Metabolic Syndrome but Not Fatty Liver-Associated Genetic Variants Correlates with Glomerular Renal Function Decline in Patients with Non-Alcoholic Fatty Liver Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical and Laboratory Workup
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wong, W.K.; Chan, W.K. Nonalcoholic Fatty Liver Disease: A Global Perspective. Clin. Ther. 2021, 43, 473–499. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.; Anstee, Q.M.; Marietti, M.; Hardy, T.; Henry, L.; Eslam, M.; George, J.; Bugianesi, E. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Lonardo, A.; Nascimbeni, F.; Mantovani, A.; Targher, G. Hypertension, diabetes, atherosclerosis and NASH: Cause or consequence? J. Hepatol. 2018, 68, 335–352. [Google Scholar] [CrossRef] [PubMed]
- Pastori, D.; Baratta, F.; Novo, M.; Cocomello, N.; Violi, F.; Angelico, F.; Del Ben, M. Remnant Lipoprotein Cholesterol and Cardiovascular and Cerebrovascular Events in Patients with Non-Alcoholic Fatty Liver Disease. J. Clin. Med. 2018, 7, 378. [Google Scholar] [CrossRef] [Green Version]
- Baratta, F.; Pastori, D.; Polimeni, L.; Bucci, T.; Ceci, F.; Calabrese, C.; Ernesti, I.; Pannitteri, G.; Violi, F.; Angelico, F.; et al. Adherence to Mediterranean Diet and Non-Alcoholic Fatty Liver Disease: Effect on Insulin Resistance. Am. J. Gastroenterol. 2017, 112, 1832–1839. [Google Scholar] [CrossRef]
- Umbro, I.; Fabiani, V.; Fabiani, M.; Angelico, F.; Del Ben, M. Association between non-alcoholic fatty liver disease and obstructive sleep apnea. World J. Gastroenterol. 2020, 26, 2669–2681. [Google Scholar] [CrossRef]
- Umbro, I.; Baratta, F.; Angelico, F.; Del Ben, M. Nonalcoholic Fatty Liver Disease and the Kidney: A Review. Biomedicines 2021, 9, 1370. [Google Scholar] [CrossRef]
- Mantovani, A.; Petracca, G.; Beatrice, G.; Csermely, A.; Lonardo, A.; Schattenberg, J.M.; Tilg, H.; Byrne, C.D.; Targher, G. Non-alcoholic fatty liver disease and risk of incident chronic kidney disease: An updated meta-analysis. Gut 2020, 71, 156–162. [Google Scholar] [CrossRef]
- Angelico, F.; Del Ben, M.; Conti, R.; Francioso, S.; Feole, K.; Fiorello, S.; Cavallo, M.G.; Zalunardo, B.; Lirussi, F.; Alessandri, C.; et al. Insulin resistance, the metabolic syndrome, and nonalcoholic fatty liver disease. J. Clin. Endocrinol. Metab. 2005, 90, 1578–1582. [Google Scholar] [CrossRef]
- Thomas, G.; Sehgal, A.R.; Kashyap, S.R.; Srinivas, T.R.; Kirwan, J.P.; Navaneethan, S.D. Metabolic syndrome and kidney disease: A systematic review and meta-analysis. Clin. J. Am. Soc. Nephrol. 2011, 6, 2364–2373. [Google Scholar] [CrossRef] [Green Version]
- Cheung, A.; Ahmed, A. Nonalcoholic Fatty Liver Disease and Chronic Kidney Disease: A Review of Links and Risks. Clin. Exp. Gastroenterol. 2021, 14, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Targher, G.; Chonchol, M.B.; Byrne, C.D. CKD and nonalcoholic fatty liver disease. Am. J. Kidney Dis. 2014, 64, 638–652. [Google Scholar] [CrossRef] [PubMed]
- Musso, G.; Gambino, R.; Tabibian, J.H.; Ekstedt, M.; Kechagias, S.; Hamaguchi, M.; Hultcrantz, R.; Hagström, H.; Yoon, S.K.; Charatcharoenwitthaya, P.; et al. Association of non-alcoholic fatty liver disease with chronic kidney disease: A systematic review and meta-analysis. PLoS Med 2014, 11, e1001680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Ben, M.; Polimeni, L.; Brancorsini, M.; Di Costanzo, A.; D’Erasmo, L.; Baratta, F.; Loffredo, L.; Pastori, D.; Pignatelli, P.; Violi, F.; et al. Non-alcoholic fatty liver disease, metabolic syndrome and patatin-like phospholipase domain-containing protein3 gene variants. Eur. J. Intern. Med. 2014, 25, 566–570. [Google Scholar] [CrossRef] [Green Version]
- Di Costanzo, A.; Ronca, A.; D’Erasmo, L.; Manfredini, M.; Baratta, F.; Pastori, D.; Di Martino, M.; Ceci, F.; Angelico, F.; Del Ben, M.; et al. HDL-Mediated Cholesterol Efflux and Plasma Loading Capacities Are Altered in Subjects with Metabolically- but Not Genetically Driven Non-Alcoholic Fatty Liver Disease (NAFLD). Biomedicines 2020, 8, 625. [Google Scholar] [CrossRef] [PubMed]
- Di Costanzo, A.; Belardinilli, F.; Bailetti, D.; Sponziello, M.; D’Erasmo, L.; Polimeni, L.; Baratta, F.; Pastori, D.; Ceci, F.; Montali, A.; et al. Evaluation of Polygenic Determinants of Non-Alcoholic Fatty Liver Disease (NAFLD) By a Candidate Genes Resequencing Strategy. Sci. Rep. 2018, 8, 3702. [Google Scholar] [CrossRef]
- Targher, G.; Mantovani, A.; Alisi, A.; Mosca, A.; Panera, N.; Byrne, C.D.; Nobili, V. Relationship Between PNPLA3 rs738409 Polymorphism and Decreased Kidney Function in Children with NAFLD. Hepatology 2019, 70, 142–153. [Google Scholar] [CrossRef] [Green Version]
- Musso, G.; Cassader, M.; Gambino, R. PNPLA3 rs738409 and TM6SF2 rs58542926 gene variants affect renal disease and function in nonalcoholic fatty liver disease. Hepatology 2015, 62, 658–659. [Google Scholar] [CrossRef]
- Mantovani, A.; Zusi, C.; Sani, E.; Colecchia, A.; Lippi, G.; Zaza, G.L.; Valenti, L.; Byrne, C.D.; Maffeis, C.; Bonora, E.; et al. Association between PNPLA3rs738409 polymorphism decreased kidney function in postmenopausal type 2 diabetic women with or without non-alcoholic fatty liver disease. Diabetes Metab. 2019, 45, 480–487. [Google Scholar] [CrossRef] [Green Version]
- Di Costanzo, A.; Pacifico, L.; D’Erasmo, L.; Polito, L.; Martino, M.D.; Perla, F.M.; Iezzi, L.; Chiesa, C.; Arca, M. Nonalcoholic Fatty Liver Disease (NAFLD), But not Its Susceptibility Gene Variants, Influences the Decrease of Kidney Function in Overweight/Obese Children. Int. J. Mol. Sci. 2019, 20, 4444. [Google Scholar] [CrossRef] [Green Version]
- ESH/ESC Task Force for the Management of Arterial Hypertension. 2013 Practice guidelines for the management of arterial hypertension of the European Society of Hypertension [ESH) and the European Society of Cardiology [ESC): ESH/ESC Task Force for the Management of Arterial Hypertension. J. Hypertens. 2013, 31, 1925–1938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rydén, L.; Grant, P.J.; Anker, S.D.; Berne, C.; Cosentino, F.; Danchin, N.; Deaton, C.; Escaned, J.; Hammes, H.P.; Huikuri, H.; et al. ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: The Task Force on diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and developed in collaboration with the European Association for the Study of Diabetes (EASD). Eur. Heart J. 2013, 34, 3035–3087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C., Jr.; et al. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef] [Green Version]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F.; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Inker, L.A.; Astor, B.C.; Fox, C.H.; Isakova, T.; Lash, J.P.; Peralta, C.A.; Kurella Tamura, M.; Feldman, H.I. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for the evaluation and management of CKD. Am. J. Kidney Dis. 2014, 63, 713–735. [Google Scholar] [CrossRef] [Green Version]
- Hamaguchi, M.; Kojima, T.; Itoh, Y.; Harano, Y.; Fujii, K.; Nakajima, T.; Kato, T.; Takeda, N.; Okuda, J.; Ida, K.; et al. The severity of ultrasonographic findings in nonalcoholic fatty liver disease reflects the metabolic syndrome and visceral fat accumulation. Am. J. Gastroenterol. 2007, 102, 2708–2715. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, H.; Sugimoto, K.; Oshiro, H.; Iwatsuka, K.; Kono, S.; Yoshimasu, Y.; Kasai, Y.; Furuichi, Y.; Sakamaki, K.; Itoi, T. Liver fibrosis: Noninvasive assessment using supersonic shear imaging and FIB4 index in patients with non-alcoholic fatty liver disease. J. Med. Ultrason. 2018, 45, 243–249. [Google Scholar] [CrossRef]
- McPherson, S.; Hardy, T.; Dufour, J.F.; Petta, S.; Romero-Gomez, M.; Allison, M.; Oliveira, C.P.; Francque, S.; Van Gaal, L.; Schattenberg, J.M.; et al. Age as a Confounding Factor for the Accurate Non-Invasive Diagnosis of Advanced NAFLD Fibrosis. Am. J. Gastroenterol. 2017, 112, 740–751. [Google Scholar] [CrossRef] [Green Version]
- Di Costanzo, A.; Pacifico, L.; Chiesa, C.; Perla, F.M.; Ceci, F.; Angeloni, A.; D’Erasmo, L.; Di Martino, M.; Arca, M. Genetic and metabolic predictors of hepatic fat content in a cohort of Italian children with obesity. Pediatric Res. 2019, 85, 671–677. [Google Scholar] [CrossRef] [Green Version]
- Marzuillo, P.; Di Sessa, A.; Guarino, S.; Capalbo, D.; Umano, G.R.; Pedullà, M.; La Manna, A.; Cirillo, G.; Miraglia Del Giudice, E. Nonalcoholic fatty liver disease and eGFR levels could be linked by the PNPLA3 I148M polymorphism in children with obesity. Pediatric Obes. 2019, 14, e12539. [Google Scholar] [CrossRef]
- Mantovani, A.; Taliento, A.; Zusi, C.; Baselli, G.; Prati, D.; Granata, S.; Zaza, G.; Colecchia, A.; Maffeis, C.; Byrne, C.D.; et al. PNPLA3 I148M gene variant and chronic kidney disease in type 2 diabetic patients with NAFLD: Clinical and experimental findings. Liver Int. 2020, 40, 1130–1141. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.Q.; Zheng, K.I.; Xu, G.; Ma, H.L.; Zhang, H.Y.; Pan, X.Y.; Zhu, P.W.; Wang, X.D.; Targher, G.; Byrne, C.D.; et al. PNPLA3 rs738409 is associated with renal glomerular and tubular injury in NAFLD patients with persistently normal ALT levels. Liver Int. 2020, 40, 107–119. [Google Scholar] [CrossRef] [PubMed]
- Seko, Y.; Yano, K.; Takahashi, A.; Okishio, S.; Kataoka, S.; Okuda, K.; Mizuno, N.; Takemura, M.; Taketani, H.; Umemura, A.; et al. FIB-4 Index and Diabetes Mellitus Are Associated with Chronic Kidney Disease in Japanese Patients with Non-Alcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2019, 21, 171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, G.V. Metabolic syndrome and chronic kidney disease: Current status and future directions. World J. Nephrol. 2014, 3, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.R.; Lóser, M.; Malhotra, R.; Appel, L.J. Blood Pressure Goals in Patients with CKD: A Review of Evidence and Guidelines. Clin. J. Am. Soc. Nephrol. 2019, 14, 161–169. [Google Scholar] [CrossRef] [Green Version]
- Cheung, A.K.; Chang, T.I.; Cushman, W.C.; Furth, S.L.; Hou, F.F.; Ix, J.H.; Knoll, G.A.; Muntner, P.; Pecoits-Filho, R.; Sarnak, M.J.; et al. Executive summary of the KDIGO 2021 Clinical Practice Guideline for the Management of Blood Pressure in Chronic Kidney Disease. Kidney Int. 2021, 99, 559–569. [Google Scholar] [CrossRef]
Variables | eGFR ≥ 90 mL/min/1.73 m2 (n = 284) | eGFR < 90 mL/min/1.73 m2 (n = 254) | p | eGFR ≥ 60 mL/min/1.73 m2 (n = 506) | eGFR < 60 mL/min/1.73 m2 (n = 32) | p |
---|---|---|---|---|---|---|
Age (y) | 50.7 ± 10.9 | 58.7 ± 10.9 | <0.001 | 53.9 ± 11.4 | 64.5 ± 11.1 | <0.001 |
Women (%) | 37.7 | 39.4 | 0.687 | 38.5 | 37.5 | 0.907 |
BMI (kg/m2) | 30.6 ± 5.3 | 30.1 ± 4.7 | 0.262 | 30.4 ± 5.1 | 30.0 ± 3.5 | 0.681 |
Blood glucose (mg/dL) | 105.0 ± 30.3 | 105.1 ± 26.8 | 0.964 | 105.2 ± 28.8 | 102.3 ± 26.3 | 0.578 |
High blood glucose (%) * | 43.7 | 52.0 | 0.054 | 48.0 | 40.6 | 0.416 |
Type II Diabetes (%) | 27.5 | 29.5 | 0.596 | 28.7 | 25.0 | 0.657 |
Waist circumference (cm) | 107.7 ± 12.5 | 106.6 ± 11.1 | 0.285 | 107.3 ± 12.1 | 106.6 ± 8 | 0.684 |
High waist circumference (%) * | 79.9 | 81.1 | 0.732 | 80.2 | 84.4 | 0.567 |
High blood pressure (%) * | 67.3 | 75.2 | 0.043 | 70.8 | 75.0 | 0.607 |
Arterial hypertension (%) | 54.9 | 64.2 | 0.029 | 58.1 | 78.1 | 0.025 |
HOMA-IR | 3.2 (2.3–5.0) | 3.4 (2.5–5.6) | 0.086 | 3.3 (2.3–5.5) | 3.2 (2.4–4.5) | 0.471 |
Total cholesterol (mg/dL) | 201.4 ± 40.8 | 198.4 ± 39.9 | 0.393 | 200.5 ± 40.9 | 192.2 ± 30.5 | 0.261 |
HDL cholesterol (mg/dL) | 48.0 ± 13.2 | 47.7 ± 14.7 | 0.805 | 47.9 ± 14.1 | 48.0 ± 12.4 | 0.971 |
Low HDL cholesterol (%) * | 39.8 | 38.2 | 0.704 | 39.1 | 37.5 | 0.855 |
LDL cholesterol (mg/dL) | 121.6 ± 36.1 | 120.1 ± 34.3 | 0.603 | 121.3 ± 35.6 | 114.9 ± 28.6 | 0.323 |
Triglycerides (mg/dL) | 136.0 (100.0–186.0) | 135.0 (110.0–170.0) | 0.766 | 57.9 | 68.8 | 0.227 |
High triglycerides (%) * | 41.5 | 42.9 | 0.749 | 41.5 | 53.1 | 0.197 |
Metabolic syndrome (%) * | 54.6 | 63.0 | 0.048 | 57.9 | 68.8 | 0.227 |
GGT (IU/L) | 28.0 (18.0–49.5) | 27.0 (18.0–40.0) | 0.123 | 28.0 (18.0–43.0) | 28.0 (17.0–43.7) | 0.866 |
ALT (IU/L) | 30.0 (20.0–46.5) | 26.0 (19.0–39.0) | 0.029 | 28.0 (20.0–43.0) | 25.0 (15.5–33.2) | 0.075 |
AST (IU/L) | 22.0 (18.0–29.0) | 21.0 (18.0–27.0) | 0.517 | 21.0 (18.0–28.0) | 21.0 (16.5–30.7) | 0.962 |
FIB4− (%) | 84.2 | 82.3 | 0.561 | 83.8 | 75.0 | 0.196 |
FIB4+ (%) | 2.1 | 2.8 | 0.628 | 2.6 | 0 | 0.359 |
Severe steatosis (%) | 32.4 | 37.3 | 0.234 | 35.5 | 21.9 | 0.116 |
Panel A. Factors Associated with eGFR < 90 mL/min/1.73 m2 | |||||
Variables | Univariable Analysis OR (95% C.I.) | Model A OR (95% C.I.) | Model B OR (95% C.I.) | Model C OR (95% C.I.) | Model D OR (95% C.I.) |
BMI | 0.98 (0.95–1.01) | 0.97 (0.93–1.01) | - | - | 0.97 (0.93–1.01) |
Metabolic syndrome | 1.42 * (1.00–2.00) | 1.58 * (1.10–2.28) | - | - | 1.58 * (1.10–2.27) |
FIB4− | 0.87 (0.56–1.38) | 0.89 (0.56–1.41) | 0.94 (0.59–1.50) | 0.92 (0.58–1.47) | 0.88 (0.56–1.40) |
PNPLA3 CG/GG | 1.16 (0.83–1.63) | 1.12 (0.79–1.59) | 1.19 (0.84–1.68) | 1.20 (0.85–1.71) | - |
High blood glucose # | 1.40 (0.99–1.96) | - | 1.32 (0.92–1.68) | - | - |
Diabetes | 1.11 (0.76–1.61) | - | - | 0.99 (0.67–1.47) | - |
High waist circumference # | 1.08 (0.70–1.65) | - | 0.97 (0.62–1.52) | 1.04 (0.67–1.61) | - |
High blood pressure # | 1.48 * (1.01–2.15) | - | 1.41 (0.96–2.08) | - | - |
Arterial hypertension | 1.47 * (1.04–2.08) | - | - | 1.50 * (1.05–2.14) | - |
Low HDL cholesterol # | 0.93 (0.66–1.32) | - | 0.91 (0.62–1.32) | 0.87 (0.60–1.27) | - |
High triglycerides # | 1.06 (0.75–1.49) | - | 1.07 (0.73–1.55) | 1.12 (0.77–1.63) | - |
Weighted GSR | 1.24 (0.64–2.39) | - | - | - | 1.19 (0.61–2.33) |
Panel B. Factors Associated with eGFR < 60 mL/min/1.73 m2 | |||||
Variables | Univariable Analysis OR (95% C.I.) | Model A OR (95% C.I.) | Model B OR (95% C.I.) | Model C OR (95% C.I.) | Model D OR (95% C.I.) |
BMI | 0.98 (0.91–1.06) | 0.96 (0.89–1.05) | - | - | 0.96 (0.89–1.04) |
Metabolic syndrome | 1.60 (0.74–3.45) | 1.72 (0.77–3.85) | - | - | 1.72 (0.77–3.84) |
FIB4− | 0.58 (0.25–1.34) | 0.57 (0.24–1.33) | 0.54 (0.23–1.28) | 0.60 (0.25–1.41) | 0.57 (0.24–1.33) |
PNPLA3 CG/GG | 0.98 (0.48–2.01) | 0.91 (0.44–1.90) | 1.01 (0.48–2.11) | 1.09 (0.52–2.28) | - |
High blood glucose # | 0.74 (0.36–1.53) | - | 0.59 (0.27–1.28) | - | - |
Diabetes | 0.83 (0.36–1.89) | - | - | 0.62 (0.260–1.45) | - |
High waist circumference # | 1.33 (0.50–3.54) | - | 1.40 (0.51–3.87) | 1.26 (0.46–3.46) | - |
High blood pressure # | 1.24 (0.54–2.82) | - | 1.31 (0.56–3.04) | - | - |
Arterial hypertension | 2.57 * (1.09–6.06) | - | - | 2.79 * (1.16–6.68) | - |
Low HDL cholesterol # | 0.93 (0.45–1.95) | - | 0.80 (0.36–1.77) | 0.70 (0.32–1.57) | - |
High triglycerides # | 1.60 (0.78–3.27) | - | 1.77 (0.82–3.86) | 1.82 (0.83–3.98) | - |
Weighted GSR | 0.92 (0.23–3.65) | - | - | - | 0.80 (0.20–3.28) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baratta, F.; D’Erasmo, L.; Di Costanzo, A.; Umbro, I.; Pastori, D.; Angelico, F.; Del Ben, M. Metabolic Syndrome but Not Fatty Liver-Associated Genetic Variants Correlates with Glomerular Renal Function Decline in Patients with Non-Alcoholic Fatty Liver Disease. Biomedicines 2022, 10, 720. https://doi.org/10.3390/biomedicines10030720
Baratta F, D’Erasmo L, Di Costanzo A, Umbro I, Pastori D, Angelico F, Del Ben M. Metabolic Syndrome but Not Fatty Liver-Associated Genetic Variants Correlates with Glomerular Renal Function Decline in Patients with Non-Alcoholic Fatty Liver Disease. Biomedicines. 2022; 10(3):720. https://doi.org/10.3390/biomedicines10030720
Chicago/Turabian StyleBaratta, Francesco, Laura D’Erasmo, Alessia Di Costanzo, Ilaria Umbro, Daniele Pastori, Francesco Angelico, and Maria Del Ben. 2022. "Metabolic Syndrome but Not Fatty Liver-Associated Genetic Variants Correlates with Glomerular Renal Function Decline in Patients with Non-Alcoholic Fatty Liver Disease" Biomedicines 10, no. 3: 720. https://doi.org/10.3390/biomedicines10030720
APA StyleBaratta, F., D’Erasmo, L., Di Costanzo, A., Umbro, I., Pastori, D., Angelico, F., & Del Ben, M. (2022). Metabolic Syndrome but Not Fatty Liver-Associated Genetic Variants Correlates with Glomerular Renal Function Decline in Patients with Non-Alcoholic Fatty Liver Disease. Biomedicines, 10(3), 720. https://doi.org/10.3390/biomedicines10030720