circRNA: A New Biomarker and Therapeutic Target for Esophageal Cancer
Abstract
:1. Introduction
2. Biogenesis of circRNAs
3. Biological Roles of circRNAs
3.1. miRNA Sponges
3.2. Epigenetic Regulation
3.3. Transcription and Alternative Splicing
3.4. Protein Decoys
3.5. Translation into Peptides/Proteins
4. Function of circRNAs in Esophageal Cancer
4.1. Oncogenic circRNAs in Esophageal Cancer
4.2. Tumor Suppressive circRNAs in EC
4.3. circRNAs as Diagnostic and Prognostic Biomarkers for Esophageal Cancer
4.4. circRNAs as Potential Therapeutic Targets for Esophageal Cancer
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sanger, H.L.; Klotz, G.; Riesner, D.; Gross, H.J.; Kleinschmidt, A.K. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc. Natl. Acad. Sci. USA 1976, 73, 3852–3856. [Google Scholar] [PubMed] [Green Version]
- Hsu, M.T.; Coca-Prados, M. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature 1979, 280, 339–340. [Google Scholar] [PubMed]
- Nigro, J.M.; Cho, K.R.; Fearon, E.R.; Kern, S.E.; Ruppert, J.M.; Oliner, J.D.; Kinzler, K.W.; Vogelstein, B. Scrambled exons. Cell 1991, 64, 607–613. [Google Scholar] [PubMed]
- Cocquerelle, C.; Daubersies, P.; Majerus, M.A.; Kerckaert, J.P.; Bailleul, B. Splicing with inverted order of exons occurs proximal to large introns. EMBO J. 1992, 11, 1095–1098. [Google Scholar]
- Cocquerelle, C.; Mascrez, B.; Hetuin, D.; Bailleul, B. Mis-splicing yields circular RNA molecules. FASEB J. 1993, 7, 155–160. [Google Scholar]
- Capel, B.; Swain, A.; Nicolis, S.; Hacker, A.; Walter, M.; Koopman, P.; Goodfellow, P.; Lovell-Badge, R. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 1993, 73, 1019–1030. [Google Scholar]
- Braun, S.; Domdey, H.; Wiebauer, K. Inverse splicing of a discontinuous pre-mRNA intron generates a circular exon in a HeLa cell nuclear extract. Nucleic Acids Res. 1996, 24, 4152–4157. [Google Scholar] [CrossRef]
- Pasman, Z.; Been, M.D.; Garcia-Blanco, M.A. Exon circularization in mammalian nuclear extracts. RNA 1996, 2, 603–610. [Google Scholar]
- Salzman, J.; Gawad, C.; Wang, P.L.; Lacayo, N.; Brown, P.O. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE 2012, 7, e30733. [Google Scholar] [CrossRef] [Green Version]
- Jeck, W.R.; Sorrentino, J.A.; Wang, K.; Slevin, M.K.; Burd, C.E.; Liu, J.; Marzluff, W.F.; Sharpless, N.E. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 2013, 19, 141–157. [Google Scholar]
- Memczak, S.; Jens, M.; Elefsinioti, A.; Torti, F.; Krueger, J.; Rybak, A.; Maier, L.; Mackowiak, S.D.; Gregersen, L.H.; Munschauer, M.; et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013, 495, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Westholm, J.O.; Miura, P.; Olson, S.; Shenker, S.; Joseph, B.; Sanfilippo, P.; Celniker, S.E.; Graveley, B.R.; Lai, E.C. Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep. 2014, 9, 1966–1980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rybak-Wolf, A.; Stottmeister, C.; Glazar, P.; Jens, M.; Pino, N.; Giusti, S.; Hanan, M.; Behm, M.; Bartok, O.; Ashwal-Fluss, R.; et al. Circular RNAs in the Mammalian Brain Are Highly Abundant, Conserved, and Dynamically Expressed. Mol. Cell 2015, 58, 870–885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruner, H.; Cortes-Lopez, M.; Cooper, D.A.; Bauer, M.; Miura, P. circRNA accumulation in the aging mouse brain. Sci. Rep. 2016, 6, 38907. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.U.; Agarwal, V.; Guo, H.; Bartel, D.P. Expanded identification and characterization of mammalian circular RNAs. Genome Biol. 2014, 15, 409. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.O.; Chen, T.; Xiang, J.F.; Yin, Q.F.; Xing, Y.H.; Zhu, S.; Yang, L.; Chen, L.L. Circular intronic long noncoding RNAs. Mol. Cell 2013, 51, 792–806. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Huang, C.; Bao, C.; Chen, L.; Lin, M.; Wang, X.; Zhong, G.; Yu, B.; Hu, W.; Dai, L.; et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol. 2015, 22, 256–264. [Google Scholar] [CrossRef]
- Bachmayr-Heyda, A.; Reiner, A.T.; Auer, K.; Sukhbaatar, N.; Aust, S.; Bachleitner-Hofmann, T.; Mesteri, I.; Grunt, T.W.; Zeillinger, R.; Pils, D. Correlation of circular RNA abundance with proliferation--exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues. Sci. Rep. 2015, 5, 8057. [Google Scholar] [CrossRef]
- Xu, H.; Guo, S.; Li, W.; Yu, P. The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells. Sci. Rep. 2015, 5, 12453. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Alexandrov, P.N.; Jaber, V.; Lukiw, W.J. Deficiency in the Ubiquitin Conjugating Enzyme UBE2A in Alzheimer’s Disease (AD) is Linked to Deficits in a Natural Circular miRNA-7 Sponge (circRNA; ciRS-7). Genes 2016, 7, 116. [Google Scholar] [CrossRef] [Green Version]
- Holdt, L.M.; Stahringer, A.; Sass, K.; Pichler, G.; Kulak, N.A.; Wilfert, W.; Kohlmaier, A.; Herbst, A.; Northoff, B.H.; Nicolaou, A.; et al. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat. Commun. 2016, 7, 12429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Li, K.; Lai, W.; Li, X.; Wang, H.; Yang, J.; Chu, S.; Wang, H.; Kang, C.; Qiu, Y. Comprehensive circular RNA profiles in plasma reveals that circular RNAs can be used as novel biomarkers for systemic lupus erythematosus. Clin. Chim. Acta 2018, 480, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Rajappa, A.; Banerjee, S.; Sharma, V.; Khandelia, P. Circular RNAs: Emerging Role in Cancer Diagnostics and Therapeutics. Front. Mol. Biosci. 2020, 7, 577938. [Google Scholar] [CrossRef]
- Salzman, J.; Chen, R.E.; Olsen, M.N.; Wang, P.L.; Brown, P.O. Cell-type specific features of circular RNA expression. PLoS Genet. 2013, 9, e1003777. [Google Scholar] [CrossRef]
- Ashwal-Fluss, R.; Meyer, M.; Pamudurti, N.R.; Ivanov, A.; Bartok, O.; Hanan, M.; Evantal, N.; Memczak, S.; Rajewsky, N.; Kadener, S. circRNA biogenesis competes with pre-mRNA splicing. Mol. Cell 2014, 56, 55–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Starke, S.; Jost, I.; Rossbach, O.; Schneider, T.; Schreiner, S.; Hung, L.H.; Bindereif, A. Exon circularization requires canonical splice signals. Cell Rep. 2015, 10, 103–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kramer, M.C.; Liang, D.; Tatomer, D.C.; Gold, B.; March, Z.M.; Cherry, S.; Wilusz, J.E. Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins. Genes Dev. 2015, 29, 2168–2182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, D.; Tatomer, D.C.; Luo, Z.; Wu, H.; Yang, L.; Chen, L.L.; Cherry, S.; Wilusz, J.E. The Output of Protein-Coding Genes Shifts to Circular RNAs When the Pre-mRNA Processing Machinery Is Limiting. Mol. Cell 2017, 68, 940–954.e943. [Google Scholar] [CrossRef] [Green Version]
- Dubin, R.A.; Kazmi, M.A.; Ostrer, H. Inverted repeats are necessary for circularization of the mouse testis Sry transcript. Gene 1995, 167, 245–248. [Google Scholar] [CrossRef]
- Zhang, X.O.; Wang, H.B.; Zhang, Y.; Lu, X.; Chen, L.L.; Yang, L. Complementary sequence-mediated exon circularization. Cell 2014, 159, 134–147. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, A.; Memczak, S.; Wyler, E.; Torti, F.; Porath, H.T.; Orejuela, M.R.; Piechotta, M.; Levanon, E.Y.; Landthaler, M.; Dieterich, C.; et al. Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep. 2015, 10, 170–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aktas, T.; Avsar Ilik, I.; Maticzka, D.; Bhardwaj, V.; Pessoa Rodrigues, C.; Mittler, G.; Manke, T.; Backofen, R.; Akhtar, A. DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome. Nature 2017, 544, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Conn, S.J.; Pillman, K.A.; Toubia, J.; Conn, V.M.; Salmanidis, M.; Phillips, C.A.; Roslan, S.; Schreiber, A.W.; Gregory, P.A.; Goodall, G.J. The RNA binding protein quaking regulates formation of circRNAs. Cell 2015, 160, 1125–1134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Errichelli, L.; Dini Modigliani, S.; Laneve, P.; Colantoni, A.; Legnini, I.; Capauto, D.; Rosa, A.; De Santis, R.; Scarfo, R.; Peruzzi, G.; et al. FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons. Nat. Commun. 2017, 8, 14741. [Google Scholar] [CrossRef] [PubMed]
- Fei, T.; Chen, Y.; Xiao, T.; Li, W.; Cato, L.; Zhang, P.; Cotter, M.B.; Bowden, M.; Lis, R.T.; Zhao, S.G.; et al. Genome-wide CRISPR screen identifies HNRNPL as a prostate cancer dependency regulating RNA splicing. Proc. Natl. Acad. Sci. USA 2017, 114, E5207–E5215. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Liang, D.; Tatomer, D.C.; Wilusz, J.E. A length-dependent evolutionarily conserved pathway controls nuclear export of circular RNAs. Genes Dev. 2018, 32, 639–644. [Google Scholar] [CrossRef] [PubMed]
- Ambros, V. The functions of animal microRNAs. Nature 2004, 431, 350–355. [Google Scholar] [CrossRef]
- Kalinowski, F.C.; Brown, R.A.M.; Ganda, C.; Giles, K.M.; Epis, M.R.; Horsham, J.; Leedman, P.J. microRNA-7: A tumor suppressor miRNA with therapeutic potential. Int. J. Biochem. Cell Biol. 2014, 54, 312–317. [Google Scholar] [CrossRef]
- Hansen, T.B.; Jensen, T.I.; Clausen, B.H.; Bramsen, J.B.; Finsen, B.; Damgaard, C.K.; Kjems, J. Natural RNA circles function as efficient microRNA sponges. Nature 2013, 495, 384–388. [Google Scholar] [CrossRef]
- Yang, J.; Qi, M.; Fei, X.; Wang, X.; Wang, K. Hsa_circRNA_0088036 acts as a ceRNA to promote bladder cancer progression by sponging miR-140-3p. Cell Death Dis. 2022, 13, 322. [Google Scholar] [CrossRef]
- Fang, C.; Huang, X.; Dai, J.; He, W.; Xu, L.; Sun, F. The circular RNA circFARSA sponges microRNA-330-5p in tumor cells with bladder cancer phenotype. BMC Cancer 2022, 22, 373. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Si, J.; Xiao, B.; Xiong, Y.; Dai, C.; Yang, Y.; Li, S.; Ma, Y. circ_0000567/miR-421/TMEM100 Axis Promotes the Migration and Invasion of Lung Adenocarcinoma and Is Associated with Prognosis. J. Cancer 2022, 13, 1540–1552. [Google Scholar] [CrossRef] [PubMed]
- Lei, D.; Wang, T. circSYPL1 Promotes the Proliferation and Metastasis of Hepatocellular Carcinoma via the Upregulation of EZH2 Expression by Competing with hsa-miR-506-3p. J. Oncol. 2022, 2022, 2659563. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Mao, Q.; Wang, L.; Xia, W.; Chen, B.; Wang, H.; Li, R.; Xu, L.; Jiang, F.; Dong, G. circIMMP2L promotes esophageal squamous cell carcinoma malignant progression via CtBP1 nuclear retention dependent epigenetic modification. Clin. Transl. Med. 2021, 11, e519. [Google Scholar] [CrossRef]
- Jie, M.; Wu, Y.; Gao, M.; Li, X.; Liu, C.; Ouyang, Q.; Tang, Q.; Shan, C.; Lv, Y.; Zhang, K.; et al. CircMRPS35 suppresses gastric cancer progression via recruiting KAT7 to govern histone modification. Mol. Cancer 2020, 19, 56. [Google Scholar] [CrossRef]
- Li, X.; Wang, J.; Zhang, C.; Lin, C.; Zhang, J.; Zhang, W.; Zhang, W.; Lu, Y.; Zheng, L.; Li, X. Circular RNA circITGA7 inhibits colorectal cancer growth and metastasis by modulating the Ras pathway and upregulating transcription of its host gene ITGA7. J. Pathol. 2018, 246, 166–179. [Google Scholar] [CrossRef]
- Yu, Y.; Fang, L. CircRPAP2 regulates the alternative splicing of PTK2 by binding to SRSF1 in breast cancer. Cell Death Discov. 2022, 8, 152. [Google Scholar] [CrossRef]
- Wang, X.; Li, J.; Bian, X.; Wu, C.; Hua, J.; Chang, S.; Yu, T.; Li, H.; Li, Y.; Hu, S.; et al. CircURI1 interacts with hnRNPM to inhibit metastasis by modulating alternative splicing in gastric cancer. Proc. Natl. Acad. Sci. USA 2021, 118, e2012881118. [Google Scholar] [CrossRef]
- Abdelmohsen, K.; Panda, A.C.; Munk, R.; Grammatikakis, I.; Dudekula, D.B.; De, S.; Kim, J.; Noh, J.H.; Kim, K.M.; Martindale, J.L.; et al. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol. 2017, 14, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Yu, T.; Ran, L.; Zhao, H.; Yin, P.; Li, W.; Lin, J.; Mao, H.; Cai, D.; Ma, Q.; Pan, X.; et al. Circular RNA circ-TNPO3 suppresses metastasis of GC by acting as a protein decoy for IGF2BP3 to regulate the expression of MYC and SNAIL. Mol. Ther. Nucleic Acids 2021, 26, 649–664. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, M.; Zhang, Y. Circ_0000079 Decoys the RNA-Binding Protein FXR1 to Interrupt Formation of the FXR1/PRCKI Complex and Decline Their Mediated Cell Invasion and Drug Resistance in NSCLC. Cell Transplant. 2020, 29, 963689720961070. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Sarnow, P. Initiation of Protein Synthesis by the Eukaryotic Translational Apparatus on Circular RNAs. Science 1995, 268, 415–417. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-K.; Cheng, R.; Demeter, J.; Chen, J.; Weingarten-Gabbay, S.; Jiang, L.; Snyder, M.P.; Weissman, J.S.; Segal, E.; Jackson, P.K.; et al. Structured elements drive extensive circular RNA translation. Mol. Cell 2021, 81, 4300–4318.e4313. [Google Scholar] [CrossRef] [PubMed]
- Legnini, I.; Di Timoteo, G.; Rossi, F.; Morlando, M.; Briganti, F.; Sthandier, O.; Fatica, A.; Santini, T.; Andronache, A.; Wade, M.; et al. Circ-ZNF609 Is a Circular RNA that Can Be Translated and Functions in Myogenesis. Mol. Cell 2017, 66, 22–37.e29. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Huang, N.; Yang, X.; Luo, J.; Yan, S.; Xiao, F.; Chen, W.; Gao, X.; Zhao, K.; Zhou, H.; et al. A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. Oncogene 2018, 37, 1805–1814. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, J.; Zhang, C.; Chen, R.; Sun, Q.; Yang, P.; Peng, C.; Tan, Y.; Jin, C.; Wang, T.; et al. A novel tumour suppressor protein encoded by circMAPK14 inhibits progression and metastasis of colorectal cancer by competitively binding to MKK6. Clin. Transl. Med. 2021, 11, e613. [Google Scholar] [CrossRef]
- Yang, Y.; Fan, X.; Mao, M.; Song, X.; Wu, P.; Zhang, Y.; Jin, Y.; Yang, Y.; Chen, L.-L.; Wang, Y.; et al. Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res. 2017, 27, 626–641. [Google Scholar] [CrossRef] [Green Version]
- Duan, J.-L.; Chen, W.; Xie, J.-J.; Zhang, M.-L.; Nie, R.-C.; Liang, H.; Mei, J.; Han, K.; Xiang, Z.-C.; Wang, F.-W.; et al. A novel peptide encoded by N6-methyladenosine modified circMAP3K4 prevents apoptosis in hepatocellular carcinoma. Mol. Cancer 2022, 21, 93. [Google Scholar] [CrossRef]
- Li, R.C.; Ke, S.; Meng, F.K.; Lu, J.; Zou, X.J.; He, Z.G.; Wang, W.F.; Fang, M.H. CiRS-7 promotes growth and metastasis of esophageal squamous cell carcinoma via regulation of miR-7/HOXB13. Cell Death Dis. 2018, 9, 838. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.R.; Kim, I.J.; Kang, T.W.; Choi, C.; Kim, K.K.; Kim, M.S.; Nam, K.I.; Jung, C. HOXB13 downregulates intracellular zinc and increases NF-kappaB signaling to promote prostate cancer metastasis. Oncogene 2014, 33, 4558–4567. [Google Scholar] [CrossRef]
- Huang, H.; Wei, L.; Qin, T.; Yang, N.; Li, Z.; Xu, Z. Circular RNA ciRS-7 triggers the migration and invasion of esophageal squamous cell carcinoma via miR-7/KLF4 and NF-kappaB signals. Cancer Biol. Ther. 2019, 20, 73–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doyle, J.M.; Gao, J.; Wang, J.; Yang, M.; Potts, P.R. MAGE-RING protein complexes comprise a family of E3 ubiquitin ligases. Mol. Cell 2010, 39, 963–974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sang, M.; Gu, L.; Liu, F.; Lian, Y.; Yin, D.; Fan, X.; Ding, C.; Huang, W.; Liu, S.; Shan, B. Prognostic Significance of MAGE-A11 in Esophageal Squamous Cell Carcinoma and Identification of Related Genes Based on DNA Microarray. Arch. Med. Res. 2016, 47, 151–161. [Google Scholar] [CrossRef]
- Meng, L.; Liu, S.; Ding, P.; Chang, S.; Sang, M. Circular RNA ciRS-7 inhibits autophagy of ESCC cells by functioning as miR-1299 sponge to target EGFR signaling. J. Cell. Biochem. 2020, 121, 1039–1049. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Guo, Z.; Fang, N.; Jiang, W.; Fan, Y.; He, Y.; Ma, Z.; Chen, Y. hsa_circ_0006168 sponges miR-100 and regulates mTOR to promote the proliferation, migration and invasion of esophageal squamous cell carcinoma. Biomed. Pharmacother. 2019, 117, 109151. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tang, Q.; Huang, X.M.; Liao, D.Z. Circular RNA circCNOT6L regulates cell development through modulating miR-384/FN1 axis in esophageal squamous cell carcinoma. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 3674–3685. [Google Scholar] [PubMed]
- Zhou, P.L.; Wu, Z.; Zhang, W.; Xu, M.; Ren, J.; Zhang, Q.; Sun, Z.; Han, X. Circular RNA hsa_circ_0000277 sequesters miR-4766-5p to upregulate LAMA1 and promote esophageal carcinoma progression. Cell Death Dis. 2021, 12, 676. [Google Scholar] [CrossRef]
- Mammadova-Bach, E.; Rupp, T.; Spenle, C.; Jivkov, I.; Shankaranarayanan, P.; Klein, A.; Pisarsky, L.; Mechine-Neuville, A.; Cremel, G.; Kedinger, M.; et al. Laminin alpha1 orchestrates VEGFA functions in the ecosystem of colorectal carcinoma. Biol. Cell 2018, 110, 178–195. [Google Scholar] [CrossRef]
- Chen, J.; Wu, F.; Shi, Y.; Yang, D.; Xu, M.; Lai, Y.; Liu, Y. Identification of key candidate genes involved in melanoma metastasis. Mol. Med. Rep. 2019, 20, 903–914. [Google Scholar] [CrossRef] [Green Version]
- Caldeira, J.; Figueiredo, J.; Bras-Pereira, C.; Carneiro, P.; Moreira, A.M.; Pinto, M.T.; Relvas, J.B.; Carneiro, F.; Barbosa, M.; Casares, F.; et al. E-cadherin-defective gastric cancer cells depend on Laminin to survive and invade. Hum. Mol. Genet. 2015, 24, 5891–5900. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.; Chen, X.; Lu, P.; Ma, W.; Yue, D.; Song, L.; Fan, Q. MicroRNA-202 inhibits tumor progression by targeting LAMA1 in esophageal squamous cell carcinoma. Biochem. Biophys. Res. Commun. 2016, 473, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Zhang, R.; Yan, M.; Li, Y. Circular RNA hsa_circ_0000277 promotes tumor progression and DDP resistance in esophageal squamous cell carcinoma. BMC Cancer 2022, 22, 238. [Google Scholar] [CrossRef] [PubMed]
- Grimm, D.; Bauer, J.; Wise, P.; Krüger, M.; Simonsen, U.; Wehland, M.; Infanger, M.; Corydon, T.J. The role of SOX family members in solid tumours and metastasis. Semin. Cancer Biol. 2020, 67, 122–153. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Hong, H.; Xue, X.; Zhu, X.; Jiang, L.; Qin, M.; Liang, H.; Gao, L. A novel circular RNA, circFAT1(e2), inhibits gastric cancer progression by targeting miR-548g in the cytoplasm and interacting with YBX1 in the nucleus. Cancer Lett. 2019, 442, 222–232. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Xian, Z.; Zou, Q.; Zhang, D.; Su, D.; Yao, J.; Ren, D. CircFAT1 Suppresses Colorectal Cancer Development Through Regulating miR-520b/UHRF1 Axis or miR-302c-3p/UHRF1 Axis. Cancer Biother. Radiopharm. 2021, 36, 45–57. [Google Scholar] [CrossRef]
- Liu, G.; Huang, K.; Jie, Z.; Wu, Y.; Chen, J.; Chen, Z.; Fang, X.; Shen, S. CircFAT1 sponges miR-375 to promote the expression of Yes-associated protein 1 in osteosarcoma cells. Mol. Cancer 2018, 17, 170. [Google Scholar] [CrossRef]
- Gu, H.; Cheng, X.; Xu, J.; Zhou, K.; Bian, C.; Chen, G.; Yin, X. Circular RNA circFAT1(e2) Promotes Osteosarcoma Progression and Metastasis by Sponging miR-181b and Regulating HK2 Expression. Biomed. Res. Int. 2020, 2020, 3589871. [Google Scholar] [CrossRef]
- Liu, J.; Li, H.; Wei, C.; Ding, J.; Lu, J.; Pan, G.; Mao, A. circFAT1(e2) Promotes Papillary Thyroid Cancer Proliferation, Migration, and Invasion via the miRNA-873/ZEB1 Axis. Comput Math. Methods Med. 2020, 2020, 1459368. [Google Scholar] [CrossRef]
- Wei, H.; Yan, S.; Hui, Y.; Liu, Y.; Guo, H.; Li, Q.; Li, J.; Chang, Z. CircFAT1 promotes hepatocellular carcinoma progression via miR-30a-5p/REEP3 pathway. J. Cell Mol. Med. 2020, 24, 14561–14570. [Google Scholar] [CrossRef]
- Takaki, W.; Konishi, H.; Shoda, K.; Arita, T.; Kataoka, S.; Shibamoto, J.; Furuke, H.; Takabatake, K.; Shimizu, H.; Komatsu, S.; et al. Significance of Circular FAT1 as a Prognostic Factor and Tumor Suppressor for Esophageal Squamous Cell Carcinoma. Ann. Surg. Oncol. 2021, 28, 8508–8518. [Google Scholar] [CrossRef]
- Song, H.; Tian, D.; Sun, J.; Mao, X.; Kong, W.; Xu, D.; Ji, Y.; Qiu, B.; Zhan, M.; Wang, J. circFAM120B functions as a tumor suppressor in esophageal squamous cell carcinoma via the miR-661/PPM1L axis and the PKR/p38 MAPK/EMT pathway. Cell Death Dis. 2022, 13, 361. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Zheng, Y.; Liu, S.; Ju, Y.; Ren, S.; Sang, Y.; Zhu, Y.; Gu, L.; Liu, F.; Zhao, Y.; et al. ZEB1 represses biogenesis of circ-DOCK5 to facilitate metastasis in esophageal squamous cell carcinoma via a positive feedback loop with TGF-beta. Cancer Lett. 2021, 519, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Cao, Q.; Liu, J.; Zhang, J.; Li, B. Circular RNA profiling and its potential for esophageal squamous cell cancer diagnosis and prognosis. Mol. Cancer 2019, 18, 16. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, K.; Tan, S.; Xin, J.; Yuan, Q.; Xu, H.; Xu, X.; Liang, Q.; Christiani, D.C.; Wang, M.; et al. Circular RNAs in body fluids as cancer biomarkers: The new frontier of liquid biopsies. Mol. Cancer 2021, 20, 13. [Google Scholar] [CrossRef]
- Liu, S.; Lin, Z.; Rao, W.; Zheng, J.; Xie, Q.; Lin, Y.; Lin, X.; Chen, H.; Chen, Y.; Hu, Z. Upregulated expression of serum exosomal hsa_circ_0026611 is associated with lymph node metastasis and poor prognosis of esophageal squamous cell carcinoma. J. Cancer 2021, 12, 918–926. [Google Scholar] [CrossRef]
- Qian, C.J.; Tong, Y.Y.; Wang, Y.C.; Teng, X.S.; Yao, J. Circ_0001093 promotes glutamine metabolism and cancer progression of esophageal squamous cell carcinoma by targeting miR-579-3p/glutaminase axis. J. Bioenerg. Biomembr. 2022, 54, 119–134. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhu, D.; Zhao, Z.; Sun, M.; Wang, F.; Li, W.; Zhang, J.; Jiang, G. RNA sequencing reveals the expression profiles of circRNA and identifies a four-circRNA signature acts as a prognostic marker in esophageal squamous cell carcinoma. Cancer Cell Int. 2021, 21, 151. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ju, L.; Hu, P.; Ye, J.; Yang, C.; Huang, J. Circular RNA 0014715 Facilitates Cell Proliferation and Inhibits Apoptosis in Esophageal Squamous Cell Carcinoma. Cancer Manag. Res. 2021, 13, 4735–4749. [Google Scholar] [CrossRef]
- Xu, Z.; Tie, X.; Li, N.; Yi, Z.; Shen, F.; Zhang, Y. Circular RNA hsa_circ_0000654 promotes esophageal squamous cell carcinoma progression by regulating the miR-149-5p/IL-6/STAT3 pathway. IUBMB Life 2020, 72, 426–439. [Google Scholar] [CrossRef]
- Pan, Z.; Lin, J.; Wu, D.; He, X.; Wang, W.; Hu, X.; Zhang, L.; Wang, M. Hsa_circ_0006948 enhances cancer progression and epithelial-mesenchymal transition through the miR-490-3p/HMGA2 axis in esophageal squamous cell carcinoma. Aging 2019, 11, 11937–11954. [Google Scholar] [CrossRef]
- Li, X.; Song, L.; Wang, B.; Tao, C.; Shi, L.; Xu, M. Circ0120816 acts as an oncogene of esophageal squamous cell carcinoma by inhibiting miR-1305 and releasing TXNRD1. Cancer Cell Int. 2020, 20, 526. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Wu, D.; He, X.; Zhao, H.; He, Z.; Lin, J.; Wang, K.; Wang, W.; Pan, Z.; Lin, H.; et al. circGSK3beta promotes metastasis in esophageal squamous cell carcinoma by augmenting beta-catenin signaling. Mol. Cancer 2019, 18, 160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, D.; Lin, S.; Chen, S.; Wang, Z. circHIPK3 regulates cell proliferation and migration by sponging microRNA-124 and regulating serine/threonine kinase 3 expression in esophageal squamous cell carcinoma. Bioengineered 2022, 13, 9767–9780. [Google Scholar] [CrossRef]
- Shi, Y.; Fang, N.; Li, Y.; Guo, Z.; Jiang, W.; He, Y.; Ma, Z.; Chen, Y. Circular RNA LPAR3 sponges microRNA-198 to facilitate esophageal cancer migration, invasion, and metastasis. Cancer Sci. 2020, 111, 2824–2836. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, Y.; Lin, H.; Liu, J.; Huang, S.; Zhong, W.; Peng, C.; Du, L. circRNA circ_0023984 promotes the progression of esophageal squamous cell carcinoma via regulating miR-134-5p/cystatin-s axis. Bioengineered 2022, 13, 10578–10593. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Jiang, J.; Zhao, Y.; Wang, X.; Zhang, C.; Zhuan, L.; Zhang, D.; Zheng, Y. Circular RNA circNTRK2 facilitates the progression of esophageal squamous cell carcinoma through up-regulating NRIP1 expression via miR-140-3p. J. Exp. Clin. Cancer Res. 2020, 39, 133. [Google Scholar] [CrossRef]
- Guan, X.; Guan, X.; Wang, Y.; Lan, T.; Cheng, T.; Cui, Y.; Xu, H. Circ_0003340 downregulation mitigates esophageal squamous cell carcinoma progression by targeting miR-940/PRKAA1 axis. Thorac. Cancer 2022, 13, 1164–1175. [Google Scholar] [CrossRef]
- Song, H.; Xu, D.; Shi, P.; He, B.; Li, Z.; Ji, Y.; Agbeko, C.K.; Wang, J. Upregulated circ RNA hsa_circ_0000337 promotes cell proliferation, migration, and invasion of esophageal squamous cell carcinoma. Cancer Manag. Res. 2019, 11, 1997–2006. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Lin, W.; Gao, L.; Chen, K.; Yang, C.; Zhuang, L.; Peng, S.; Kang, M.; Lin, J. Hsa_circ_0004370 promotes esophageal cancer progression through miR-1294/LASP1 pathway. Biosci. Rep. 2019, 39, BSR20182377. [Google Scholar] [CrossRef] [Green Version]
- Cao, S.; Chen, G.; Yan, L.; Li, L.; Huang, X. Contribution of dysregulated circRNA_100876 to proliferation and metastasis of esophageal squamous cell carcinoma. Onco Targets Ther. 2018, 11, 7385–7394. [Google Scholar] [CrossRef] [Green Version]
- Chang, Z.; Fu, Y.; Jia, Y.; Gao, M.; Song, L.; Zhang, W.; Zhao, R.; Qin, Y. Circ-SFMBT2 drives the malignant phenotypes of esophageal cancer by the miR-107-dependent regulation of SLC1A5. Cancer Cell Int. 2021, 21, 495. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Liu, H.; Liu, Z.; Yang, L.; Zhou, J.; Cao, X.; Sun, H. Circ-SLC7A5, a potential prognostic circulating biomarker for detection of ESCC. Cancer Genet. 2020, 240, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Yang, L.; Fan, Y.; Tang, W.; Sun, H.; Xu, Z.; Zhou, J.; Zhang, Y.; Zhu, B.; Cao, X. Circ-ZDHHC5 Accelerates Esophageal Squamous Cell Carcinoma Progression in vitro via miR-217/ZEB1 Axis. Front. Cell Dev. Biol. 2020, 8, 570305. [Google Scholar] [CrossRef]
- Fang, N.; Shi, Y.; Fan, Y.; Long, T.; Shu, Y.; Zhou, J. Circ_0072088 Promotes Proliferation, Migration, and Invasion of Esophageal Squamous Cell Cancer by Absorbing miR-377. J. Oncol. 2020, 2020, 8967126. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Zhu, X.; Ke, J.M.; Su, X.Y.; Yi, J.; Wu, D.L.; Lin, J.; Deng, Z.Q. Circular RNA BMI1 Serves as a Potential Target for Diagnosis and Treatment in Esophageal Cancer. Technol. Cancer Res. Treat. 2021, 20, 15330338211033075. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Song, X.; Wang, Y.; Yin, X.; Liang, Y.; Zhang, T.; Xu, L.; Jiang, F.; Dong, G. circCNTNAP3-TP53-positive feedback loop suppresses malignant progression of esophageal squamous cell carcinoma. Cell Death Dis. 2020, 11, 1010. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Q.; Gong, Y.; Hu, Q.; Zhang, H.; Ke, S.; Chen, Y. Knockdown of circRNA circ_0087378 Represses the Tumorigenesis and Progression of Esophageal Squamous Cell Carcinoma Through Modulating the miR-140-3p/E2F3 Axis. Front. Oncol. 2020, 10, 607231. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Q.; Zhu, D.; Rong, J.; Shi, W.; Cao, X. Up-regulation of circ-SMAD7 inhibits tumor proliferation and migration in esophageal squamous cell carcinoma. Biomed. Pharmacother. 2019, 111, 596–601. [Google Scholar] [CrossRef]
- Lin, J.; Song, T.; Li, C.; Mao, W. GSK-3β in DNA repair, apoptosis, and resistance of chemotherapy, radiotherapy of cancer. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2020, 1867, 118659. [Google Scholar] [CrossRef]
- Liu, J.; Xue, N.; Guo, Y.; Niu, K.; Gao, L.; Zhang, S.; Gu, H.; Wang, X.; Zhao, D.; Fan, R. circRNA_100367 regulated the radiation sensitivity of esophageal squamous cell carcinomas through miR-217/Wnt3 pathway. Aging 2019, 11, 12412–12427. [Google Scholar] [CrossRef]
- Liu, Z.H.; Lu, X.Y.; Wen, L.C.; You, C.W.; Jin, X.W.; Liu, J.Y. Hsa_circ_0014879 regulates the radiosensitivity of esophageal squamous cell carcinoma through miR-519-3p/CDC25A axis. Anti-Cancer Drugs 2022, 33, E349–E361. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Lin, F.; Deng, X.; Shen, L.; Fang, Y.; Fei, Z.; Zhao, L.; Zhang, X.; Pan, H.; Xie, D.; et al. Profiling and bioinformatics analyses reveal differential circular RNA expression in radioresistant esophageal cancer cells. J. Transl. Med. 2016, 14, 225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, N.; Ge, N.; Zhao, Y.; Yang, L.; Qin, W.; Cui, Y. Hsa_circ_0007142 contributes to cisplatin resistance in esophageal squamous cell carcinoma via miR-494-3p/LASP1 axis. J. Clin. Lab. Anal. 2022, 36, e24304. [Google Scholar] [CrossRef] [PubMed]
- Qu, F.; Wang, L.; Wang, C.; Yu, L.; Zhao, K.; Zhong, H. Circular RNA circ_0006168 enhances Taxol resistance in esophageal squamous cell carcinoma by regulating miR-194-5p/JMJD1C axis. Cancer Cell Int. 2021, 21, 273. [Google Scholar] [CrossRef] [PubMed]
- Zou, F.W.; Yang, S.Z.; Li, W.Y.; Liu, C.Y.; Liu, X.H.; Hu, C.H.; Liu, Z.H.; Xu, S. circRNA_001275 upregulates Wnt7a expression by competitively sponging miR3703p to promote cisplatin resistance in esophageal cancer. Int. J. Oncol. 2020, 57, 151–160. [Google Scholar] [CrossRef]
- Liu, Z.; Gu, S.; Wu, K.; Li, L.; Dong, C.; Wang, W.; Zhou, Y. circRNA-DOPEY2 enhances the chemosensitivity of esophageal cancer cells by inhibiting CPEB4-mediated Mcl-1 translation. J. Exp. Clin. Cancer Res. 2021, 40, 361. [Google Scholar] [CrossRef]
- Zang, R.; Qiu, X.; Song, Y.; Wang, Y. Exosomes Mediated Transfer of Circ_0000337 Contributes to Cisplatin (CDDP) Resistance of Esophageal Cancer by Regulating JAK2 via miR-377-3p. Front. Cell Dev. Biol. 2021, 9, 673237. [Google Scholar] [CrossRef]
- Liu, X.; Abraham, J.M.; Cheng, Y.; Wang, Z.; Wang, Z.; Zhang, G.; Ashktorab, H.; Smoot, D.T.; Cole, R.N.; Boronina, T.N.; et al. Synthetic Circular RNA Functions as a miR-21 Sponge to Suppress Gastric Carcinoma Cell Proliferation. Mol. Ther. Nucleic Acids. 2018, 13, 312–321. [Google Scholar] [CrossRef] [Green Version]
circRNA | CircBase ID | Sample | Dysregulation in ESCC | Clinicopathological Association | Potential Function | AUC | Sensitivity/ Specificity (%) | References |
---|---|---|---|---|---|---|---|---|
circAAAS | hsa_circ_0026611 | 69 serums | up | LNM 1 | Prognosis/ Diagnosis | 0.724 | 0.800/0.529 | [85] |
circALS2 | hsa_circ_0001093 | 40 tissues | up | TNM stage, LNM 1, Tumor size | Prognosis | [86] | ||
circATG5 | hsa_circ_0077536 | 125 tissues | up | Prognosis | [87] | |||
circCDK11A | hsa_circ_0000005 | 125 tissues | up | Prognosis | [87] | |||
circUSP13 | hsa_circ_0007541 | 125 tissues | up | Prognosis | [87] | |||
circCCT3 | hsa_circ_0014715 | 67 tissues | up | TNM stage, Differentiation, Vascular invasion | Diagnosis | 0.722 | 0.49/0.91 | [88] |
circCDR1 | hsa_circ_0001946 | 123 tissues | up | Age | Prognosis | [59] | ||
circCHD2 | has_circ_0000654 | 57 tissues | up | TNM stage, LNM 1 | Diagnosis | [89] | ||
circCNOT6L | hsa_circ_0006168 | 52 tissues | up | Tumor depth, LNM 1 | Diagnosis | [65] | ||
circCNOT6L | has_circ_0006168 | 30 tissues | up | Diagnosis | [66] | |||
circFNDC3B | hsa_circ_0006948 | 153 tissues | up | LNM1 | Prognosis/ Diagnosis | 0.850 | 0.74/0.88 | [90] |
circGFPT1 | has_circ_0120816 | 36 tissues | up | Tumor depth, LNM 1 | Diagnosis | [91] | ||
circGSK3β | hsa_circ_0007986 | 50 tissues | up | TNM stage, LNM 1 | Prognosis/ Diagnosis | 0.782 | 0.86/0.58 | [92] |
circHIPK3 | hsa_circ_0000284 | 32 tissues | up | LNM 1, Tumor size, Differentiation | Diagnosis | [93] | ||
circIMMP2L | hsa_circ_0081964 | 54 tissues, 54 plasmas | up | Prognosis/ Diagnosis | 0.865 | [44] | ||
CircLPAR3 | hsa_circ_0004390 | 10 tissues | up | TNM stage | Prognosis | [94] | ||
circNOX4 | has_circ_0023984 | 70 tissues | up | - | Prognosis | [95] | ||
circNTRK2 | hsa_circ_0087378 | 56 tissues | up | TNM stage, LNM 1 | Prognosis/ Diagnosis | [96] | ||
circOGDH | ha_circ_0003340 | 45 tissues | up | - | Diagnosis | [97] | ||
circPDE3B | hsa_circ_0000277 | 92 tissues | up | TNM stage, LNM 1 | Prognosis | [67] | ||
circPDE3B | hsa_circ_0000277 | 58 tissues | up | TNM stage, LNM 1 | Prognosis/ Diagnosis | [72] | ||
circPPFIA1 | hsa_circ_0000337 | 48 tissues | up | - | Diagnosis | [98] | ||
circPRRX1 | hsa_circ_0004370 | 25 tissues | up | Tumor size | Diagnosis | [99] | ||
circRNF121 | hsa_circ_0023404 | 74 tissues | up | TNM stage, Tumor depth, LNM 1, Vascular invasion | Prognosis | [100] | ||
circSFMBT2 | hsa_circ_0000211 | 39 tissues | up | TNM stage, LNM 1, Tumor size | Diagnosis | [101] | ||
circSLC7A5 | hsa_circ_0040796 | 87 tissues, 10 plasmas | up | TNM stage | Prognosis/ Diagnosis | 0.772 | [102] | |
circZDHHC5 | hsa_circ_0004997 | 24 tissues, 20 plasmas | up | - | Diagnosis | [103] | ||
circZFR | hsa_circ_0072088 | 83 tissues | up | TNM stage, Tumor depth, Tumor size, LNM 1 | Diagnosis | [104] | ||
circATXN10 | hsa_circ_0008199 | 125 tissues | down | Prognosis | [87] | |||
circBMI1 | hsa_circ_0093335 | 10 tissues, 49 serums | down | LNM 1, Histological type | Diagnosis | 0.726 | 0.96/0.47 | [105] |
circCDR1 | hsa_circ_0001946 | 50 tissues, 50 plasmas | down | TNM stage, Tumor depth, Tumor size, LNM 1, Gender, CEA 2 | Prognosis/ Diagnosis | 0.894 | 0.92/0.80 | [83] |
circCNTNAP3 | hsa_circ_0087104 | 60 tissues | down | - | Prognosis | [106] | ||
circDOCK5 | hsa_circ_0007618 | 100 tissues | down | - | Prognosis | [82] | ||
circFAM120B | hsa_circ_0001666 | 130 tissues, 8 plasmas | down | Tumor size | Prognosis/ Diagnosis | [81] | ||
circFAT1 | has_circ_0001461 | 51 tissues | down | Age | Prognosis/ Diagnosis | [80] | ||
circKRT19 | hsa_circ_0043603 | 50 tissues, 50 plasmas | down | TNM stage, CEA 2 | Diagnosis | 0.836 | 0.64/0.92 | [83] |
circNTRK2 | hsa_circ_0087378 | 50 tissues | down | TNM stage, LNM 1, Tumor size | Prognosis | [107] | ||
circSMAD7 | hsa_circ_0000848 | 36 tissues, 32 plasmas | down | TNM stage, LNM 1 | Diagnosis | 0.859 | - | [108] |
circRNA | CircBase ID | Biological Function | Sample | References |
---|---|---|---|---|
circRNAs as Radiosensitive or Radioresistance Biomarkers for EC | ||||
circDCAF8 | hsa_circ_0014879 | Radioresistance | KYSE150 | [110] |
circLIN52 | hsa_circ_0000554 | Radioresistance | KYSE150 | [112] |
circRPPH1 | hsa_circ_0000518 | Radiosensitive | KYSE150 | [112] |
circRNAs as Chemoresistance Biomarkers for EC | ||||
circTMX4 | hsa_circ_0001131 | Cisplatin resistance | KYSE30, ECA109 | [115] |
circDOPEY2 | hsa_circ_0008078 | Cisplatin resistance | ESCC tissues, TE1, ECA109 | [116] |
circDOCK1 | hsa_circ_0007142 | Cisplatin resistance | TE1, KYSE410 | [113] |
circPDE3B | hsa_circ_0000277 | Cisplatin resistance | ESCC tissues | [72] |
circPPFIA1 | has_circ_0000337 | Cisplatin resistance | ESCC tissues, EC9706, KYSE30 | [117] |
circCNOT6L | has_circ_0006168 | Paclitaxel resistance | KYSE150, ECA109 | [114] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shoda, K.; Kuwano, Y.; Ichikawa, D.; Masuda, K. circRNA: A New Biomarker and Therapeutic Target for Esophageal Cancer. Biomedicines 2022, 10, 1643. https://doi.org/10.3390/biomedicines10071643
Shoda K, Kuwano Y, Ichikawa D, Masuda K. circRNA: A New Biomarker and Therapeutic Target for Esophageal Cancer. Biomedicines. 2022; 10(7):1643. https://doi.org/10.3390/biomedicines10071643
Chicago/Turabian StyleShoda, Katsutoshi, Yuki Kuwano, Daisuke Ichikawa, and Kiyoshi Masuda. 2022. "circRNA: A New Biomarker and Therapeutic Target for Esophageal Cancer" Biomedicines 10, no. 7: 1643. https://doi.org/10.3390/biomedicines10071643
APA StyleShoda, K., Kuwano, Y., Ichikawa, D., & Masuda, K. (2022). circRNA: A New Biomarker and Therapeutic Target for Esophageal Cancer. Biomedicines, 10(7), 1643. https://doi.org/10.3390/biomedicines10071643