DNA Methylation and Gene Expression in Blood and Adipose Tissue of Adult Offspring of Women with Diabetes in Pregnancy—A Validation Study of DNA Methylation Changes Identified in Adolescent Offspring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Clinical Examination and Tissue Collection
2.3. Candidate Gene Selection
2.4. DNA Methylation Analysis
2.5. Gene Expression Analysis
2.6. Statistical Analyses
3. Results
3.1. Clinical Characteristics
3.2. DNA Methylation Validation
3.3. Gene Expression Profile
3.4. Gene Expression Correlations with Clinicals Characteristics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dabelea, D.; Hanson, R.L.; Lindsay, R.S.; Pettitt, D.J.; Imperatore, G.; Gabir, M.M.; Roumain, J.; Bennett, P.H.; Knowler, W.C. Intrauterine exposure to diabetes conveys risks for type 2 diabetes and obesity: A study of discordant sibships. Diabetes 2000, 49, 2208–2211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buckley, B.S.; Harreiter, J.; Damm, P.; Corcoy, R.; Chico, A.; Simmons, D.; Vellinga, A.; Dunne, F. Gestational diabetes mellitus in Europe: Prevalence, current screening practice and barriers to screening. A review. Diabet. Med. 2012, 29, 844–854. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, H.D.; Catalano, P.; Zhang, C.; Desoye, G.; Mathiesen, E.R.; Damm, P. Gestational diabetes mellitus. Nat. Rev. Dis. Prim. 2019, 5, 47. [Google Scholar] [CrossRef] [PubMed]
- Damm, P.; Houshmand-Oeregaard, A.; Kelstrup, L.; Lauenborg, J.; Mathiesen, E.R.; Clausen, T.D. Gestational diabetes mellitus and long-term consequences for mother and offspring: A view from Denmark. Diabetologia 2016, 59, 1396–1399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clausen, T.D.; Mathiesen, E.R.; Hansen, T.; Pedersen, O.; Jensen, D.M.; Lauenborg, J.; Damm, P. High prevalence of type 2 diabetes and pre-diabetes in adult offspring of women with gestational diabetes mellitus or type 1 diabetes: The role of intrauterine hyperglycemia. Diabetes Care 2008, 31, 340–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clausen, T.D.; Mathiesen, E.R.; Hansen, T.; Pedersen, O.; Jensen, D.M.; Lauenborg, J.; Schmidt, L.; Damm, P. Overweight and the metabolic syndrome in adult offspring of women with diet-treated gestational diabetes mellitus or type 1 diabetes. J. Clin. Endocrinol. Metab. 2009, 94, 2464–2470. [Google Scholar] [CrossRef] [Green Version]
- Talton, O.O.; Bates, K.; Salazar, S.R.; Ji, T.; Schulz, L.C. Lean maternal hyperglycemia alters offspring lipid metabolism and susceptibility to diet-induced obesity in mice. Biol. Reprod. 2019, 100, 1356–1369. [Google Scholar] [CrossRef]
- Fernandez-Twinn, D.S.; Hjort, L.; Novakovic, B.; Ozanne, S.E.; Saffery, R. Intrauterine programming of obesity and type 2 diabetes. Diabetologia 2019, 62, 1789–1801. [Google Scholar] [CrossRef] [Green Version]
- Hjort, L.; Novakovic, B.; Grunnet, L.G.; Maple-Brown, L.; Damm, P.; Desoye, G.; Saffery, R. Diabetes in pregnancy and epigenetic mechanisms-how the first 9 months from conception might affect the child’s epigenome and later risk of disease. Lancet Diabetes Endocrinol. 2019, 7, 796–806. [Google Scholar] [CrossRef]
- Howe, C.G.; Cox, B.; Fore, R.; Jungius, J.; Kvist, T.; Lent, S.; Miles, H.E.; Salas, L.A.; Rifas-Shiman, S.; Starling, A.P.; et al. Maternal Gestational Diabetes Mellitus and Newborn DNA Methylation: Findings from the Pregnancy and Childhood Epigenetics Consortium. Diabetes Care 2020, 43, 98–105. [Google Scholar] [CrossRef] [Green Version]
- Hjort, L.; Martino, D.; Grunnet, L.G.; Naeem, H.; Maksimovic, J.; Olsson, A.H.; Zhang, C.; Ling, C.; Olsen, S.F.; Saffery, R.; et al. Gestational diabetes and maternal obesity are associated with epigenome-wide methylation changes in children. JCI Insight 2018, 3, e122572. [Google Scholar] [CrossRef]
- Lassalle, P.; Molet, S.; Janin, A.; Van der Heyden, J.; Tavernier, J.; Fiers, W.; Devos, R.; Tonnel, A.B. ESM-1 is a novel human endothelial cell-specific molecule expressed in lung and regulated by cytokines. J. Biol. Chem. 1996, 271, 20458–20464. [Google Scholar] [CrossRef] [Green Version]
- Bessa, J.; Albino-Teixeira, A.; Reina-Couto, M.; Sousa, T. Endocan: A novel biomarker for risk stratification, prognosis and therapeutic monitoring in human cardiovascular and renal diseases. Clin. Chim. Acta 2020, 509, 310–335. [Google Scholar] [CrossRef]
- Ishibashi, T.; Yokota, T.; Satoh, Y.; Ichii, M.; Sudo, T.; Doi, Y.; Ueda, T.; Nagate, Y.; Hamanaka, Y.; Tanimura, A.; et al. Identification of MS4A3 as a reliable marker for early myeloid differentiation in human hematopoiesis. Biochem. Biophys. Res. Commun. 2018, 495, 2338–2343. [Google Scholar] [CrossRef]
- Dornier, E.; Coumailleau, F.; Ottavi, J.F.; Moretti, J.; Boucheix, C.; Mauduit, P.; Schweisguth, F.; Rubinstein, E. Tspanc8 tetraspanins regulate ADAM10/Kuzbanian trafficking and promote Notch activation in flies and mammals. J. Cell Biol. 2012, 199, 481–496. [Google Scholar] [CrossRef] [Green Version]
- Perot, B.P.; Ménager, M.M. Tetraspanin 7 and its closest paralog tetraspanin 6: Membrane organizers with key functions in brain development, viral infection, innate immunity, diabetes and cancer. Med. Microbiol. Immunol. 2020, 209, 427–436. [Google Scholar] [CrossRef]
- Wetzel, S.; Seipold, L.; Saftig, P. The metalloproteinase ADAM10: A useful therapeutic target? Biochim. Biophys. Acta Mol. Cell Res. 2017, 1864, 2071–2081. [Google Scholar] [CrossRef]
- Zhang, C.; Tian, L.; Chi, C.; Wu, X.; Yang, X.; Han, M.; Xu, T.; Zhuang, Y.; Deng, K. Adam10 is essential for early embryonic cardiovascular development. Dev. Dyn. 2010, 239, 2594–2602. [Google Scholar] [CrossRef]
- Kelstrup, L.; Hjort, L.; Houshmand-Oeregaard, A.; Clausen, T.D.; Hansen, N.S.; Broholm, C.; Borch-Johnsen, L.; Mathiesen, E.R.; Vaag, A.A.; Damm, P. Gene Expression and DNA Methylation of PPARGC1A in Muscle and Adipose Tissue from Adult Offspring of Women with Diabetes in Pregnancy. Diabetes 2016, 65, 2900–2910. [Google Scholar] [CrossRef] [Green Version]
- Zatterale, F.; Longo, M.; Naderi, J.; Raciti, G.A.; Desiderio, A.; Miele, C.; Beguinot, F. Chronic Adipose Tissue Inflammation Linking Obesity to Insulin Resistance and Type 2 Diabetes. Front. Physiol. 2020, 10, 1607. [Google Scholar] [CrossRef]
- Jensen, D.M.; Mølsted-Pedersen, L.; Beck-Nielsen, H.; Westergaard, J.G.; Ovesen, P.; Damm, P. Screening for gestational diabetes mellitus by a model based on risk indicators: A prospective study. Am. J. Obstet. Gynecol. 2003, 189, 1383–1388. [Google Scholar] [CrossRef]
- Damm, P.; Kühl, C.; Bertelsen, A.; Mølsted-Pedersen, L. Predictive factors for the development of diabetes in women with previous gestational diabetes mellitus. Am. J. Obstet. Gynecol. 1992, 167, 607–616. [Google Scholar] [CrossRef]
- GTEX portal. Available online: https://www.gtexportal.org/home/ (accessed on 30 June 2020).
- PrimerBlast. Available online: https://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi (accessed on 30 June 2020).
- Nielsen, R.; Pedersen, T.Å.; Hagenbeek, D.; Moulos, P.; Siersbæk, R.; Megens, E.; Denissov, S.; Børgesen, M.; Francoijs, K.J.; Mandrup, S.; et al. Genome-Wide Profiling of PPARγ:RXR and RNA Polymerase II Occupancy Reveals Temporal Activation of Distinct Metabolic Pathways and Changes in RXR Dimer Composition during Adipogenesis. Genes Dev. 2008, 22, 2953–2967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, S.F.; Madsen, J.G.S.; Frafjord, K.Ø.; la Cour Poulsen, L.; Salö, S.; Boergesen, M.; Loft, A.; Larsen, B.D.; Madsen, M.S.; Holst, J.J.; et al. Integrative Genomics Outlines a Biphasic Glucose Response and a ChREBP-RORγ Axis Regulating Proliferation in β Cells. Cell Rep. 2016, 16, 2359–2372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lisanti, S.; Omar, W.A.W.; Tomaszewski, B.; De Prins, S.; Jacobs, G.; Koppen, G.; Mathers, J.C.; Langie, S.A.S. Comparison of methods for quantification of global DNA methylation in human cells and tissues. PLoS ONE 2013, 8, e79044. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Pan, X.; Roberts, M.L.; Liu, P.; Kotchen, T.A.; Cowley, A.W.; Mattson, D.L.; Liu, Y.; Liang, M.; Kidambi, S. Stability of global methylation profiles of whole blood and extracted DNA under different storage durations and conditions. Epigenomics 2018, 10, 797–811. [Google Scholar] [CrossRef]
- Kacmarczyk, T.J.; Fall, M.P.; Zhang, X.; Xin, Y.; Li, Y.; Alonso, A.; Betel, D. “Same difference”: Comprehensive evaluation of four DNA methylation measurement platforms. Epigenetics Chromatin 2018, 11, 21. [Google Scholar] [CrossRef] [Green Version]
- Hannum, G.; Guinney, J.; Zhao, L.; Zhang, L.; Hughes, G.; Sadda, S.; Klotzle, B.; Bibikova, M.; Fan, J.B.; Gao, Y.; et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 2013, 49, 359–367. [Google Scholar] [CrossRef] [Green Version]
- Bacos, K.; Gillberg, L.; Volkov, P.; Olsson, A.H.; Hansen, T.; Pedersen, O.; Gjesing, A.P.; Eiberg, H.; Tuomi, T.; Almgren, P.; et al. Blood-based biomarkers of age-associated epigenetic changes in human islets associate with insulin secretion and diabetes. Nat. Commun. 2016, 7, 11089. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Fan, H.; Zhou, L.; Wu, Y.; Lu, H.; Luo, J. Altered expression of PGC-1α and PDX1 and their methylation status are associated with fetal glucose metabolism in gestational diabetes mellitus. Biochem. Biophys. Res. Commun. 2018, 501, 300–306. [Google Scholar] [CrossRef]
- Janke, J.; Engeli, S.; Gorzelniak, K.; Feldpausch, M.; Heintze, U.; Böhnke, J.; Wellner, M.; Herse, F.; Lassalle, P.; Luft, F.C.; et al. Adipose Tissue and Circulating Endothelial Cell Specific Molecule−1 in Human Obesity. Horm. Metab. Res. 2006, 38, 28–33. [Google Scholar] [CrossRef]
- Yaya, L.; Yaqiong, Z.; Weiya, S.; Juxiang, L.; Yonghong, L.; Zubang, Z.; Qijuan, Z.; Wei, S.; Liu, J.; Quan, J. The Association Between Endocan Levels and Subclinical Atherosclerosis in Patients with Type 2 Diabetes Mellitus. Am. J. Med. Sci. 2017, 353, 433–438. [Google Scholar]
- Kose, M.; Emet, S.; Akpinar, T.S.; Kocaaga, M.; Cakmak, R.; Akarsu, M.; Yuruyen, G.; Arman, Y.; Tukek, T. Serum Endocan Level and the Severity of Coronary Artery Disease. Angiology 2015, 66, 727–731. [Google Scholar] [CrossRef]
- Jouannet, S.; Saint-Pol, J.; Fernandez, L.; Nguyen, V.; Charrin, S.; Boucheix, C.; Brou, C.; Milhiet, P.-E.; Rubinstein, E. TspanC8 tetraspanins differentially regulate the cleavage of ADAM10 substrates, Notch activation and ADAM10 membrane compartmentalization. Cell. Mol. Life Sci. 2016, 73, 1895–1915. [Google Scholar] [CrossRef] [Green Version]
- Han, M.S.; White, A.; Perry, R.J.; Camporez, J.-P.; Hidalgo, J.; Shulman, G.I.; Davis, R.J. Regulation of adipose tissue inflammation by interleukin 6. Proc. Natl. Acad. Sci. USA 2020, 117, 2751–2760. [Google Scholar] [CrossRef] [Green Version]
O-GDM | O-T1D | O-BP | p-Value | ||
---|---|---|---|---|---|
n = 82 | n = 67 | n = 57 | O-GDM vs. O-BP | O-T1D vs. O-BP | |
Maternal-BMI (kg/m2) | 24.3 (±5.6) | 21.7 (±1.9) | 21.2 (±3.5) | <0.0001 | 0.30 |
Birth weight (g) | 3398 (560) | 3322 (719) | 3484 (431) | 0.33 | 0.13 |
Gestational age at birth (days) | 274 (269–277) | 261 (257–263) | 282 (276–287) | <0.0001 | <0.0001 |
Large for gestational age (yes vs. no) | 17% (14/82) | 42% (28/67) | 12% (7/57) | 0.44 | <0.0001 |
Gender (female) | 39 (47.6) | 36 (53.7) | 31 (54.4) | 0.43 | 0.94 |
Age (years) | 30.8 (±2.1) | 31.3 (±2.4) | 31.3 (±2.4) | 0.27 | 0.83 |
BMI (kg/m2) | 24.7 (21.8–27.1) | 24.2 (22.1–27.7) | 24.2 (21.7–26.6) | 0.71 | 0.46 |
Total body fat (%) | 31.2 (±9.1) | 32.5 (±9.8) | 29.8 (±7.9) | 0.35 | 0.09 |
Systolic BP (mmHg) | 116.8 (±9.1) | 116.7 (±8.8) | 115.8 (±11.9) | 0.61 | 0.63 |
Diastolic BP (mmHg) | 73.5 (±7.4) | 70.8 (±9.0) | 70.5 (±7.3) | 0.02 | 0.86 |
HbA1c (mmol/mol) | 35 (33–37) | 35 (32–36.5) | 34 (33–36) | 0.10 | 0.30 |
Fasting glucose (mmol/L) | 4.9 (4.5–5.1) | 4.9 (4.7–5.2) | 4.9 (4.6–5.1) | 0.90 | 0.59 |
2 h glucose (mmol/L) | 6.0 (±1.81) | 6.3 (±1.69) | 5.3 (±1.23) | 0.02 | 0.001 |
O-GDM Compared to O-BP: | ||||||
---|---|---|---|---|---|---|
Association to Group (O-GDM vs. O-BP) | Association to Maternal Pre-Pregnancy BMI | |||||
Gene | β (95% CI) | % difference in expression | p-value | β (95% CI) | % difference in expression | p-value |
Blood mRNA expression (n = 35–126) | ||||||
ESM1 | 0.8 (−1.0, 2.6) | 30.9% | 0.38 | −0.02 (−0.2, 0.2) | −0.8% | 0.81 |
TSPAN14 | −0.3 (−0.7,0.05) | −21.5% | 0.09 | −0.01 (−0.04, 0.03) | −0.7% | 0.70 |
SAT mRNA expression (n = 49–100) | ||||||
ESM1 | −0.16 (−0.3, −0.03) | −55.4% | 0.02 | 0.002 (−0.1, 0.1) | 0.7% | 0.71 |
TSPAN14 | −0.09 (−0.15, −0.02) | −23.2% | 0.01 | 0.01 (0.001, 0.1) | 2.6% | 0.02 |
O-T1D compared to O-BP: | ||||||
Association to Group (O-T1D vs. O-BP) | Association to maternal pre-pregnancy BMI | |||||
β (95% CI) | % difference in expression | p-value | β (95% CI) | % difference in expression | p-value | |
Blood mRNA expression (n = 31–115) | ||||||
ESM1 | −0.48 (−2.1, 1.1) | −18.6% | 0.55 | −0.22 (−0.5, 0.1) | −8.5% | 0.14 |
TSPAN14 | −0.23 (−0.7, 0.2) | −16.5% | 0.29 | −0.03 (−0.1, 0.1) | −2.2% | 0.52 |
SAT mRNA expression (n = 68–82) | ||||||
ESM1 | −0.04 (−0.2, 0.1) | −10.3% | 0.61 | 0.001 (−0.02, 0.03) | 0.3% | 0.97 |
TSPAN14 | −0.01 (−0.1, 0.1) | −2.6% | 0.79 | 0.01 (−0.01, 0.02) | 2.6% | 0.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manitta, E.; Fontes Marques, I.C.; Stokholm Bredgaard, S.; Kelstrup, L.; Houshmand-Oeregaard, A.; Dalsgaard Clausen, T.; Groth Grunnet, L.; Reinhardt Mathiesen, E.; Torp Dalgaard, L.; Barrès, R.; et al. DNA Methylation and Gene Expression in Blood and Adipose Tissue of Adult Offspring of Women with Diabetes in Pregnancy—A Validation Study of DNA Methylation Changes Identified in Adolescent Offspring. Biomedicines 2022, 10, 1244. https://doi.org/10.3390/biomedicines10061244
Manitta E, Fontes Marques IC, Stokholm Bredgaard S, Kelstrup L, Houshmand-Oeregaard A, Dalsgaard Clausen T, Groth Grunnet L, Reinhardt Mathiesen E, Torp Dalgaard L, Barrès R, et al. DNA Methylation and Gene Expression in Blood and Adipose Tissue of Adult Offspring of Women with Diabetes in Pregnancy—A Validation Study of DNA Methylation Changes Identified in Adolescent Offspring. Biomedicines. 2022; 10(6):1244. https://doi.org/10.3390/biomedicines10061244
Chicago/Turabian StyleManitta, Eleonora, Irene Carolina Fontes Marques, Sandra Stokholm Bredgaard, Louise Kelstrup, Azadeh Houshmand-Oeregaard, Tine Dalsgaard Clausen, Louise Groth Grunnet, Elisabeth Reinhardt Mathiesen, Louise Torp Dalgaard, Romain Barrès, and et al. 2022. "DNA Methylation and Gene Expression in Blood and Adipose Tissue of Adult Offspring of Women with Diabetes in Pregnancy—A Validation Study of DNA Methylation Changes Identified in Adolescent Offspring" Biomedicines 10, no. 6: 1244. https://doi.org/10.3390/biomedicines10061244
APA StyleManitta, E., Fontes Marques, I. C., Stokholm Bredgaard, S., Kelstrup, L., Houshmand-Oeregaard, A., Dalsgaard Clausen, T., Groth Grunnet, L., Reinhardt Mathiesen, E., Torp Dalgaard, L., Barrès, R., Vaag, A. A., Damm, P., & Hjort, L. (2022). DNA Methylation and Gene Expression in Blood and Adipose Tissue of Adult Offspring of Women with Diabetes in Pregnancy—A Validation Study of DNA Methylation Changes Identified in Adolescent Offspring. Biomedicines, 10(6), 1244. https://doi.org/10.3390/biomedicines10061244