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Abstract: Histidine-rich glycoprotein (HRG) has been reported to inhibit signaling leading to the
release of high mobility group box 1 protein, a damage-associated molecular pattern. The present
study aimed to determine the longitudinal change in HRG levels in extremely preterm infants and
assess whether complications such as bronchopulmonary dysplasia (BPD) were associated with
differences in HRG levels. In this multicenter, prospective, observational study, we measured serum
HRG levels every 2 weeks from birth to 8 weeks of age. Serum HRG was measured using an
enzyme-linked immunosorbent assay. We included 19 extremely preterm infants in the study and
74 samples were analyzed. The median gestational age was 26.0 weeks, and the median birth weight
was 858 g. Serum HRG levels showed a significant upward trend after birth (p < 0.001); median HRG
concentrations at birth and at 2, 4, 6, and 8 weeks of age were 1.07, 1.11, 2.86, 6.05, and 7.49 µg/mL,
respectively. Onset of BPD was not associated with differences in serum HRG levels. Further, the
serum HRG levels increased significantly after birth in extremely preterm infants.

Keywords: extremely preterm infants; histidine-rich glycoprotein; high mobility group box 1; bron-
chopulmonary dysplasia; longitudinal measurement; mixed-effects model

1. Introduction

Histidine-rich glycoprotein (HRG) is a plasma protein with a molecular weight of
75 kDa, synthesized in the liver, monocytes, macrophages, and megakaryocytes [1–4]. HRG
has various physiological effects, including the modulation of immune complex forma-
tion, antibacterial and antifungal effects, modulation of angiogenesis, and antithrombotic
effects [5–8].

HRG has been reported to inhibit signals leading to the release of high mobility group
box 1 protein (HMGB-1) and damage-associated molecular patterns (DAMPs) linked to
various pathologies, including sepsis [9,10]. HMGB-1 levels are persistently elevated in
bronchopulmonary dysplasia (BPD), which affects the long-term prognosis of extremely
preterm infants, and HRG may be indirectly involved in the pathogenesis of BPD in
extremely preterm infants [11].

Although preterm infants have been reported to have lower HRG values at birth than
adults, no studies have measured subsequent trends over time [12]. We hypothesized that
postnatal HRG values would be associated with subsequent comorbidities such as BPD.

The purpose of this study was to determine the longitudinal change in HRG in
extremely preterm infants and evaluate whether comorbidities such as BPD were associated
with differences in HRG. Identifying changes in the HRG of infants with comorbidities
may lead to the development of new treatments, such as HRG-rich fresh frozen plasma, for
diseases in extremely preterm infants.
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2. Materials and Methods
2.1. Patient Selection

This prospective, observational study was planned at Okayama University (Okayama,
Japan) and was conducted with the cooperation of the Okayama Medical Center (Okayama,
Japan). We included infants born at less than 28 weeks of gestation and admitted to either
institution between April 2016 and March 2022. Written informed consent was obtained
from the parents of the patients. Infants with chromosomal abnormalities, complex cardiac
malformations, central nervous system abnormalities, inborn errors of metabolism, or
immunodeficiency syndromes, as well as any infants deemed unsuitable for participation
by the attending physicians, were excluded.

2.2. Definition of Comorbidities

Comorbidities were defined as follows. Respiratory distress syndrome (RDS) was
diagnosed using a stable microbubble rating and chest radiograph before surfactant re-
placement [13]. BPD was diagnosed based on an abnormal chest radiograph at 28 days of
age and the need for oxygen support. BPD36 was defined as moderate or severe BPD at
36 postmenstrual weeks [14]. Hemodynamically significant patent ductus arteriosus and in-
traventricular hemorrhage were diagnosed by clinical symptoms and ultrasonography [15].
Sepsis was diagnosed by blood culture tests. A diagnosis of necrotizing enterocolitis was
made based on blood tests and an abdominal radiograph [16]. Clinical chorioamnionitis
was diagnosed based on Lencki’s criteria [17]. Retinopathy of prematurity (ROP) was
diagnosed based on fundus examination and treated when it reached stage 2 or higher
according to the International Classification of ROP [18].

2.3. Data Collection

Using electronic medical records, we obtained the following data: gestational age,
birth weight, sex, presence or absence of the aforementioned complications, gravidity,
parity, cesarean section, Apgar score, umbilical cord artery blood pH and its base excess.

Specimens were collected from the umbilical venous blood at birth and peripheral
venous blood every 2 weeks until 36 corrected weeks (maximum 8 weeks old). Sample
collection was delayed for up to 1 week, depending on the infant’s condition. After the
specimens were collected, the serum was centrifuged and stored at −20 ◦C. HRG was
measured using an enzyme-linked immunosorbent assay kit (Human HRG ELISA Kit,
Abcam, UK).

2.4. Endpoints and Statistical Analysis

The primary endpoint was the difference in HRG between infants with and without
comorbidities such as BPD36. The secondary endpoint was serum HRG concentration at
each time point.

For statistical analysis, the Mann–Whitney U test and Fisher’s exact test were used to
compare baseline characteristics. Values are presented as number (percentage) or median
(interquartile range). Comparison of HRG values with and without comorbidities was per-
formed by repeated measures analysis of variance using a mixed-effects model. Statistical
significance was set at p < 0.05. The statistical software used were R 4.1.1 (R Foundation for
Statistical Computing, Vienna, Austria) and the lmerTest package.

2.5. Ethical Aspects

This study was approved by the Ethics Committee of Okayama University (No. K1902-
036 approved on 1 March 2019 and No. K1510-016 approved on 27 October 2015).

3. Results
3.1. Baseline Characteristics of the Patients

This study included 19 extremely preterm infants with parental consent. Blood sam-
ples were collected from the cord blood at birth to 8 weeks of age, and 74 samples were
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analyzed. The median gestational age was 26.0 weeks, and the median birth weight was
858 g. Table 1 shows the baseline characteristics of infants.

Table 1. Characteristics of included infants.

All Infants (n = 19)

Male sex; n (%) 10 (53%)
Gestational age; week (w) and day (d) 26 w 0 d (25 w 0 d–27 w 0 d)

Birthweight; g 858 (618–981)
Primipara; n (%) 6 (32%)

Cesarean section; n (%) 10 (53%)
Apgar score at 1 min 4 (2.5–5)
Apgar score at 5 min 7 (6–7)

UA pH 7.320 (7.269–7.387)
UA base excess −3.6 (−8.1 to −0.9)

RDS; n (%) 11 (58%)
BPD36; n (%) 8/18 (44%) *
HsPDA; n (%) 11 (58%)

IVH; n (%) 8 (42%)
Sepsis; n (%) 5 (26%)
NEC; n (%) 2 (11%)

Clinical CAM; n (%) 4 (21%)
ROP treatment; n (%) 3 (16%)

Values are presented as number (percentage) or median (interquartile range). UA: umbilical artery, RDS: respira-
tory distress syndrome, BPD36: bronchopulmonary dysplasia at 36 postmenstrual weeks, HsPDA: hemodynami-
cally significant patent ductus arteriosus, IVH: intraventricular hemorrhage, NEC: necrotizing enterocolitis, CAM:
chorioamnionitis, ROP: retinopathy of prematurity. * missing value in one case.

3.2. Comparisons by Comorbidities

Comparisons of the primary endpoint are shown in Table 2. We compared 8 cases
in the BPD36 group with 10 cases in the non-BPD group; one case was excluded due to
missing endpoint records. The BPD36 group had a significantly shorter gestational age.
Birthweight and Apgar score at 1 min also had a tendency to be lower in the BPD36 group.

Table 2. Comparisons of Characteristics of BPD36 and non-BPD36 infants.

BPD36 (n = 8) Non-BPD36 (n = 10) p Value

Male sex; n (%) 4 (50%) 5 (50%) 1
Gestational age; week

(w) and day (d)
24 w 6 d (24 w 0 d–26

w 0 d)
27 w 0 d (25 w 2 d–27

w 0 d) 0.039 *

Birthweight; g 618 (541–803) 933 (841–1012) 0.055 †

Primipara, n 4 (50%) 1 (10%) 0.118
Cesarean section; n (%) 4 (50%) 6 (60%) 1

Apgar score at 1 min 3 (2–4) 5 (4–6) 0.056 †
Apgar score at 5 min 6 (5–7) 7 (7–7) 0.167

UA pH 7.330 (7.248–7.364) 7.330 (7.274–7.404) 0.733
UA base excess −4.1 (−8.9 to −0.5) −3.1 (−8.1 to −1.2) 0.922

RDS; n (%) 5 (%) 5 (50%) 0.664
BPD; n (%) 8 (100%) 8 (80%) 0.477

HsPDA; n (%) 3 (%) 7 (70%) 0.342
IVH; n (%) 4 (50%) 3 (30%) 0.631

Sepsis; n (%) 3 (%) 1 (10%) 0.275
NEC; n (%) 1 (%) 1 (10%) 1

Clinical CAM; n (%) 2 (%) 2 (20%) 1
ROP treatment; n (%) 1 (%) 2 (20%) 1

Values are presented as number (percentage) or median (interquartile range). Continuous variables were ana-
lyzed using the Mann–Whitney U test, and categorical variables were analyzed using Fisher’s exact test. UA:
umbilical artery, RDS: respiratory distress syndrome, BPD36: bronchopulmonary dysplasia at 36 postmenstrual
weeks, HsPDA: hemodynamically significant patent ductus arteriosus, IVH: intraventricular hemorrhage, NEC:
necrotizing enterocolitis, CAM: chorioamnionitis, ROP: retinopathy of prematurity. * p < 0.05; † p < 0.10.
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Table 3 shows the results of the analysis of variance comparing serum HRG longi-
tudinal measurements with and without complications. Using a mixed-effects model,
differences in HRG were analyzed for weeks of age and postmenstrual weeks, respectively.
This additional analysis was performed due to the shorter gestational age in the BPD36
group. In both analyses, there was no difference in the distribution of HRG values for all
complications.

Table 3. Comparison of HRG Longitudinal Measurements with and without Complications.

Comparison in Weeks of Age Comparison in
Postmenstrual Week

BPD36 0.55 0.45
RDS 0.73 0.40

HsPDA 0.79 0.57
IVH 0.29 0.06

Sepsis 0.26 0.24
NEC 0.24 0.58

Clinical CAM 0.81 0.66
ROP treatment 0.28 0.15

Values are presented as p-values. Mixed-effects models were used to analyze comorbidities and time as fixed
effects and cases as random effects. HRG: histidine-rich glycoprotein, BPD36: bronchopulmonary dysplasia
at 36 postmenstrual weeks, RDS: respiratory distress syndrome, HsPDA: hemodynamically significant patent
ductus arteriosus, IVH: intraventricular hemorrhage, NEC: necrotizing enterocolitis, CAM: chorioamnionitis,
ROP: retinopathy of prematurity.

3.3. Longitudinal Change in HRG Levels in All Infants

Serum HRG levels showed a statistically significant upward trend after birth (p < 0.001)
(Table 4). Post-hoc analysis showed significant differences between cord blood and blood
collected at 8 weeks old (p = 0.023); blood collected at 2 weeks old and 6 weeks old
(p = 0.049); blood collected at 2 weeks old and 8 weeks old (p = 0.044).

Table 4. Longitudinal Change in HRG.

Time Point HRG (µg/mL)

Umbilical venous blood 1.07 (0.79–1.57)
Week 2 1.11 (0.73–1.91)
Week 4 2.86 (1.83–4.48)
Week 6 6.05 (4.08–8.52)
Week 8 7.49 (5.81–8.78)

Values are presented as median (interquartile range). HRG: histidine-rich glycoprotein.

4. Discussion

This is the first study to measure the postnatal course of serum HRG levels in extremely
preterm infants. The HRG concentration at birth was 1.07 µg/mL, which was lower than
the concentrations reported in term infants and adults in previous studies (12–16 µg/mL
and 86 µg/mL, respectively) [12,19]. Additionally, to the best of our knowledge, the present
study is the first to reveal a slow increase in HRG until the near-term period.

HRG was discovered by Heimburger et al. in 1972 [1]. In 1990, Corrigan et al. and
Morgan et al. reported HRG concentrations in healthy neonates [12,19]. However, that
of extremely preterm infants and its effect on comorbidities such as BPD were not well
known.

Recently, HRG has been reported to be associated with HMGB-1 and DAMPs. Gao
et al. demonstrated that HRG suppressed HMGB-1-induced inflammatory responses and
identified the associated HRG receptors [10]. HMGB-1 has been reported to be associated
with the development of BPD in extremely preterm infants [11]. In a mouse model, it was
reported that administration of anti-HMGB-1 antibody prevented exacerbation of BPD [20].



Biomedicines 2023, 11, 212 5 of 6

Thus, HRG may prevent BPD and other complications in preterm infants by preventing the
HMGB-1 pathway.

This study may be one of the first to clarify the connection between comorbidities in
extremely preterm infants and HRG. The association between shorter postmenstrual weeks
and lower HRG levels led to the expectation that the suppression of the activity of HMGB-1,
a DAMP, would be less effective in extremely premature infants. However, in the present
study, there was no clear difference in HRG values based on the presence or absence of
comorbidities. We speculated on two reasons for these negative results. First, the number of
study participants in the present study was small; there was a trend toward slightly lower
HRG levels in the BPD group, which could be significant with a larger number of study
participants. Second, premature infants who develop BPD and/or other comorbidities are
often given blood products, including fresh frozen plasma. Because HRG is contained in
these products, the administration of such products may affect the HRG level of the infant.

To compensate for the small sample size in the present study, we used a mixed-effects
model [21]. While traditional repeated measures analysis of variance requires the exclusion
of cases with missing values, this model allows us to include cases with missing values.
However, this analysis also failed to demonstrate significant results.

In conclusion, serum HRG levels were not different between BPD infants and non-BPD
infants. Serum HRG levels significantly increased after birth in extremely preterm infants.
Additional research and analysis of more cases might reveal differences in HRG due to
comorbidities.
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