrossRef]
- Stein, S.C.; Browne, K.D.; Chen, X.H.; Smith, D.H.; Graham, D.I. Thromboembolism and delayed cerebral ischemia after subarachnoid hemorrhage: An autopsy study. Neurosurgery 2006, 59, 781–787; discussion 787–788. [Google Scholar] [CrossRef]
- Suzuki, S.; Kimura, M.; Souma, M.; Ohkima, H.; Shimizu, T.; Iwabuchi, T. Cerebral microthrombosis in symptomatic cerebral vasospasm—A quantitative histological study in autopsy cases. Neurol. Med.-Chir. 1990, 30, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Vergouwen, M.D.; Vermeulen, M.; Coert, B.A.; Stroes, E.S.; Roos, Y.B. Microthrombosis after aneurysmal subarachnoid hemorrhage: An additional explanation for delayed cerebral ischemia. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 2008, 28, 1761–1770. [Google Scholar] [CrossRef] [PubMed]
- Yemisci, M.; Gursoy-Ozdemir, Y.; Vural, A.; Can, A.; Topalkara, K.; Dalkara, T. Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat. Med. 2009, 15, 1031–1037. [Google Scholar] [CrossRef] [PubMed]
N = 79 | ||
Sex | Female | 57 |
Male | 22 | |
Age | Mean ± SD | 54.77 ± 11.34 |
Minimum | 28 | |
Maximum | 88 | |
WFNS | 1 | 23 |
2 | 18 | |
3 | 5 | |
4 | 14 | |
5 | 19 | |
Fisher | 1 | 15 |
2 | 2 | |
3 | 29 | |
4 | 33 | |
Aneurysm location | MCA | 15 |
ACOM | 38 | |
ICA | 3 | |
PcaA | 2 | |
PCOM | 9 | |
BA | 3 | |
VA | 2 | |
PICA | 3 | |
SCA | 1 | |
oblique | 2 | |
Treatment | Surgical | 38 |
Endovascular | 38 | |
None | 2 | |
mRS 6 months | 0 | 13 |
1 | 17 | |
2 | 11 | |
3 | 7 | |
4 | 8 | |
5 | 7 | |
6 | 10 | |
Lost in follow-up | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hofmann, B.B.; Karadag, C.; Rubbert, C.; Schieferdecker, S.; Neyazi, M.; Abusabha, Y.; Fischer, I.; Boogaarts, H.D.; Muhammad, S.; Beseoglu, K.; et al. Novel Insights into Pathophysiology of Delayed Cerebral Ischemia: Effects of Current Rescue Therapy on Microvascular Perfusion Heterogeneity. Biomedicines 2023, 11, 2624. https://doi.org/10.3390/biomedicines11102624
Hofmann BB, Karadag C, Rubbert C, Schieferdecker S, Neyazi M, Abusabha Y, Fischer I, Boogaarts HD, Muhammad S, Beseoglu K, et al. Novel Insights into Pathophysiology of Delayed Cerebral Ischemia: Effects of Current Rescue Therapy on Microvascular Perfusion Heterogeneity. Biomedicines. 2023; 11(10):2624. https://doi.org/10.3390/biomedicines11102624
Chicago/Turabian StyleHofmann, Björn B., Cihat Karadag, Christian Rubbert, Simon Schieferdecker, Milad Neyazi, Yousef Abusabha, Igor Fischer, Hieronymus D. Boogaarts, Sajjad Muhammad, Kerim Beseoglu, and et al. 2023. "Novel Insights into Pathophysiology of Delayed Cerebral Ischemia: Effects of Current Rescue Therapy on Microvascular Perfusion Heterogeneity" Biomedicines 11, no. 10: 2624. https://doi.org/10.3390/biomedicines11102624
APA StyleHofmann, B. B., Karadag, C., Rubbert, C., Schieferdecker, S., Neyazi, M., Abusabha, Y., Fischer, I., Boogaarts, H. D., Muhammad, S., Beseoglu, K., Hänggi, D., Turowski, B., Kamp, M. A., & Cornelius, J. F. (2023). Novel Insights into Pathophysiology of Delayed Cerebral Ischemia: Effects of Current Rescue Therapy on Microvascular Perfusion Heterogeneity. Biomedicines, 11(10), 2624. https://doi.org/10.3390/biomedicines11102624