The Role of Intraamygdaloid Oxytocin and D2 Dopamine Receptors in Reinforcement in the Valproate-Induced Autism Rat Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Surgery
2.3. Drugs and Injection Procedure
2.4. Conditioned Place Preference (CPP) Test
2.5. Histology
2.6. Statistical Analysis
3. Results
3.1. Histology
3.2. Conditioned Place Preference Test
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- Sharma, S.R.; Gonda, X.; Tarazi, F.I. Autism Spectrum Disorder: Classification, diagnosis and therapy. Pharmacol. Ther. 2018, 190, 91–104. [Google Scholar] [CrossRef]
- Blaxill, M.; Rogers, T.; Nevison, C. Autism Tsunami: The Impact of Rising Prevalence on the Societal Cost of Autism in the United States. J. Autism. Dev. Disord. 2022, 52, 2627–2643. [Google Scholar] [CrossRef] [PubMed]
- Karande, S. Autism: A review for family physicians. Indian J. Med. Sci. 2006, 60, 205–215. [Google Scholar] [CrossRef]
- Herrero, M.J.; Velmeshev, D.; Hernandez-Pineda, D.; Sethi, S.; Sorrells, S.; Banerjee, P.; Sullivan, C.; Gupta, A.R.; Kriegstein, A.R.; Corbin, J.G. Identification of amygdala-expressed genes associated with autism spectrum disorder. Mol. Autism 2020, 11, 39. [Google Scholar] [CrossRef] [PubMed]
- Landrigan, P.J. What causes autism? Exploring the environmental contribution. Curr. Opin. Pediatr. 2010, 22, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Perucca, E. Pharmacological and therapeutic properties of valproate: A summary after 35 years of clinical experience. Cns Drugs 2002, 16, 695–714. [Google Scholar] [CrossRef]
- Wieck, A.; Jones, S. Dangers of valproate in pregnancy. BMJ-Br. Med. J. 2018, 361, k1609. [Google Scholar] [CrossRef]
- Kim, K.C.; Kim, P.; Go, H.S.; Choi, C.S.; Yang, S.I.; Cheong, J.H.; Shin, C.Y.; Ko, K.H. The critical period of valproate exposure to induce autistic symptoms in Sprague-Dawley rats. Toxicol. Lett. 2011, 201, 137–142. [Google Scholar] [CrossRef]
- Tartaglionea, A.M.; Schiavi, S.; Calamandreiam, G.; Trezzam, V. Prenatal valproate in rodents as a tool to understand the neural underpinnings of social dysfunctions in autism spectrum disorder. Neuropharmacology 2018, 159, 107477. [Google Scholar] [CrossRef]
- Gandal, M.J.; Edgar, J.C.; Ehrlichman, R.S.; Mehta, M.; Roberts, T.P.L.; Siegel, S.J. Validating gamma Oscillations and Delayed Auditory Responses as Translational Biomarkers of Autism. Biol. Psychiatry 2010, 68, 1100–1106. [Google Scholar] [CrossRef] [Green Version]
- Melancia, F.; Schiavi, S.; Servadio, M.; Cartocci, V.; Campolongo, P.; Palmery, M.; Pallottini, V.; Trezza, V. Sex-specific autistic endophenotypes induced by prenatal exposure to valproic acid involve anandamide signalling. Br. J. Pharmacol. 2018, 175, 3699–3712. [Google Scholar] [CrossRef]
- Moldrich, R.X.; Leanage, G.; She, D.; Dolan-Evans, E.; Nelson, M.; Reza, N.; Reutens, D.C. Inhibition of histone deacetylase in utero causes sociability deficits in postnatal mice. Behav. Brain Res. 2013, 257, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Laszlo, K.; Kiss, O.; Voros, D.; Mintal, K.; Ollmann, T.; Peczely, L.; Kovacs, A.; Zagoracz, O.; Kertes, E.; Kallai, V.; et al. Intraamygdaloid Oxytocin Reduces Anxiety in the Valproate-Induced Autism Rat Model. Biomedicines 2022, 10, 405. [Google Scholar] [CrossRef] [PubMed]
- Kanat, M.; Heinrichs, M.; Domes, G. Oxytocin and the social brain: Neural mechanisms and perspectives in human research. Brain Res. 2014, 1580, 160–171. [Google Scholar] [CrossRef]
- Knobloch, H.S.; Charlet, A.; Hoffmann, L.C.; Eliava, M.; Khrulev, S.; Cetin, A.H.; Osten, P.; Schwarz, K.M.; Seeburg, P.H.; Stoop, R.; et al. Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron 2012, 73, 553–566. [Google Scholar] [CrossRef] [PubMed]
- Voorn, P.; Buijs, R.M. An Immuno-Electronmicroscopical Study Comparing Vasopressin, Oxytocin, Substance-P and Enkephalin Containing Nerve-Terminals in the Nucleus of the Solitary Tract of the Rat. Brain Res. 1983, 270, 169–173. [Google Scholar] [CrossRef]
- Grinevich, V.; Knobloch-Bollmann, H.S.; Eliava, M.; Busnelli, M.; Chini, B. Assembling the Puzzle: Pathways of Oxytocin Signaling in the Brain. Biol. Psychiatry 2016, 79, 155–164. [Google Scholar] [CrossRef]
- Lee, H.J.; Macbeth, A.H.; Pagani, J.H.; Young, W.S. Oxytocin: The great facilitator of life. Prog. Neurobiol. 2009, 88, 127–151. [Google Scholar] [CrossRef]
- Verty, A.N.A.; McFarlane, J.R.; McGregor, I.S.; Mallet, P.E. Evidence for an interaction between CB1 cannabinoid and oxytocin receptors in food and water intake. Neuropharmacology 2004, 47, 593–603. [Google Scholar] [CrossRef]
- Yang, J.; Yang, Y.; Chen, J.M.; Liu, W.Y.; Wang, C.H.; Lin, B.C. Effect of oxytocin on acupuncture analgesia in the rat. Neuropeptides 2007, 41, 285–292. [Google Scholar] [CrossRef]
- Laszlo, K.; Kovacs, A.; Zagoracz, O.; Ollmann, T.; Peczely, L.; Kertes, E.; Lacy, D.G.; Lenard, L. Positive reinforcing effect of oxytocin microinjection in the rat central nucleus of amygdala. Behav. Brain Res. 2016, 296, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Laszlo, K.; Peczely, L.; Geczi, F.; Kovacs, A.; Zagoracz, O.; Ollmann, T.; Kertes, E.; Kallai, V.; Laszlo, B.; Berta, B.; et al. The role of D2 dopamine receptors in oxytocin induced place preference and anxiolytic effect. Horm. Behav. 2020, 124, 104777. [Google Scholar] [CrossRef] [PubMed]
- Condeslara, M.; Veinante, P.; Rabai, M.; Freundmercier, M.J. Correlation between Oxytocin Neuronal Sensitivity and Oxytocin-Binding Sites in the Amygdala of he Rat—Electrophysiological and Histoautoradiographic Study. Brain Res. 1994, 637, 277–286. [Google Scholar] [CrossRef]
- Dichter, G.; Adolphs, R. Reward processing in autism: A thematic series. J. Neurodev. Disord. 2012, 4, 20. [Google Scholar] [CrossRef]
- Dichter, G.S.; Felder, J.N.; Green, S.R.; Rittenberg, A.M.; Sasson, N.J.; Bodfish, J.W. Reward circuitry function in autism spectrum disorders. Soc. Cogn. Affect. Neurosci. 2012, 7, 160–172. [Google Scholar] [CrossRef]
- Ernst, M.; Zametkin, A.J.; Matochik, J.A.; Pascualvaca, D.; Cohen, R.M. Low medial prefrontal dopaminergic activity in autistic children. Lancet 1997, 350, 638. [Google Scholar] [CrossRef]
- Paval, D. A Dopamine Hypothesis of Autism Spectrum Disorder. Dev. Neurosci. 2017, 39, 355–360. [Google Scholar] [CrossRef]
- de la Mora, M.P.; Gallegos-Cari, A.; Crespo-Ramirez, M.; Marcellino, D.; Hansson, A.C.; Fuxe, K. Distribution of Dopamine D-2-Like Receptors in the Rat Amygdala and Their Role in the Modulation of Unconditioned Fear and Anxiety. Neuroscience 2012, 201, 252–266. [Google Scholar] [CrossRef]
- Gimpl, G.; Fahrenholz, F. The oxytocin receptor system: Structure, function, and regulation. Physiol. Rev. 2001, 81, 629–683. [Google Scholar] [CrossRef]
- Paxinos, G.; Watson, C. The Rat Brain in Stereotaxic Coordinates, 2nd ed.; Academic Press: New York, NY, USA, 1986. [Google Scholar]
- Tzschentke, T.M. Measuring reward with the conditioned place preference paradigm: A comprehensive review of drug effects, recent progress and new issues. Prog. Neurobiol. 1998, 56, 613–672. [Google Scholar] [CrossRef]
- Hasenohrl, R.U.; Oitzl, M.S.; Huston, J.P. Conditioned place preference in the corral—A procedure for measuring reinforcing properties of drugs. J. Neurosci. Methods 1989, 30, 141–146. [Google Scholar] [CrossRef]
- Zimmermann, P.; Privou, C.; Huston, J.P. Differential sensitivity of the caudal and rostral nucleus accumbens to the rewarding effects of a H1-histaminergic receptor blocker as measured with place-preference and self-stimulation behavior. Neuroscience 1999, 94, 93–103. [Google Scholar] [CrossRef]
- Kruppa, J.A.; Gossen, A.; Weiss., E.O.; Kohls, G.; Grossheinrich, N.; Cholemkery, H.; Freitag, C.M.; Karges, W.; Wolfle, E.; Sinzig, J.; et al. Neural modulation of social reinforcement learning by intranasal oxytocin in male adults with high-functioning autism spectrum disorder: A randomized trial. Neuropsychopharmacology 2019, 44, 749–756. [Google Scholar] [CrossRef] [PubMed]
- Grund, T.; Tang, Y.; Benusiglio, D.; Althammer, F.; Probst, S.; Oppenlander, L.; Neumann, I.D.; Grinevich, V. Chemogenetic activation of oxytocin neurons: Temporal dynamics, hormonal release, and behavioral consequences. Psychoneuroendocrinology 2019, 106, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Hurlemann, R.; Patin, A.; Onur, O.A.; Cohen, M.X.; Baumgartner, T.; Metzler, S.; Dziobek, I.; Gallinat, J.; Wagner, M.; Maier, W.; et al. Oxytocin enhances amygdala-dependent, socially reinforced learning and emotional empathy in humans. J. Neurosci. 2010, 30, 4999–5007. [Google Scholar] [CrossRef]
- Gamer, M.; Zurowski, B.; Buchel, C. Different amygdala subregions mediate valence-related and attentional effects of oxytocin in humans. Proc. Natl. Acad. Sci. USA 2010, 107, 9400–9405. [Google Scholar] [CrossRef]
- Borland, J.M.; Grantham, K.N.; Aiani, L.M.; Frantz, K.J.; Albers, H.E. Role of oxytocin in the ventral tegmental area in social reinforcement. Psychoneuroendocrinology 2018, 95, 128–137. [Google Scholar] [CrossRef]
- Dolen, G.; Darvishzadeh, A.; Huang, K.W.; Malenka, R.C. Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature 2013, 501, 179–184. [Google Scholar] [CrossRef]
- Kent, K.; Arientyl, V.; Khachatryan, M.M.; Wood, R.I. Oxytocin induces a conditioned social preference in female mice. J. Neuroendocrinol. 2013, 25, 803–810. [Google Scholar] [CrossRef]
- Liberzon, I.; Trujillo, K.A.; Akil, H.; Young, E.A. Motivational properties of oxytocin in the conditioned place preference paradigm. Neuropsychopharmacology 1997, 17, 353–359. [Google Scholar] [CrossRef] [Green Version]
- Song, Z.M.; Borland, J.M.; Larkin, T.E.; O’Malley, M.; Albers, H.E. Activation of oxytocin receptors, but not arginine-vasopressin V1a receptors, in the ventral tegmental area of male Syrian hamsters is essential for the reward-like properties of social interactions. Psychoneuroendocrinology 2016, 74, 164–172. [Google Scholar] [CrossRef]
- Hung, L.W.; Neuner, S.; Polepalli, J.S.; Beier, K.T.; Wright, M.; Walsh, J.J.; Lewis, E.M.; Luo, L.; Deisseroth, K.; Dolen, G.; et al. Gating of social reward by oxytocin in the ventral tegmental area. Science 2017, 357, 1406–1411. [Google Scholar] [CrossRef]
- Kosaki, Y.; Watanabe, S. Conditioned social preference, but not place preference, produced by intranasal oxytocin in female mice. Behav. Neurosci. 2016, 130, 182–195. [Google Scholar] [CrossRef]
- Leong, K.C.; Cox, S.; King, C.; Becker, H.; Reichel, C.M. Oxytocin and Rodent Models of Addiction. Int. Rev. Neurobiol. 2018, 140, 201–247. [Google Scholar] [PubMed]
- Huston, J.P.; Silva, M.A.; Topic, B.; Muller, C.P. What’s conditioned in conditioned place preference? Trends Pharmacol. Sci. 2013, 34, 162–166. [Google Scholar] [CrossRef] [PubMed]
- Adcock, R.A.; Thangavel, A.; Whitfield-Gabrieli, S.; Knutson, B.; Gabrieli, J.D. Reward-motivated learning: Mesolimbic activation precedes memory formation. Neuron 2006, 50, 507–517. [Google Scholar] [CrossRef] [PubMed]
- Ikemoto, S.; Panksepp, J. The role of nucleus accumbens dopamine in motivated behavior: A unifying interpretation with special reference to reward-seeking. Brain Res. Brain Res. Rev. 1999, 31, 6–41. [Google Scholar] [CrossRef]
- Paval, D.; Miclutia, I.V. The Dopamine Hypothesis of Autism Spectrum Disorder Revisited: Current Status and Future Prospects. Dev. Neurosci. 2021, 43, 73–83. [Google Scholar] [CrossRef]
- Chevallier, C.; Kohls, G.; Troiani, V.; Brodkin, E.S.; Schultz, R.T. The social motivation theory of autism. Trends Cogn. Sci. 2012, 16, 231–239. [Google Scholar] [CrossRef]
- Damiano, C.R.; Aloi, J.; Dunlap, K.; Burrus, C.J.; Mosner, M.G.; Kozink, R.V.; McLaurin, R.E.; Mullette-Gillman, O.A.; Carter, R.M.; Huettel, S.A.; et al. Association between the oxytocin receptor (OXTR) gene and mesolimbic responses to rewards. Mol. Autism 2014, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- Love, T.M. Oxytocin, motivation and the role of dopamine. Pharmacol. Biochem. Behav. 2013, 119, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Love, T.M.; Enoch, M.A.; Hodgkinson, C.A.; Pecina, M.; Mickey, B.; Koeppe, R.A.; Stohler, C.S.; Goldman, D.; Zubieta, J.K. Oxytocin gene polymorphisms influence human dopaminergic function in a sex-dependent manner. Biol. Psychiatry 2012, 72, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, A.J.; Lieberman, J.A.; Jarskog, L.F. Oxytocin, dopamine, and the amygdala: A neurofunctional model of social cognitive deficits in schizophrenia. Schizophr. Bull. 2011, 37, 1077–1087. [Google Scholar] [CrossRef]
- Huber, D.; Veinante, P.; Stoop, R. Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala. Science 2005, 308, 245–248. [Google Scholar] [CrossRef]
- Romero-Fernandez, W.; Borroto-Escuela, D.O.; Agnati, L.F.; Fuxe, K. Evidence for the existence of dopamine D2-oxytocin receptor heteromers in the ventral and dorsal striatum with facilitatory receptor-receptor interactions. Mol. Psychiatry 2013, 18, 849–850. [Google Scholar] [CrossRef]
- Peris, J.; MacFadyen, K.; Smith, J.A.; de Kloet, A.D.; Wang, L.; Krause, E.G. Oxytocin receptors are expressed on dopamine and glutamate neurons in the mouse ventral tegmental area that project to nucleus accumbens and other mesolimbic targets. J. Comp. Neurol. 2017, 525, 1094–1108. [Google Scholar] [CrossRef]
- de la Mora, M.P.; Perez-Carrera, D.; Crespo-Ramirez, M.; Tarakanov, A.; Fuxe, K.; Borroto-Escuela, D.O. Signaling in dopamine D2 receptor-oxytocin receptor heterocomplexes and its relevance for the anxiolytic effects of dopamine and oxytocin interactions in the amygdala of the rat. Biochim. Biophys. Acta 2016, 1862, 2075–2085. [Google Scholar] [CrossRef]
- Fuxe, K.; Borroto-Escuela, D.O.; Romero-Fernandez, W.; Ciruela, F.; Manger, P.; Leo, G.; Diaz-Cabiale, Z.; Agnati, L.F. On the role of volume transmission and receptor-receptor interactions in social behaviour: Focus on central catecholamine and oxytocin neurons. Brain Res. 2012, 1476, 119–131. [Google Scholar] [CrossRef]
- Young, L.J.; Lim, M.M.; Gingrich, B.; Insel, T.R. Cellular mechanisms of social attachment. Horm. Behav. 2001, 40, 133–138. [Google Scholar] [CrossRef]
- Mu, P.; Yu, L.C. Valproic acid sodium inhibits the morphine-induced conditioned place preference in the central nervous system of rats. Neurosci. Lett. 2007, 426, 135–138. [Google Scholar] [CrossRef]
- Spyraki, C.; Kazandjian, A.; Varonos, D. Diazepam-induced place preference conditioning: Appetitive and antiaversive properties. Psychopharmacology 1985, 87, 225–232. [Google Scholar] [CrossRef]
- Miller, C.K.; Halbing, A.A.; Patisaul, H.B.; Meitzen, J. Interactions of the estrous cycle, novelty, and light on female and male rat open field locomotor and anxiety-related behaviors. Physiol. Behav. 2021, 228, 113203. [Google Scholar] [CrossRef]
- Freitag, C.M.; Jensen, K.; Elsuni, L.; Sachse, M.; Herpertz-Dahlmann, B.; Schulte-Ruther, M.; Hanig, S.; von Gontard, A.; Poustka, L.; Schad-Hansjosten, T.; et al. Group-based cognitive behavioural psychotherapy for children and adolescents with ASD: The randomized, multicentre, controlled SOSTA-net trial. J. Child. Psychol. Psychiatry 2016, 57, 596–605. [Google Scholar] [CrossRef]
- Andari, E.; Duhamel, J.R.; Zalla, T.; Herbrecht, E.; Leboyer, M.; Sirigu, A. Promoting social behavior with oxytocin in high-functioning autism spectrum disorders. Proc. Natl. Acad. Sci. USA 2010, 107, 4389–4394. [Google Scholar] [CrossRef]
- Lefter, R.; Ciobica, A.; Antioch, I.; Ababei, D.C.; Hritcu, L.; Luca, A.C. Oxytocin Differentiated Effects According to the Administration Route in a Prenatal Valproic Acid-Induced Rat Model of Autism. Medicina 2020, 56, 267. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, S.; Liu, X.; Zheng, Y.; Li, L.; Meng, S. Oxytocin improves animal behaviors and ameliorates oxidative stress and inflammation in autistic mice. Biomed. Pharmacother. 2018, 107, 262–269. [Google Scholar] [CrossRef]
Distance Covered (cm/15 min) (Avg ± SEM) | Habituation | Avg. of Conditioning Trials | Test |
---|---|---|---|
control (n = 6) | 6572.32 ± 512.88 | 3912.52 ± 233.18 | 5963.25 ± 501.05 |
VPA (n = 7) | 6464.11 ± 408.92 | 3475.56 ± 271.25 | 6075.21 ± 475.13 |
VPA + 10 ng OT (n = 7) | 6213.33 ± 476.35 | 3712.45 ± 265.24 | 5888.51 ± 456.32 |
VPA + ANT + OT (n = 7) | 6632.15 ± 555.41 | 3795.02 ± 279.66 | 5893.21 ± 515.00 |
VPA + ANT (n = 7) | 6348.99 ± 423.85 | 3275.92 ± 253.88 | 5760.85 ± 490.14 |
Distance Covered (cm/15 min) (Avg ± SEM) | Habituation | Avg. of Conditioning Trials | Test |
---|---|---|---|
control (n = 8) | 6272.82 ± 502.11 | 4022.12 ± 283.19 | 5963.25 ± 501.05 |
VPA (n = 7) | 6363.81 ± 468.52 | 3576.51 ± 291.13 | 5875.01 ± 485.26 |
VPA + 10 ng OT (n = 7) | 6014.75 ± 456.99 | 3612.35 ± 285.87 | 5766.53 ± 446.38 |
VPA + D2 ANT + OT (n = 7) | 6402.10 ± 535.84 | 3595.82 ± 299.16 | 5793.33 ± 495.12 |
VPA + D2 ANT (n = 7) | 6248.34 ± 433.18 | 3375.99 ± 263.15 | 5569.68 ± 458.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
László, K.; Vörös, D.; Kiss, O.; László, B.R.; Ollmann, T.; Péczely, L.; Mintál, K.; Tóth, A.; Kovács, A.; Zagoracz, O.; et al. The Role of Intraamygdaloid Oxytocin and D2 Dopamine Receptors in Reinforcement in the Valproate-Induced Autism Rat Model. Biomedicines 2022, 10, 2309. https://doi.org/10.3390/biomedicines10092309
László K, Vörös D, Kiss O, László BR, Ollmann T, Péczely L, Mintál K, Tóth A, Kovács A, Zagoracz O, et al. The Role of Intraamygdaloid Oxytocin and D2 Dopamine Receptors in Reinforcement in the Valproate-Induced Autism Rat Model. Biomedicines. 2022; 10(9):2309. https://doi.org/10.3390/biomedicines10092309
Chicago/Turabian StyleLászló, Kristóf, Dávid Vörös, Orsolya Kiss, Bettina Réka László, Tamás Ollmann, László Péczely, Kitti Mintál, Attila Tóth, Anita Kovács, Olga Zagoracz, and et al. 2022. "The Role of Intraamygdaloid Oxytocin and D2 Dopamine Receptors in Reinforcement in the Valproate-Induced Autism Rat Model" Biomedicines 10, no. 9: 2309. https://doi.org/10.3390/biomedicines10092309