The Pathogenesis of Cardiac Arrhythmias in Vitamin D Deficiency
Abstract
:1. Introduction
2. Pathophysiology of Arrhythmias and Conduction Disorders
3. Atrial Fibrillation
4. Ventricular Repolarization and Vitamin D Deficiency
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pike, J.W.; Christakos, S. Biology and Mechanisms of Action of the Vitamin D Hormone. Endocrinol. Metab. Clin. N. Am. 2017, 46, 815–843. [Google Scholar] [CrossRef] [PubMed]
- Wacker, M.; Holick, M.F. Sunlight and Vitamin D: A global perspective for health. Dermatoendocrinology 2013, 5, 51–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grant, W.B.; Lahore, H.; McDonnell, S.L.; Baggerly, C.A.; French, C.B.; Aliano, J.L.; Bhattoa, H.P. Evidence that Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutrients 2020, 12, 988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, N. Role of vitamin D in preventing of COVID-19 infection, progression and severity. J. Infect. Public Health 2020, 13, 1373–1380. [Google Scholar] [CrossRef] [PubMed]
- Ofoedu, C.E.; Iwouno, J.O.; Ofoedu, E.O.; Ogueke, C.C.; Igwe, V.S.; Agunwah, I.M.; Ofoedum, A.F.; Chacha, J.S.; Muobike, O.P.; Agunbiade, A.O.; et al. Revisiting food-sourced vitamins for consumer diet and health needs: A perspective review, from vitamin classification, metabolic functions, absorption, utilization, to balancing nutritional requirements. PeerJ 2021, 9, e11940. [Google Scholar] [CrossRef]
- Wakeman, M. A Literature Review of the Potential Impact of Medication on Vitamin D Status. Risk Manag. Healthc. Policy 2021, 14, 3357–3381. [Google Scholar] [CrossRef]
- Tamayo, M.; Martin-Nunes, L.; Val-Blasco, A.; Piedras, M.J.; Larriba, M.J.; Gómez-Hurtado, N.; Fernández-Velasco, M.; Delgado, C. Calcitriol, the Bioactive Metabolite of Vitamin D, Increases Ventricular K+ Currents in Isolated Mouse Cardiomyocytes. Front. Physiol. 2018, 9, 1186. [Google Scholar] [CrossRef]
- Canpolat, U.; Yayla, Ç.; Akboğa, M.K.; Özcan, E.H.; Turak, O.; Özcan, F.; Topaloğlu, S.; Aras, D. Effect of Vitamin D Replacement on Atrial Electromechanical Delay in Subjects with Vitamin D Deficiency. J. Cardiovasc. Electrophysiol. 2015, 26, 649–655. [Google Scholar] [CrossRef]
- Reddy Vanga, S.; Good, M.; Howard, P.A.; Vacek, J.L. Role of vitamin D in cardiovascular health. Am. J. Cardiol. 2010, 106, 798–805. [Google Scholar] [CrossRef]
- Nikolova, M.; Nazifova-Tasinova, N.; Vankova, D.; Gerova, D.; Yotov, Y.; Atanasov, A.; Pasheva, M.; Kiselova-Kaneva, Y.; Galunska, B. Vitamin D Status in Patients with Atrial Fibrillation and Heart Failure—Is there a Link? Clin. Lab. 2021, 67, 1337–1348. [Google Scholar] [CrossRef]
- Litviňuková, M.; Talavera-López, C.; Maatz, H.; Reichart, D.; Worth, C.L.; Lindberg, E.L.; Kanda, M.; Polanski, K.; Heinig, M.; Lee, M.; et al. Cells of the adult human heart. Nature 2020, 588, 466–472. [Google Scholar] [CrossRef] [PubMed]
- Latic, N.; Erben, R.G. Vitamin D and Cardiovascular Disease, with Emphasis on Hypertension, Atherosclerosis, and Heart Failure. Int. J. Mol. Sci. 2020, 21, 6483. [Google Scholar] [CrossRef] [PubMed]
- Wimalawansa, S.J. Vitamin D and cardiovascular diseases: Causality. J. Steroid Biochem. Mol. Biol. 2018, 175, 29–43. [Google Scholar] [CrossRef]
- Mangelsdorf, D.J.; Thummel, C.; Beato, M.; Herrlich, P.; Schütz, G.; Umesono, K.; Blumberg, B.; Kastner, P.; Mark, M.; Chambon, P.; et al. The nuclear receptor superfamily: The second decade. Cell 1995, 83, 835–839. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Law, C.S.; Grigsby, C.L.; Olsen, K.; Hong, T.T.; Zhang, Y.; Yeghiazarians, Y.; Gardner, D.G. Cardiomyocyte-specific deletion of the vitamin D receptor gene results in cardiac hypertrophy. Circulation 2011, 124, 1838–1847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.C.; Kong, J.; Wei, M.; Chen, Z.F.; Liu, S.Q.; Cao, L.P. 1,25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin-angiotensin system. J. Clin. Investig. 2002, 110, 229–238. [Google Scholar] [CrossRef]
- van Etten, E.; Mathieu, C. Immunoregulation by 1,25-dihydroxyvitamin D3: Basic concepts. J. Steroid Biochem. Mol. Biol. 2005, 97, 93–101. [Google Scholar] [CrossRef]
- Hanafy, D.A.; Chang, S.L.; Lu, Y.Y.; Chen, Y.C.; Kao, Y.H.; Huang, J.; Chen, S.A.; Chen, Y.J. Electromechanical effects of 1,25-dihydroxyvitamin d with antiatrial fibrillation activities. J. Cardiovasc. Electrophysiol. 2014, 25, 317–323. [Google Scholar] [CrossRef]
- Legarth, C.; Grimm, D.; Krüger, M.; Infanger, M.; Wehland, M. Potential Beneficial Effects of Vitamin D in Coronary Artery Disease. Nutrients 2019, 12, 99. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.Y.; Huang, J.H.; Chiu, H.W.; Lin, Y.K.; Hsu, C.Y.; Chen, Y.J. Vitamin D and bisphosphonates therapies for osteoporosis are associated with different risks of atrial fibrillation in women: A nationwide population-based analysis. Medicine 2018, 97, e12947. [Google Scholar] [CrossRef]
- Resnick, L.M.; Muller, F.B.; Laragh, J.H. Calcium-regulating hormones in essential hypertension. Relation to plasma renin activity and sodium metabolism. Ann. Intern. Med. 1986, 105, 649–654. [Google Scholar] [CrossRef] [PubMed]
- Melamed, M.L.; Muntner, P.; Michos, E.D.; Uribarri, J.; Weber, C.; Sharma, J.; Raggi, P. Serum 25-hydroxyvitamin D levels and the prevalence of peripheral arterial disease: Results from NHANES 2001 to 2004. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 1179–1185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watson, K.E.; Abrolat, M.L.; Malone, L.L.; Hoeg, J.M.; Doherty, T.; Detrano, R.; Demer, L.L. Active serum vitamin D levels are inversely correlated with coronary calcification. Circulation 1997, 96, 1755–1760. [Google Scholar] [CrossRef]
- Tishkoff, D.X.; Nibbelink, K.A.; Holmberg, K.H.; Dandu, L.; Simpson, R.U. Functional vitamin D receptor (VDR) in the t-tubules of cardiac myocytes: VDR knockout cardiomyocyte contractility. Endocrinology 2008, 149, 558–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weishaar, R.E.; Kim, S.N.; Saunders, D.E.; Simpson, R.U. Involvement of vitamin D3 with cardiovascular function. III. Effects on physical and morphological properties. Am. J. Physiol. 1990, 258, E134–E142. [Google Scholar] [CrossRef]
- Forman, J.P.; Giovannucci, E.; Holmes, M.D.; Bischoff-Ferrari, H.A.; Tworoger, S.S.; Willett, W.C.; Curhan, G.C. Plasma 25-hydroxyvitamin D levels and risk of incident hypertension. Hypertension 2007, 49, 1063–1069. [Google Scholar] [CrossRef] [Green Version]
- Diez, E.R.; Altamirano, L.B.; García, I.M.; Mazzei, L.; Prado, N.J.; Fornes, M.W.; Carrión, F.D.; Zumino, A.Z.; Ferder, L.; Manucha, W. Heart remodeling and ischemia—Reperfusion arrhythmias linked to myocardial vitamin d receptors deficiency in obstructive nephropathy are reversed by paricalcitol. J. Cardiovasc. Pharmacol. Ther. 2015, 20, 211–220. [Google Scholar] [CrossRef]
- McCarty, M.F.; Barroso-Aranda, J.; Contreras, F. Can moderate elevations of parathyroid hormone acutely increase risk for ischemic cardiac arrhythmias? Med. Hypotheses 2009, 72, 581–583. [Google Scholar] [CrossRef]
- Khan, M.; Jose, A.; Sharma, S. Physiology, Parathyroid Hormone. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK499940/ (accessed on 12 April 2022).
- Dhingra, R.; Gona, P.; Benjamin, E.J.; Wang, T.J.; Aragam, J.; D’ Agostino, R.B.; Sr Kannel, W.B.; Vasan, R.S. Relations of serum phosphorus levels to echocardiographic left ventricular mass and incidence of heart failure in the community. Eur. J. Heart Fail. 2010, 12, 812–818. [Google Scholar] [CrossRef] [Green Version]
- Onufrak, S.J.; Bellasi, A.; Shaw, L.J.; Herzog, C.A.; Cardarelli, F.; Wilson, P.W.; Vaccarino, V.; Raggi, P. Phosphorus levels are associated with subclinical atherosclerosis in the general population. Atherosclerosis 2008, 199, 424–431. [Google Scholar] [CrossRef]
- Dhingra, R.; Sullivan, L.M.; Fox, C.S.; Wang, T.J.; D’ Agostino, R.B.; Sr Gaziano, J.M.; Vasan, R.S. Relations of serum phosphorus and calcium levels to the incidence of cardiovascular disease in the community. Arch. Intern. Med. 2007, 167, 879–885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez, F.L.; Agarwal, S.K.; Grams, M.E.; Loehr, L.R.; Soliman, E.Z.; Lutsey, P.L.; Chen, L.Y.; Huxley, R.R.; Alonso, A. Relation of serum phosphorus levels to the incidence of atrial fibrillation (from the Atherosclerosis Risk in Communities [ARIC] study). Am. J. Cardiol. 2013, 111, 857–862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Imperio, S.; Monasky, M.M.; Micaglio, E.; Negro, G.; Pappone, C. Impact of Dietary Factors on Brugada Syndrome and Long QT Syndrome. Nutrients 2021, 13, 2482. [Google Scholar] [CrossRef] [PubMed]
- Deo, R.; Katz, R.; Shlipak, M.G.; Sotoodehnia, N.; Psaty, B.M.; Sarnak, M.J.; Fried, L.F.; Chonchol, M.; de Boer, I.H.; Enquobahrie, D.; et al. Vitamin D, parathyroid hormone, and sudden cardiac death: Results from the Cardiovascular Health Study. Hypertension 2011, 58, 1021–1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koyama, T.; Shibakura, M.; Ohsawa, M.; Kamiyama, R.; Hirosawa, S. Anticoagulant effects of 1alpha,25-dihydroxyvitamin D3 on human myelogenous leukemia cells and monocytes. Blood 1998, 92, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Ohsawa, M.; Koyama, T.; Yamamoto, K.; Hirosawa, S.; Kamei, S.; Kamiyama, R. 1alpha,25-dihydroxyvitamin D(3) and its potent synthetic analogs downregulate tissue factor and upregulate thrombomodulin expression in monocytic cells, counteracting the effects of tumor necrosis factor and oxidized LDL. Circulation 2000, 102, 2867–2872. [Google Scholar] [CrossRef] [Green Version]
- Aihara, K.; Azuma, H.; Akaike, M.; Ikeda, Y.; Yamashita, M.; Sudo, T.; Hayashi, H.; Yamada, Y.; Endoh, F.; Fujimura, M.; et al. Disruption of nuclear vitamin D receptor gene causes enhanced thrombogenicity in mice. J. Biol. Chem. 2004, 279, 35798–35802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merke, J.; Milde, P.; Lewicka, S.; Hügel, U.; Klaus, G.; Mangelsdorf, D.J.; Haussler, M.R.; Rauterberg, E.W.; Ritz, E. Identification and regulation of 1,25-dihydroxyvitamin D3 receptor activity and biosynthesis of 1,25-dihydroxyvitamin D3. Studies in cultured bovine aortic endothelial cells and human dermal capillaries. J. Clin. Investig. 1989, 83, 1903–1915. [Google Scholar] [CrossRef]
- Çakır, O.M. Low vitamin D levels predict left atrial thrombus in nonvalvular atrial fibrillation. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 1152–1160. [Google Scholar] [CrossRef]
- Antzelevitch, C.; Burashnikov, A. Overview of Basic Mechanisms of Cardiac Arrhythmia. Card. Electrophysiol. Clin. 2011, 3, 23–45. [Google Scholar] [CrossRef] [Green Version]
- Lei, M.; Huang, C.L. Cardiac arrhythmogenesis: A tale of two clocks? Cardiovasc. Res. 2020, 116, e205–e209. [Google Scholar] [CrossRef] [Green Version]
- Gawałko, M.; Balsam, P.; Lodziński, P.; Grabowski, M.; Krzowski, B.; Opolski, G.; Kosiuk, J. Cardiac Arrhythmias in Autoimmune Diseases. Circ. J. 2020, 84, 685–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeevaratnam, K.; Chadda, K.R.; Salvage, S.C.; Valli, H.; Ahmad, S.; Grace, A.A.; Huang, C.L. Ion channels, long QT syndrome and arrhythmogenesis in ageing. Clin. Exp. Pharmacol. Physiol. 2017, 44, 38–45. [Google Scholar] [CrossRef] [Green Version]
- Podolec, P.; Baranchuk, A.; Brugada, J.; Kukla, P.; Lelakowski, J.; Kopeć, G.; Rubiś, P.; Stępniewski, J.; Podolec, J.; Komar, M.; et al. Clinical classification of rare cardiac arrhythmogenic and conduction disorders, and rare arrhythmias. Pol. Arch. Intern. Med. 2019, 129, 154–159. [Google Scholar] [CrossRef] [Green Version]
- Antoni, H. Pathophysiologie der Herzrhythmusstörungen. Pathophysiology of cardiac arrhythmias. Z. Kardiol. 1992, 81, 111–117. [Google Scholar] [PubMed]
- Chugh, S.S.; Havmoeller, R.; Narayanan, K.; Singh, D.; Rienstra, M.; Benjamin, E.J.; Gillum, R.F.; Kim, Y.H.; McAnulty, J.H., Jr.; Zheng, Z.J.; et al. Worldwide epidemiology of atrial fibrillation: A Global Burden of Disease 2010 Study. Circulation 2014, 129, 837–847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Odutayo, A.; Wong, C.X.; Hsiao, A.J.; Hopewell, S.; Altman, D.G.; Emdin, C.A. Atrial fibrillation and risks of cardiovascular disease, renal disease, and death: Systematic review and meta-analysis. BMJ 2016, 354, i4482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conen, D.; Chae, C.U.; Glynn, R.J.; Tedrow, U.B.; Everett, B.M.; Buring, J.E.; Albert, C.M. Risk of death and cardiovascular events in initially healthy women with new-onset atrial fibrillation. JAMA 2011, 305, 2080–2087. [Google Scholar] [CrossRef] [Green Version]
- Pellman, J.; Lyon, R.C.; Sheikh, F. Extracellular matrix remodeling in atrial fibrosis: Mechanisms and implications in atrial fibrillation. J. Mol. Cell. Cardiol. 2010, 48, 461–467. [Google Scholar] [CrossRef] [Green Version]
- Özcan, K.S.; Güngör, B.; Altay, S.; Osmonov, D.; Ekmekçi, A.; Özpamuk, F.; Kemaloğlu, T.; Yıldırım, A.; Tayyareci, G.; Erdinler, İ. Increased level of resistin predicts development of atrial fibrillation. J. Cardiol. 2014, 63, 308–312. [Google Scholar] [CrossRef] [Green Version]
- Saba, S.; Janczewski, A.M.; Baker, L.C.; Shusterman, V.; Gursoy, E.C.; Feldman, A.M.; Salama, G.; McTiernan, C.F.; London, B. Atrial contractile dysfunction, fibrosis, and arrhythmias in a mouse model of cardiomyopathy secondary to cardiac-specific overexpression of tumor necrosis factor-{alpha}. Am. J. Physiol. Heart Circ. Physiol. 2005, 289, H1456–H1467. [Google Scholar] [CrossRef] [Green Version]
- Everett, T.H., 4th; Olgin, J.E. Atrial fibrosis and the mechanisms of atrial fibrillation. Heart Rhythm 2007, 4, 24–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allessie, M.; Ausma, J.; Schotten, U. Electrical, contractile and structural remodeling during atrial fibrillation. Cardiovasc. Res. 2002, 54, 230–246. [Google Scholar] [CrossRef]
- Spach, M.S.; Josephson, M.E. Initiating reentry: The role of nonuniform anisotropy in small circuits. J. Cardiovasc. Electrophysiol. 1994, 5, 182–209. [Google Scholar] [CrossRef]
- Spach, M.S.; Boineau, J.P. Microfibrosis produces electrical load variations due to loss of side-to-side cell connections: A major mechanism of structural heart disease arrhythmias. Pacing Clin. Electrophysiol. 1997, 20, 397–413. [Google Scholar] [CrossRef] [PubMed]
- Moe, G.K.; Rheinboldt, W.C.; Abildskov, J.A. A computer model of atrial fibrillation. Am. Heart J. 1964, 67, 200–220. [Google Scholar] [CrossRef]
- Kostin, S.; Klein, G.; Szalay, Z.; Hein, S.; Bauer, E.P.; Schaper, J. Structural correlate of atrial fibrillation in human patients. Cardiovasc. Res. 2002, 54, 361–379. [Google Scholar] [CrossRef] [Green Version]
- Burstein, B.; Nattel, S. Atrial fibrosis: Mechanisms and clinical relevance in atrial fibrillation. J. Am. Coll. Cardiol. 2008, 51, 802–809. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Fareh, S.; Leung, T.K.; Nattel, S. Promotion of atrial fibrillation by heart failure in dogs: Atrial remodeling of a different sort. Circulation 1999, 100, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.W.; Everett, T.H., 4th; Rahmutula, D.; Guerra, J.M.; Wilson, E.; Ding, C.; Olgin, J.E. Pirfenidone prevents the development of a vulnerable substrate for atrial fibrillation in a canine model of heart failure. Circulation 2006, 114, 1703–1712. [Google Scholar] [CrossRef] [Green Version]
- Verheule, S.; Sato, T.; Everett, T., 4th; Engle, S.K.; Otten, D.; Rubart-von der Lohe, M.; Nakajima, H.O.; Nakajima, H.; Field, L.J.; Olgin, J.E. Increased vulnerability to atrial fibrillation in transgenic mice with selective atrial fibrosis caused by overexpression of TGF-beta1. Circ. Res. 2004, 94, 1458–1465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boldt, A.; Wetzel, U.; Lauschke, J.; Weigl, J.; Gummert, J.; Hindricks, G.; Kottkamp, H.; Dhein, S. Fibrosis in left atrial tissue of patients with atrial fibrillation with and without underlying mitral valve disease. Heart 2004, 90, 400–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, M.H.; Li, Y.S.; Yang, K.P. Fibrosis of collagen I and remodeling of connexin 43 in atrial myocardium of patients with atrial fibrillation. Cardiology 2007, 107, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Khrestian, C.M.; Sahadevan, J.; Waldo, A.L. Reconsidering the multiple wavelet hypothesis of atrial fibrillation. Heart Rhythm 2020, 17, 1976–1983. [Google Scholar] [CrossRef]
- Mandapati, R.; Skanes, A.; Chen, J.; Berenfeld, O.; Jalife, J. Stable microreentrant sources as a mechanism of atrial fibrillation in the isolated sheep heart. Circulation 2000, 101, 194–199. [Google Scholar] [CrossRef] [Green Version]
- Skanes, A.C.; Mandapati, R.; Berenfeld, O.; Davidenko, J.M.; Jalife, J. Spatiotemporal periodicity during atrial fibrillation in the isolated sheep heart. Circulation 1998, 98, 1236–1248. [Google Scholar] [CrossRef]
- Haïssaguerre, M.; Jaïs, P.; Shah, D.C.; Takahashi, A.; Hocini, M.; Quiniou, G.; Garrigue, S.; Le Mouroux, A.; Le Métayer, P.; Clémenty, J. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N. Engl. J. Med. 1998, 339, 659–666. [Google Scholar] [CrossRef] [Green Version]
- Chan, Y.H.; You, K.H.; Hai, J.J.; Chan, P.H.; Lam, T.H.; Cowling, B.J.; Sham, P.C.; Lau, C.P.; Lam, K.S.; Siu, C.W.; et al. Genetically deprived vitamin D exposure predisposes to atrial fibrillation. Europace 2017, 19, 25–31. [Google Scholar] [CrossRef]
- Canpolat, U.; Aytemir, K.; Hazirolan, T.; Özer, N.; Oto, A. Relationship between vitamin D level and left atrial fibrosis in patients with lone paroxysmal atrial fibrillation undergoing cryoballoon-based catheter ablation. J. Cardiol. 2017, 69, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.L.; Yang, J.; Yang, J.; Wang, H.B.; Yang, C.J.; Yang, Y. Vitamin D and new-onset atrial fibrillation: A meta-analysis of randomized controlled trials. Hell. J. Cardiol. 2018, 59, 72–77. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, Y.; Ng, C.Y.; Wang, D.; Wang, J.; Li, G.; Liu, T. Meta-analysis of Vitamin D Deficiency and Risk of Atrial Fibrillation. Clin. Cardiol. 2016, 39, 537–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albert, C.M.; Cook, N.R.; Pester, J.; Moorthy, M.V.; Ridge, C.; Danik, J.S.; Gencer, B.; Siddiqi, H.K.; Ng, C.; Gibson, H.; et al. Effect of Marine Omega-3 Fatty Acid and Vitamin D Supplementation on Incident Atrial Fibrillation: A Randomized Clinical Trial. JAMA 2021, 325, 1061–1073. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.; Nitiahpapand, R.; Bhatti, P.; Kourliouros, A. Vitamin D deficiency and atrial fibrillation. Int. J. Cardiol. 2015, 184, 159–162. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Perera, R.A.; Chan, Y.H.; Fang, V.J.; Ng, S.; Ip, D.K.; Kam, A.M.; Leung, G.M.; Peiris, J.S.; Cowling, B.J. Determinants of serum 25-hydroxyvitamin D in Hong Kong. Br. J. Nutr. 2015, 114, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Turin, A.; Bax, J.J.; Doukas, D.; Joyce, C.; Lopez, J.J.; Mathew, V.; Pontone, G.; Shah, F.; Singh, S.; Wilber, D.J.; et al. Interactions Among Vitamin D, Atrial Fibrillation, and the Renin-Angiotensin-Aldosterone System. Am. J. Cardiol. 2018, 122, 780–784. [Google Scholar] [CrossRef]
- Chen, W.R.; Liu, Z.Y.; Shi, Y.; Yin, D.W.; Wang, H.; Sha, Y.; Chen, Y.D. Relation of low vitamin D to nonvalvular persistent atrial fibrillation in Chinese patients. Ann. Noninvasive Electrocardiol. 2014, 19, 166–173. [Google Scholar] [CrossRef]
- Özsin, K.K.; Sanrı, U.S.; Toktaş, F.; Kahraman, N.; Yavuz, Ş. Effect of Plasma Level of Vitamin D on Postoperative Atrial Fibrillation in Patients Undergoing Isolated Coronary Artery Bypass Grafting. Braz. J. Cardiovasc. Surg. 2018, 33, 217–223. [Google Scholar] [CrossRef]
- Kara, H.; Yasim, A. Effects of high-dose vitamin D supplementation on the occurrence of post-operative atrial fibrillation after coronary artery bypass grafting: Randomized controlled trial. Gen. Thorac. Cardiovasc. Surg. 2020, 68, 477–484. [Google Scholar] [CrossRef]
- Cerit, L.; Özcem, B.; Cerit, Z.; Duygu, H. Preventive Effect of Preoperative Vitamin D Supplementation on Postoperative Atrial Fibrillation. Braz. J. Cardiovasc. Surg. 2018, 33, 347–352. [Google Scholar] [CrossRef]
- Skuladottir, G.V.; Cohen, A.; Arnar, D.O.; Hougaard, D.M.; Torfason, B.; Palsson, R.; Indridason, O.S. Plasma 25-hydroxyvitamin D2 and D3 levels and incidence of postoperative atrial fibrillation. J. Nutr. Sci. 2016, 5, e10. [Google Scholar] [CrossRef] [Green Version]
- Yaman, B.; Cerit, L.; Günsel, H.K.; Cerit, Z.; Usalp, S.; Yüksek, Ü.; Coşkun, U.; Duygu, H.; Akpınar, O. Is there any Link Between Vitamin D and Recurrence of Atrial Fibrillation after Cardioversion? Braz. J. Cardiovasc. Surg. 2020, 35, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Tamez, H.; Zoccali, C.; Packham, D.; Wenger, J.; Bhan, I.; Appelbaum, E.; Pritchett, Y.; Chang, Y.; Agarwal, R.; Wanner, C.; et al. Vitamin D reduces left atrial volume in patients with left ventricular hypertrophy and chronic kidney disease. Am. Heart J. 2012, 164, 902–909.e2. [Google Scholar] [CrossRef] [PubMed]
- Liang, F.; Wang, Y. Coronary heart disease and atrial fibrillation: A vicious cycle. Am. J. Physiol. Heart Circ. Physiol. 2021, 320, 1–12. [Google Scholar] [CrossRef]
- Holick, M.F. Vitamin D deficiency. N. Engl. J. Med. 2007, 357, 266–281. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, M.; Taban-Sadeghi, M.; Nikniaz, L.; Pashazadeh, F. The relationship between preoperative serum vitamin D deficiency and postoperative atrial fibrillation: A systematic review and meta-analysis. J. Cardiovasc. Thorac. Res. 2021, 13, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Njoku, A.; Kannabhiran, M.; Arora, R.; Reddy, P.; Gopinathannair, R.; Lakkireddy, D.; Dominic, P. Left atrial volume predicts atrial fibrillation recurrence after radiofrequency ablation: A meta-analysis. Europace 2018, 20, 33–42. [Google Scholar] [CrossRef]
- Marrouche, N.F.; Wilber, D.; Hindricks, G.; Jais, P.; Akoum, N.; Marchlinski, F.; Kholmovski, E.; Burgon, N.; Hu, N.; Mont, L.; et al. Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation: The DECAAF study. JAMA 2014, 311, 498–506. [Google Scholar] [CrossRef]
- Bekdas, M.; Inanir, M.; Ilhan, Z.; Ildes, E. Effects of serum vitamin D level on ventricular repolarization in children and adolescents. Bratisl. Lek Listy 2021, 122, 816–820. [Google Scholar] [CrossRef]
- Bagrul, D.; Atik, F. Association of vitamin D deficiency with ventricular repolarization abnormalities. Kardiol. Pol. 2019, 77, 853–858. [Google Scholar] [CrossRef] [Green Version]
- Yetkin, D.O.; Kucukkaya, B.; Turhan, M.; Oren, M. The effect of 25-hydroxyvitamin D levels on QT interval duration and dispersion in type 2 diabetic patients. Croat. Med J. 2015, 56, 525–530. [Google Scholar] [CrossRef] [Green Version]
Author (Year) | Study Design and Participants’ Characteristics | Parameters Investigated | Outcome |
---|---|---|---|
Çakır et al. [40] (2020) | observational study 201 patients suffering from AF (133 female) following treatment with continuous non-vitamin K antagonist oral anticoagulant | thrombus occurrence | low 25(OH)D levels associated with dense spontaneous echo contrast and LA thrombus occurrence |
Chan et al. [69] (2017) | case-control study 156 patients with AF 1019 control all female | SNPs of vitamin D mechanistic pathways and 25(OH)D levels in serum | genetically deprived vitamin D exposure constitutes a predisposition for a higher risk of AF in patients with coronary artery disease |
Canpolat et al. [70] (2017) | prospective study 48 patients (41.7% female) suffering from lone paroxysmal AF 48 healthy controls | LA fibrosis | lower 25(OH)D levels are significantly linked to more considerable LA fibrosis and may play a role in relapse after cryoablation |
Albert et al. [73] (2021) | randomized clinical trial 25,119 patients without preexisting cardiovascular disease (incl. AF) and cancer; aged 50 and higher | 6272 subjects: 460 mg/d eicosapentaenoic acid + 380 mg/d of docosahexaenoic acid + 2000 IU/d vitamin D3 6270 subjects: eicosapentaenoic and docosahexaenoic acid + placebo 6281 subjects: vitamin D3 + placebo 6296 subjects: 2 placebos | over a median follow-up of 5 years, no significant differences in the occurrence of AF |
Turin et al. [76] (2018) | retrospective study 47,062 patients with documented 25(OH)D levels | incidence of AF in patients with ACEI −/+ ARB treatment vs. patients not following treatment with ACEI or ARB | use of ACEI/ARB links to less AF events (attenuated in patients taking 25(OH)D) vitamin D deficiency not statistically significant associated with AF incident |
Yang et al. [20] (2018) | observational study 20,788 female patients diagnosed with osteoporosis | implication of osteoporosis treatment in the occurrence of AF | different risk for AF associated with diverse osteoporosis treatment; vitamin D could have beneficial effects in patients suffering from osteoporosis |
Chen et al. [77] (2014) | observational study 162 patients with nonvalvular persistent AF; without any other cardiovascular disease 160 healthy controls | 25(OH)D serum levels | low vitamin D levels associated with AF occurrence in Chinese adults with no other vascular risk factors |
Özsin et al. [78] (2018) | prospective randomized clinical trial 50 patients with postoperative atrial fibrillation (66% male) 50 patients without postoperative atrial fibrillation (74% male) | AF occurrence until discharge, immediate measurement of 25(OH)D serum levels after the event | lower levels of 25(OH)D could be one of the reasons for postoperative atrial fibrillation and are an independent predictor for this event |
Kara and Yasim [79] (2020) | randomized controlled, blinded, and parallel-arm trial 116 patients with vitamin D deficiency or insufficiency who had coronary artery bypass grafting: 58 patients with oral vitamin D supplementation 48 h before procedure = treatment group and 58 patients without any vitamin D supplementation = control | occurrence of postoperative atrial fibrillation until discharge | significant prevention of postoperative atrial fibrillation with short-term preoperative supplementation of vitamin D |
Cerit et al. [80] (2018) | randomized, blinded clinical trial 328 consecutive patients with on-pump coronary artery bypass grafting 80 patients with vitamin D insufficiency and 56 patients with vitamin D deficiency; treatment group: 68 patients with oral vitamin D 48 h before surgery; control group: 68 patients without oral vitamin D | occurrence of postoperative atrial fibrillation until discharge | preoperative vitamin D supplementation strongly associated with the prevention of occurrence of postoperative atrial fibrillation in patients suffering from vitamin D deficiency |
Skuladottir et al. [81] (2016) | randomized, double-blind, placebo-controlled clinical trial 118 patients undergoing coronary artery bypass grafting and/or valvular repair surgery with available preoperatively and postoperatively (the third day after) plasma samples of vitamin D2 and vitamin D3 | occurrence of postoperative atrial fibrillation | no association for plasma levels of total 25(OH)D and 25(OH)D3; higher levels of 25(OH)D2 linked with higher occurrence of postoperative atrial fibrillation |
Yaman et al. [82] (2020) | retrospective study 52 patients with AF and rhythm control strategy scheduled for medical or electrical cardioversion | recurrence of atrial fibrillation after cardioversion and vitamin D levels | increased risk of AF recurrence associated with lower vitamin D levels |
Tamez et al. [83] (2012) | randomized trial 196 patients suffering from chronic kidney disease, left ventricular hypertrophy (mild to moderate) with preserved ejection fraction receiving either 2 μg of oral paricalcitol or placebo for 48 weeks | two-dimensional echocardiography and levels of brain natriuretic peptide | patients receiving an analogue of vitamin D presented reduced left atrial volume index and an attenuated rise in brain natriuretic peptide |
Author (Year) | Study Design and Participants’ Characteristics | Parameters Investigated | Outcome |
---|---|---|---|
Bekdas et al. [89] (2021) | Observational study 67 children and adolescents with the following vitamin D levels:
| QRS QTmin,max,av Pulse QTc,d,dc JT, JTc Tp-e Tp-e/QT Tp-e/QTc Tp-e/JT Tp-e/JTc | Vitamin D deficient: prolonged Tp-e, Tp-e/QT, Tp-e/QTc, Tp-e/JT, and Tp-e/JTc. Vitamin D insufficient: lower QTmax and QTmin, increased pulse, and JTc. |
Bagrul and Atik [90] (2019) | Observational study 150 adolescents with the following vitamin D levels:
| QT QTc,d Tp-e Tp-e/QTc JT JTd Tp-e/JTpreak | Vitamin D deficient: prolonged Tp-e, increased Tp-e/QTc ratio, increased Tp-e/JTpeak ratio, higher QTd, and JTd Vitamin D insufficient: prolonged Tp-e, increased Tp-e/QTc ratio, increased Tp-e/JTpeak ratio, lower QTd, and JTd when compared to the “Deficiency group”. |
Yetkin et al. [91] (2015) | Observational study 423 patients among which:
| QTc QTd HbA1c | QTc and QTd prolongation were associated with type 2 diabetes mellitus, advanced age, a longer duration of the disease, and higher HbA1c levels. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barsan, M.; Brata, A.M.; Ismaiel, A.; Dumitrascu, D.I.; Badulescu, A.-V.; Duse, T.A.; Dascalescu, S.; Popa, S.L.; Grad, S.; Muresan, L.; et al. The Pathogenesis of Cardiac Arrhythmias in Vitamin D Deficiency. Biomedicines 2022, 10, 1239. https://doi.org/10.3390/biomedicines10061239
Barsan M, Brata AM, Ismaiel A, Dumitrascu DI, Badulescu A-V, Duse TA, Dascalescu S, Popa SL, Grad S, Muresan L, et al. The Pathogenesis of Cardiac Arrhythmias in Vitamin D Deficiency. Biomedicines. 2022; 10(6):1239. https://doi.org/10.3390/biomedicines10061239
Chicago/Turabian StyleBarsan, Maria, Anca Monica Brata, Abdulrahman Ismaiel, Dinu Iuliu Dumitrascu, Andrei-Vlad Badulescu, Traian Adrian Duse, Stefana Dascalescu, Stefan Lucian Popa, Simona Grad, Lucian Muresan, and et al. 2022. "The Pathogenesis of Cardiac Arrhythmias in Vitamin D Deficiency" Biomedicines 10, no. 6: 1239. https://doi.org/10.3390/biomedicines10061239