Longitudinal Measurement of Histidine-Rich Glycoprotein Levels in Bronchopulmonary Dysplasia: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Definition of Comorbidities
2.3. Data Collection
2.4. Endpoints and Statistical Analysis
2.5. Ethical Aspects
3. Results
3.1. Baseline Characteristics of the Patients
3.2. Comparisons by Comorbidities
3.3. Longitudinal Change in HRG Levels in All Infants
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haupt, H.; Heimburger, N. Human serum proteins with high affinity for carboxymethylcellulose. I. Isolation of lysozyme, C1q and 2 hitherto unknown-globulins. Hoppe-Seyler’s Z Physiol. Chem. 1972, 353, 1125–1132. [Google Scholar] [CrossRef]
- Heimburger, N.; Haupt, H.; Kranz, T.; Baudner, S. Human serum proteins with high affinity to carboxymethylcellulose. II. Physico-chemical and immunological characterization of a histidine-rich 3,8S-2-glycoportein (CM-protein I). Hoppe-Seyler’s Z Physiol. Chem. 1972, 353, 1133–1140. [Google Scholar] [CrossRef]
- Koide, T.; Foster, D.; Yoshitake, S.; Davie, E.W. Amino acid sequence of human histidine-rich glycoprotein derived from the nucleotide sequence of its cDNA. Biochemistry 1986, 25, 2220–2225. [Google Scholar] [CrossRef] [PubMed]
- Sia, D.Y.; Rylatt, D.B.; Parish, C.R. Anti-self receptors. V. Properties of a mouse serum factor that blocks autorosetting receptors on lymphocytes. Immunology 1982, 45, 207–216. [Google Scholar]
- Manderson, G.A.; Martin, M.; Onnerfjord, P.; Saxne, T.; Schmidtchen, A.; Mollnes, T.E.; Heinegård, D.; Blom, A.M. Interactions of histidine-rich glycoprotein with immunoglobulins and proteins of the complement system. Mol. Immunol. 2009, 46, 3388–3398. [Google Scholar] [CrossRef]
- Shannon, O.; Rydengård, V.; Schmidtchen, A.; Mörgelin, M.; Alm, P.; Sørensen, O.E.; Björck, L. Histidine-rich glycoprotein promotes bacterial entrapment in clots and decreases mortality in a mouse model of sepsis. Blood 2010, 116, 2365–2372. [Google Scholar] [CrossRef] [Green Version]
- Rydengård, V.; Shannon, O.; Lundqvist, K.; Kacprzyk, L.; Chalupka, A.; Olsson, A.K.; Mörgelin, M.; Jahnen-Dechent, W.; Malmsten, M.; Schmidtchen, A. Histidine-rich glycoprotein protects from systemic Candida infection. PLoS Pathog. 2008, 4, e1000116. [Google Scholar] [CrossRef]
- Olsson, A.K.; Larsson, H.; Dixelius, J.; Johansson, I.; Lee, C.; Oellig, C.; Björk, I.; Claesson-Welsh, L. A fragment of histidine-rich glycoprotein is a potent inhibitor of tumor vascularization. Cancer Res. 2004, 64, 599–605. [Google Scholar] [CrossRef] [Green Version]
- Wake, H.; Mori, S.; Liu, K.; Takahashi, H.K.; Nishibori, M. Histidine-rich glycoprotein inhibited high mobility group box 1 in complex with heparin-induced angiogenesis in matrigel plug assay. Eur. J. Pharm. 2009, 623, 89–95. [Google Scholar] [CrossRef]
- Gao, S.; Wake, H.; Sakaguchi, M.; Wang, D.; Takahashi, Y.; Teshigawara, K.; Zhong, H.; Mori, S.; Liu, K.; Takahashi, H.; et al. Histidine-Rich Glycoprotein Inhibits High-Mobility Group Box-1-Mediated Pathways in Vascular Endothelial Cells through CLEC-1A. iScience 2020, 23, 101180. [Google Scholar] [CrossRef]
- Shima, Y.; Kumasaka, S.; Negishi, Y. Sustained sterile inflammation is related to pulmonary morbidities in premature infants. J. Matern. Fetal. Neonatal. Med. 2022, 35, 6928–6932. [Google Scholar] [CrossRef]
- Corrigan, J.J.; Jeter, M.A. Histidine-rich glycoprotein and plasminogen plasma levels in term and preterm newborns. Am. J. Dis. Child 1990, 144, 825–828. [Google Scholar] [CrossRef]
- Chida, S.; Fujiwara, T.; Konishi, M.; Takahashi, H.; Sasaki, M. Stable microbubble test for predicting the risk of respiratory distress syndrome: II. Prospective evaluation of the test on amniotic fluid and gastric aspirate. Eur. J. Pediatr. 1993, 152, 152–156. [Google Scholar] [CrossRef]
- Jobe, A.H.; Bancalari, E. Bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 2001, 163, 1723–1729. [Google Scholar] [CrossRef]
- Yeh, T.F.; Raval, D.; Luken, J.; Thalji, A.; Lilien, L.; Pildes, R.S. Clinical evaluation of premature infants with patent ductus arteriosus: A scoring system with echocardiogram, acid-base, and blood gas correlations. Crit. Care Med. 1981, 9, 655–657. [Google Scholar] [CrossRef]
- Bell, M.J.; Ternberg, J.L.; Feigin, R.D.; Keating, J.P.; Marshall, R.; Barton, L.; Brotherton, T. Neonatal necrotizing enterocolitis. Therapeutic decisions based upon clinical staging. Ann. Surg. 1978, 187, 1–7. [Google Scholar] [CrossRef]
- Lencki, S.G.; Maciulla, M.B.; Eglinton, G.S. Maternal and umbilical cord serum interleukin levels in preterm labor with clinical chorioamnionitis. Am. J. Obs. Gynecol. 1994, 170, 1345–1351. [Google Scholar] [CrossRef]
- International Committee for the Classification of Retinopathy of Prematurity. The International Classification of Retinopathy of Prematurity revisited. Arch. Ophthalmol. 2005, 123, 991–999. [Google Scholar] [CrossRef]
- Corrigan, J.J.; Jeter, M.A.; Bruck, D.; Feinberg, W.M. Histidine-rich glycoprotein levels in children: The effect of age. Thromb. Res. 1990, 59, 681–686. [Google Scholar] [CrossRef]
- Yu, B.; Li, X.; Wan, Q.; Han, W.; Deng, C.; Guo, C. High-Mobility Group Box-1 Protein Disrupts Alveolar Elastogenesis of Hyperoxia-Injured Newborn Lungs. J. Interferon. Cytokine Res. 2016, 36, 159–168. [Google Scholar] [CrossRef]
- Lindstrom, M.J.; Bates, D.M. Newton-Raphson and EM Algorithms for Linear Mixed-Effects Models for Repeated-Measures Data. J. Am. Stat. Assoc. 1988, 83, 1014. [Google Scholar] [CrossRef]
All Infants (n = 19) | |
---|---|
Male sex; n (%) | 10 (53%) |
Gestational age; week (w) and day (d) | 26 w 0 d (25 w 0 d–27 w 0 d) |
Birthweight; g | 858 (618–981) |
Primipara; n (%) | 6 (32%) |
Cesarean section; n (%) | 10 (53%) |
Apgar score at 1 min | 4 (2.5–5) |
Apgar score at 5 min | 7 (6–7) |
UA pH | 7.320 (7.269–7.387) |
UA base excess | −3.6 (−8.1 to −0.9) |
RDS; n (%) | 11 (58%) |
BPD36; n (%) | 8/18 (44%) * |
HsPDA; n (%) | 11 (58%) |
IVH; n (%) | 8 (42%) |
Sepsis; n (%) | 5 (26%) |
NEC; n (%) | 2 (11%) |
Clinical CAM; n (%) | 4 (21%) |
ROP treatment; n (%) | 3 (16%) |
BPD36 (n = 8) | Non-BPD36 (n = 10) | p Value | |
---|---|---|---|
Male sex; n (%) | 4 (50%) | 5 (50%) | 1 |
Gestational age; week (w) and day (d) | 24 w 6 d (24 w 0 d–26 w 0 d) | 27 w 0 d (25 w 2 d–27 w 0 d) | 0.039 * |
Birthweight; g | 618 (541–803) | 933 (841–1012) | 0.055 † |
Primipara, n | 4 (50%) | 1 (10%) | 0.118 |
Cesarean section; n (%) | 4 (50%) | 6 (60%) | 1 |
Apgar score at 1 min | 3 (2–4) | 5 (4–6) | 0.056 † |
Apgar score at 5 min | 6 (5–7) | 7 (7–7) | 0.167 |
UA pH | 7.330 (7.248–7.364) | 7.330 (7.274–7.404) | 0.733 |
UA base excess | −4.1 (−8.9 to −0.5) | −3.1 (−8.1 to −1.2) | 0.922 |
RDS; n (%) | 5 (%) | 5 (50%) | 0.664 |
BPD; n (%) | 8 (100%) | 8 (80%) | 0.477 |
HsPDA; n (%) | 3 (%) | 7 (70%) | 0.342 |
IVH; n (%) | 4 (50%) | 3 (30%) | 0.631 |
Sepsis; n (%) | 3 (%) | 1 (10%) | 0.275 |
NEC; n (%) | 1 (%) | 1 (10%) | 1 |
Clinical CAM; n (%) | 2 (%) | 2 (20%) | 1 |
ROP treatment; n (%) | 1 (%) | 2 (20%) | 1 |
Comparison in Weeks of Age | Comparison in Postmenstrual Week | |
---|---|---|
BPD36 | 0.55 | 0.45 |
RDS | 0.73 | 0.40 |
HsPDA | 0.79 | 0.57 |
IVH | 0.29 | 0.06 |
Sepsis | 0.26 | 0.24 |
NEC | 0.24 | 0.58 |
Clinical CAM | 0.81 | 0.66 |
ROP treatment | 0.28 | 0.15 |
Time Point | HRG (µg/mL) |
---|---|
Umbilical venous blood | 1.07 (0.79–1.57) |
Week 2 | 1.11 (0.73–1.91) |
Week 4 | 2.86 (1.83–4.48) |
Week 6 | 6.05 (4.08–8.52) |
Week 8 | 7.49 (5.81–8.78) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morimoto, D.; Washio, Y.; Tamai, K.; Sato, T.; Okamura, T.; Watanabe, H.; Fukushima, Y.; Yoshimoto, J.; Kageyama, M.; Baba, K.; et al. Longitudinal Measurement of Histidine-Rich Glycoprotein Levels in Bronchopulmonary Dysplasia: A Pilot Study. Biomedicines 2023, 11, 212. https://doi.org/10.3390/biomedicines11010212
Morimoto D, Washio Y, Tamai K, Sato T, Okamura T, Watanabe H, Fukushima Y, Yoshimoto J, Kageyama M, Baba K, et al. Longitudinal Measurement of Histidine-Rich Glycoprotein Levels in Bronchopulmonary Dysplasia: A Pilot Study. Biomedicines. 2023; 11(1):212. https://doi.org/10.3390/biomedicines11010212
Chicago/Turabian StyleMorimoto, Daisaku, Yosuke Washio, Kei Tamai, Takeshi Sato, Tomoka Okamura, Hirokazu Watanabe, Yu Fukushima, Junko Yoshimoto, Misao Kageyama, Kenji Baba, and et al. 2023. "Longitudinal Measurement of Histidine-Rich Glycoprotein Levels in Bronchopulmonary Dysplasia: A Pilot Study" Biomedicines 11, no. 1: 212. https://doi.org/10.3390/biomedicines11010212
APA StyleMorimoto, D., Washio, Y., Tamai, K., Sato, T., Okamura, T., Watanabe, H., Fukushima, Y., Yoshimoto, J., Kageyama, M., Baba, K., & Tsukahara, H. (2023). Longitudinal Measurement of Histidine-Rich Glycoprotein Levels in Bronchopulmonary Dysplasia: A Pilot Study. Biomedicines, 11(1), 212. https://doi.org/10.3390/biomedicines11010212