Cannabinoids—Perspectives for Individual Treatment in Selected Patients: Analysis of the Case Series
Abstract
:1. Introduction
2. Case 1: Patient Suffering from Chronic Mixed Pain and Abusing Transmucosal Fentanyl
3. Case 2: Patient Suffering from Severe Depression under Observation for Affective Bipolar Disorder
4. Case 3: Patient Suffering from Migraine
5. Case 4: Patient Suffering from Trigeminal Neuralgia
6. Discussion
7. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zou, S.; Kumar, U. Cannabinoid Receptors and the Endocannabinoid System: Signaling and Function in the Central Nervous System. Int. J. Mol. Sci. 2018, 19, 833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puente, N.; Río, I.B.-D.; Achicallende, S.; Nahirney, P.; Grandes, P. High-resolution Immunoelectron Microscopy Techniques for Revealing Distinct Subcellular Type 1 Cannabinoid Receptor Domains in Brain. Bio-Protocol 2019, 9, e3145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moldrich, G.; Wenger, T. Localization of the CB1 cannabinoid receptor in the rat brain. An immunohistochemical study. Peptides 2000, 21, 1735–1742. [Google Scholar] [CrossRef]
- Filipiuc, L.E.; Ababei, D.C.; Alexa-Stratulat, T.; Pricope, C.V.; Bild, V.; Stefanescu, R.; Stanciu, G.D.; Tamba, B.-I. Major Phytocannabinoids and Their Related Compounds: Should We Only Search for Drugs That Act on Cannabinoid Receptors? Pharmaceutics 2021, 13, 1823. [Google Scholar] [CrossRef] [PubMed]
- An, D.; Peigneur, S.; Hendrickx, L.A.; Tytgat, J. Targeting Cannabinoid Receptors: Current Status and Prospects of Natural Products. Int. J. Mol. Sci. 2020, 21, 5064. [Google Scholar] [CrossRef] [PubMed]
- Galiegue, S.; Mary, S.; Marchand, J.; Dussossoy, D.; Carriere, D.; Carayon, P.; Bouaboula, M.; Shire, D.; Le Fur, G.; Casellas, P. Expression of Central and Peripheral Cannabinoid Receptors in Human Immune Tissues and Leukocyte Subpopulations. Eur. J. Biochem. 1995, 232, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Bisogno, T.; Hanuš, L.; De Petrocellis, L.; Tchilibon, S.; Ponde, D.E.; Brandi, I.; Moriello, A.S.; Davis, J.B.; Mechoulam, R.; Di Marzo, V. Molecular targets for cannabidiol and its synthetic analogues: Effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. Br. J. Pharmacol. 2001, 134, 845–852. [Google Scholar] [CrossRef] [PubMed]
- Akopian, A.N.; Ruparel, N.B.; Patwardhan, A.; Hargreaves, K.M. Cannabinoids Desensitize Capsaicin and Mustard Oil Responses in Sensory Neurons via TRPA1 Activation. J. Neurosci. 2008, 28, 1064–1075. [Google Scholar] [CrossRef] [PubMed]
- Pertwee, R.G. GPR55: A new member of the cannabinoid receptor clan? Br. J. Pharmacol. 2007, 152, 984–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lataliza, A.A.B.; de Assis, P.M.; Laurindo, L.D.R.; Gonçalves, E.C.D.; Raposo, N.R.B.; Dutra, R.C. Antidepressant-like effect of rosmarinic acid during LPS-induced neuroinflammatory model: The potential role of cannabinoid receptors/PPAR-γ signaling pathway. Phytother. Res. 2021, 35, 6974–6989. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Shah, S.A.; Gupta, A.S. Emerging role of cannabinoids and synthetic cannabinoid receptor 1/cannabinoid receptor 2 receptor agonists in cancer treatment and chemotherapy-associated cancer management. J. Cancer Res. Ther. 2021, 17, 1–9. [Google Scholar] [CrossRef]
- Resstel, L.B.M.; Tavares, R.F.; Lisboa, S.F.S.; Joca, S.R.L.; Corrêa, F.M.A.; Guimarães, F.S. 5-HT1A receptors are involved in the cannabidiol-induced attenuation of behavioural and cardiovascular responses to acute restraint stress in rats. Br. J. Pharmacol. 2009, 156, 181–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russo, E.B.; Burnett, A.; Hall, B.; Parker, K.K. Agonistic Properties of Cannabidiol at 5-HT1a Receptors. Neurochem. Res. 2005, 30, 1037–1043. [Google Scholar] [CrossRef] [PubMed]
- Russo, E.B. Cannabinoids in the management of difficult to treat pain. Ther. Clin. Risk Manag. 2008, 4, 245–259. [Google Scholar] [CrossRef] [Green Version]
- Russo, E.B. Taming THC: Potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. Br. J. Pharmacol. 2011, 163, 1344–1364. [Google Scholar] [CrossRef] [PubMed]
- Zhornitsky, S.; Potvin, S. Cannabidiol in Humans—The Quest for Therapeutic Targets. Pharmaceuticals 2012, 5, 529–552. [Google Scholar] [CrossRef] [PubMed]
- Abrams, D.I.; Guzman, M. Cannabinoids and cancer. In Integrative Oncology; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Whiting, P.F.; Wolff, R.F.; Deshpande, S.; Di Nisio, M.; Duffy, S.; Hernandez, A.V.; Keurentjes, J.C.; Lang, S.; Misso, K.; Ryder, S.; et al. Cannabinoids for Medical Use: A systematic review and meta-analysis. JAMA 2015, 313, 2456–2473. [Google Scholar] [CrossRef] [PubMed]
- Shahbazi, F.; Grandi, V.; Banerjee, A.; Trant, J.F. Cannabinoids and Cannabinoid Receptors: The Story so Far. iScience 2020, 23, 101301. [Google Scholar] [CrossRef] [PubMed]
- Russo, E.; Guy, G.W. A tale of two cannabinoids: The therapeutic rationale for combining tetrahydrocannabinol and cannabidiol. Med. Hypotheses 2006, 66, 234–246. [Google Scholar] [CrossRef] [PubMed]
- Graczyk, M.; Lewandowska, A.A.; Dzierżanowski, T. The Therapeutic Potential of Cannabis in Counteracting Oxidative Stress and Inflammation. Molecules 2021, 26, 4551. [Google Scholar] [CrossRef]
- Lucas, P. Cannabis as an Adjunct to or Substitute for Opiates in the Treatment of Chronic Pain. J. Psychoact. Drugs 2012, 44, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Toor, T.; Murphy, E.; Simmons, A.N.; Palyo, S.; Librodo, S.C.; Strigo, I.A. Craving of prescription opioids among veterans with chronic pain. Pain 2022. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Grant, I. Medicinal Cannabis and Painful Sensory Neuropathy. Virtual Mentor. 2013, 15, 466–469. [Google Scholar] [CrossRef] [PubMed]
- Abrams, D.I.; Jay, C.A.; Shade, S.B.; Vizoso, H.; Reda, H.; Press, S.; Kelly, M.E.; Rowbotham, M.C.; Petersen, K.L. Cannabis in painful HIV-associated sensory neuropathy: A randomized placebo-controlled trial. Neurology 2007, 68, 515–521. [Google Scholar] [CrossRef]
- Ware, M.A.; Wang, T.; Shapiro, S.; Robinson, A.; Ducruet, T.; Huynh, T.; Gamsa, A.; Bennett, G.J.; Collet, J.-P. Smoked cannabis for chronic neuropathic pain: A randomized controlled trial. Can. Med. Assoc. J. 2010, 182, E694–E701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Moulin, D.; Boulanger, A.; Clark, A.J.; Clarke, H.; Dao, T.; Finley, G.A.; Furlan, A.; Gilron, I.; Gordon, A.; Morley-Forster, P.; et al. Pharmacological Management of Chronic Neuropathic Pain: Revised Consensus Statement from the Canadian Pain Society. Pain Res. Manag. 2014, 19, 328–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parolaro, D.; Rubino, T.; Vigano, D.; Massi, P.; Guidali, C.; Realini, N. Cellular mechanisms underlying the interaction between cannabinoid and opioid system. Curr. Drug Targets 2010, 11, 393–405. [Google Scholar] [CrossRef]
- Liang, Y.C.; Huang, C.-C.; Hsu, K.-S. Therapeutic Potential of Cannabinoids in Trigeminal Neuralgia. Curr. Drug Targets-CNS Neurol. Disord. 2004, 3, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, T.; Hagiwara, Y.; Tanaka, H.; Sugiura, T.; Waku, K.; Shoyama, Y.; Watanabe, S.; Yamamoto, T. Endogenous cannabinoid, 2-arachidonoylglycerol, attenuates naloxone-precipitated withdrawal signs in morphine-dependent mice. Brain Res. 2001, 909, 121–126. [Google Scholar] [CrossRef]
- Desroches, J.; Beaulieu, P. Opioids and Cannabinoids Interactions: Involvement in Pain Management. Curr. Drug Targets 2010, 11, 462–473. [Google Scholar] [CrossRef] [PubMed]
- Yuill, M.B.; Hale, D.E.; Guindon, J.; Morgan, D.J. Anti-nociceptive interactions between opioids and a cannabinoid receptor 2 agonist in inflammatory pain. Mol. Pain 2017, 13, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gieringer, D.H.; Rosenthal, E.; Carter, G.T. Marijuana Medical Handbook: Practical Guide to the Therapeutic Uses of Marijuana; Quick American: Oakland, CA, USA, 2008; Available online: https://www.worldcat.org/title/marijuana-medical-handbook-practical-guide-to-the-therapeutic-uses-of-marijuana/oclc/717176198#.YMxk0rhJ48w.mendeley (accessed on 18 June 2021).
- Graczyk, M.; Borkowska, A.; Krajnik, M. Why patients are afraid of opioid analgesics—A study on opioid perception in patients treated for chronic pain. Pol. Arch. Intern. Med. 2018, 128, 89–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulls, H.W.; Chu, E.; Goodin, B.R.; Liebschutz, J.M.; Wozniak, A.; Schenker, Y.; Merlin, J.S. Framework for opioid stigma in cancer pain. Pain 2022, 163, e182–e189. [Google Scholar] [CrossRef] [PubMed]
- Birch, E.A. The use of Indian hemp in the treatment of chronic chloral and chronic opium poisoning. Lancet 1889, 1, 25. [Google Scholar] [CrossRef]
- Scavone, J.L.; Sterling, R.C.; Van Bockstaele, E.J. Cannabinoid and opioid interactions: Implications for opiate dependence and withdrawal. Neuroscience 2013, 248, 637–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiese, B.; Wilson-Poe, A.R. Emerging Evidence for Cannabis’ Role in Opioid Use Disorder. Cannabis Cannabinoid Res. 2018, 3, 179–189. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, T.; Lauzon, N.M.; de Jaeger, X.; Laviolette, S.R. Cannabinoid Transmission in the Prelimbic Cortex Bidirectionally Controls Opiate Reward and Aversion Signaling through Dissociable Kappa Versus μ-Opiate Receptor Dependent Mechanisms. J. Neurosci. 2013, 33, 15642–15651. [Google Scholar] [CrossRef] [Green Version]
- Hurd, Y.L.; Spriggs, S.; Alishayev, J.; Winkel, G.; Gurgov, K.; Kudrich, C.; Oprescu, A.M.; Salsitz, E. Cannabidiol for the Reduction of Cue-Induced Craving and Anxiety in Drug-Abstinent Individuals with Heroin Use Disorder: A Double-Blind Randomized Placebo-Controlled Trial. Am. J. Psychiatry 2019, 176, 911–922. [Google Scholar] [CrossRef]
- Scavone, J.L.; Sterling, R.C.; Weinstein, S.P.; Van Bockstaele, E.J. Impact of Cannabis Use during Stabilization on Methadone Maintenance Treatment. Am. J. Addict. 2013, 22, 344–351. [Google Scholar] [CrossRef] [Green Version]
- Epstein, D.H.; Preston, K.L. No evidence for reduction of opioid-withdrawal symptoms by cannabis smoking during a methadone dose taper. Am. J. Addict. 2015, 24, 323–328. [Google Scholar] [CrossRef] [Green Version]
- Jicha, C.J.; Lofwall, M.R.; Nuzzo, P.A.; Babalonis, S.; Elayi, S.C.; Walsh, S.L. Safety of oral dronabinol during opioid withdrawal in humans. Drug Alcohol Depend. 2015, 157, 179–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russo, E.B. Clinical Endocannabinoid Deficiency Reconsidered: Current Research Supports the Theory in Migraine, Fibromyalgia, Irritable Bowel, and Other Treatment-Resistant Syndromes. Cannabis Cannabinoid Res. 2016, 1, 154–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leimuranta, P.; Khiroug, L.; Giniatullin, R.; Leimuranta, P.; Khiroug, L.; Giniatullin, R. Emerging Role of (Endo)Cannabinoids in Migraine. Front. Pharmacol. 2018, 9, 420. [Google Scholar] [CrossRef] [PubMed]
- Baron, E.P. Medicinal Properties of Cannabinoids, Terpenes, and Flavonoids in Cannabis, and Benefits in Migraine, Headache, and Pain: An Update on Current Evidence and Cannabis Science. Headache J. Head Face Pain 2018, 58, 1139–1186. [Google Scholar] [CrossRef]
- Dini, E.; Cafalli, M.; De Luca, C.; Baldacci, F.; Gori, S.; Bonuccelli, U. Case Report: Chronic Migraine Successfully Treated with Cannabinoids. J. Headache Pain 2018, 19. Available online: https://www.embase.com/search/results?subaction=viewrecord&id=L624431529&from=export (accessed on 1 June 2022).
- Baron, E.P. Comprehensive Review of Medicinal Marijuana, Cannabinoids, and Therapeutic Implications in Medicine and Headache: What a Long Strange Trip It’s Been... Headache 2015, 55, 885–916. [Google Scholar] [CrossRef]
- Tassorelli, C.; Greco, R.; Silberstein, S.D. The endocannabinoid system in migraine: From bench to pharmacy and back. Curr. Opin. Neurol. 2019, 32, 405–412. [Google Scholar] [CrossRef]
- Lipton, R.B.; Marcus, S.C.; Shewale, A.R.; Dodick, D.W.; Viswanathan, H.N.; Doshi, J.A. Acute treatment patterns in patients with migraine newly initiating a triptan. Cephalalgia 2020, 40, 437–447. [Google Scholar] [CrossRef] [PubMed]
- Baron, E.P.; Lucas, P.; Eades, J.; Hogue, O. Patterns of medicinal cannabis use, strain analysis, and substitution effect among patients with migraine, headache, arthritis, and chronic pain in a medicinal cannabis cohort. J. Headache Pain 2018, 19, 1–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mechtler, L.L.; Gengo, F.M.; Bargnes, V.H. Cannabis and Migraine: It’s Complicated. Curr. Pain Headache Rep. 2021, 25, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Graczyk, M.; Łukowicz, M.; Dzierzanowski, T. Prospects for the Use of Cannabinoids in Psychiatric Disorders. Front. Psychiatry 2021, 12, 620073. [Google Scholar] [CrossRef] [PubMed]
- Soriano, D.; Brusco, A.; Caltana, L. Further evidence of anxiety- and depression-like behavior for total genetic ablation of cannabinoid receptor type 1. Behav. Brain Res. 2021, 400, 113007. [Google Scholar] [CrossRef] [PubMed]
- Zanelati, T.V.; Biojone, C.; Moreira, F.A.; Guimaraes, F.S.; Joca, S.R.L. Antidepressant-like effects of cannabidiol in mice: Possible involvement of 5-HT1A receptors. Br. J. Pharmacol. 2009, 159, 122–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robbe, D.; Alonso, G.; Duchamp, F.; Bockaert, J.; Manzoni, O.J. Localization and Mechanisms of Action of Cannabinoid Receptors at the Glutamatergic Synapses of the Mouse Nucleus Accumbens. J. Neurosci. 2001, 21, 109–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silote, G.P.; Sartim, A.; Sales, A.; Eskelund, A.; Guimarães, F.; Wegener, G.; Joca, S. Emerging evidence for the antidepressant effect of cannabidiol and the underlying molecular mechanisms. J. Chem. Neuroanat. 2019, 98, 104–116. [Google Scholar] [CrossRef]
- Sales, A.J.; Crestani, C.C.; Guimarães, F.S.; Joca, S.R. Antidepressant-like effect induced by Cannabidiol is dependent on brain serotonin levels. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2018, 86, 255–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witkin, J.M.; Tzavara, E.T.; Nomikos, G.G. A role for cannabinoid CB1 receptors in mood and anxiety disorders. Behav. Pharmacol. 2005, 16, 315–331. [Google Scholar] [CrossRef] [PubMed]
- Bambico, F.R.; Katz, N.; Debonnel, G.; Gobbi, G. Cannabinoids Elicit Antidepressant-Like Behavior and Activate Serotonergic Neurons through the Medial Prefrontal Cortex. J. Neurosci. 2007, 27, 11700–11711. [Google Scholar] [CrossRef] [PubMed]
- Bambico, F.R.; Gobbi, G. The cannabinoid CB1 receptor and the endocannabinoid anandamide: Possible antidepressant targets. Expert Opin. Ther. Targets 2008, 12, 1347–1366. [Google Scholar] [CrossRef] [PubMed]
- Cuttler, C.; Spradlin, A.; McLaughlin, R.J. A naturalistic examination of the perceived effects of cannabis on negative affect. J. Affect. Disord. 2018, 235, 198–205. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, D.C.; Perry, E.; MacDougall, L.; Ammerman, Y.; Cooper, T.; Wu, Y.-T.; Braley, G.; Gueorguieva, R.; Krystal, J.H. The Psychotomimetic Effects of Intravenous Delta-9-Tetrahydrocannabinol in Healthy Individuals: Implications for Psychosis. Neuropsychopharmacology 2004, 29, 1558–1572. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, S.; Atakan, Z.; Martin-Santos, R.; Crippa, J.; Kambeitz, J.; Malhi, S.; Giampietro, V.; Williams, S.; Brammer, M.; Rubia, K.; et al. Impairment of inhibitory control processing related to acute psychotomimetic effects of cannabis. Eur. Neuropsychopharmacol. 2015, 25, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Cortes-Briones, J.A.; Cahill, J.D.; Skosnik, P.D.; Mathalon, D.H.; Williams, A.; Sewell, R.A.; Roach, B.; Ford, J.M.; Ranganathan, M.; D’Souza, D.C. The Psychosis-like Effects of Δ9-Tetrahydrocannabinol Are Associated with Increased Cortical Noise in Healthy Humans. Biol. Psychiatry 2015, 78, 805–813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akdeniz, G.S.; Sait, S.C. Cannabinoid Use and Depression: Comparison of Natural and Synthetic Cannabinoids. Clin. Med. Rev. Case Rep. 2020, 7, 298. [Google Scholar] [CrossRef]
- Jamison, R.N.; Serraillier, J.; Michna, E. Assessment and Treatment of Abuse Risk in Opioid Prescribing for Chronic Pain. Pain Res. Treat. 2011, 2011, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rob, M.; Reynolds, I.; Finlayson, P.F. Adolescent Marijuana Use: Risk Factors and Implications. Aust. Psychiatry 1990, 24, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Richter, L.; Pugh, B.S.; Ball, S.A. Assessing the risk of marijuana use disorder among adolescents and adults who use marijuana. Am. J. Drug Alcohol Abus. 2017, 43, 247–260. [Google Scholar] [CrossRef] [PubMed]
- Woolridge, E.; Barton, S.; Samuel, J.; Osorio, J.; Dougherty, A.; Holdcroft, A. Cannabis Use in HIV for Pain and Other Medical Symptoms. J. Pain Symptom Manag. 2005, 29, 358–367. [Google Scholar] [CrossRef] [PubMed]
- Morena, M.; Patel, S.; Bains, J.S.; Hill, M.N. Neurobiological Interactions Between Stress and the Endocannabinoid System. Neuropsychopharmacology 2016, 41, 80–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Information for Health Care Professionals: Cannabis (Marihuana, Marijuana) and the Cannabinoids. 2018; Her Majesty the Queen in Right of Canada, as represented by the Minister of Health; Ottawa. Available online: https://www.canada.ca/content/dam/hc-sc/documents/services/drugs-medication/cannabis/information-medical-practitioners/information-health-care-professionals-cannabis-cannabinoids-eng.pdf (accessed on 1 June 2022).
- Consroe, P.; Musty, R.; Rein, J.; Tillery, W.; Pertwee, R. The Perceived Effects of Smoked Cannabis on Patients with Multiple Sclerosis. Eur. Neurol. 1997, 38, 44–48. [Google Scholar] [CrossRef]
- Brunt, T.M.; van Genugten, M.; Höner-Snoeken, K.; van de Velde, M.J.; Niesink, R.J. Therapeutic Satisfaction and Subjective Effects of Different Strains of Pharmaceutical-Grade Cannabis. J. Clin. Psychopharmacol. 2014, 34, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Blaas, K. Treating depression with cannabinoids. Cannabinoids 2008, 3, 8–10. [Google Scholar]
- Liu, J.; Burnham, M. The effects of CBD and THC in animal models of depression and anxiety. Clin. Neurophysiol. 2019, 130, e118–e119. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Graczyk, M.; Lewandowska, A.A.; Melnyczok, P.; Zgliński, A.; Łukowicz, M. Cannabinoids—Perspectives for Individual Treatment in Selected Patients: Analysis of the Case Series. Biomedicines 2022, 10, 1862. https://doi.org/10.3390/biomedicines10081862
Graczyk M, Lewandowska AA, Melnyczok P, Zgliński A, Łukowicz M. Cannabinoids—Perspectives for Individual Treatment in Selected Patients: Analysis of the Case Series. Biomedicines. 2022; 10(8):1862. https://doi.org/10.3390/biomedicines10081862
Chicago/Turabian StyleGraczyk, Michał, Agata Anna Lewandowska, Piotr Melnyczok, Adam Zgliński, and Małgorzata Łukowicz. 2022. "Cannabinoids—Perspectives for Individual Treatment in Selected Patients: Analysis of the Case Series" Biomedicines 10, no. 8: 1862. https://doi.org/10.3390/biomedicines10081862
APA StyleGraczyk, M., Lewandowska, A. A., Melnyczok, P., Zgliński, A., & Łukowicz, M. (2022). Cannabinoids—Perspectives for Individual Treatment in Selected Patients: Analysis of the Case Series. Biomedicines, 10(8), 1862. https://doi.org/10.3390/biomedicines10081862