Shared Molecular Targets in Parkinson’s Disease and Arterial Hypertension: A Systematic Review
Abstract
:1. Introduction
1.1. Background/Rationale
1.1.1. Beta-Blockers (BBs)
1.1.2. Diuretics
1.1.3. Calcium-Channel Blockers (CCBs)
1.1.4. Angiotensin-Converting Enzyme Inhibitors (ACEIs) and Angiotensin Receptor Blockers (ARBs)
1.2. Objectives
2. Materials and Methods
2.1. Protocol
“Does hypertension medication pertaining to major antihypertensive drug classes exert neuroprotective and/or disease-modifying effects in a dose and time-dependent manner in adult patients with sporadic PD regardless of blood pressure values?”
2.2. Study Appraisal
3. Results
3.1. BBs
3.1.1. BBs as Neuroprotective Treatment
3.1.2. BBs as Disease-Modifying Treatment
3.2. Diuretics (Thiazides and Thiazide-like Diuretics)
3.2.1. Diuretics as Neuroprotective Treatment
3.2.2. Diuretics as Disease-Modifying Treatment
3.3. ACEIs
3.3.1. ACEIs as Neuroprotective Treatment
3.3.2. ACEIs as Disease-Modifying Treatment
3.4. ARBs
3.4.1. ARBs as Neuroprotective Treatment
3.4.2. ARBs as Disease-Modifying Treatment
3.5. CCBs (Dihydropyridines)
3.5.1. CCBs as Neuroprotective Treatment
3.5.2. CCBs as Disease-Modifying Treatment
4. Discussion
5. Limitations
6. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
Abbreviations
PD | Parkinson’s Disease |
BBs | Beta-blockers |
Ds | Diuretics |
CCBs | Calcium-channel blockers |
VGCCs | Voltage-gated calcium channels |
HVA | High voltage-activation |
LVA | Low voltage-activation |
BBB | Blood-brain barrier |
ACEIs | Angiotensin-converting enzyme inhibitors |
ARBs | Angiotensin receptor blockers |
RAAS | Renin-angiotensin-aldosterone system |
H&Y | Hoehn and Yahr |
UPDRS | Unified Parkinson’s Disease Rating Scale |
RCT | Randomized controlled trial |
OR | Odds ratio |
CI | Confidence interval |
HR | Hazard ratio |
RR | Risk |
ADRB2 | Adrenoreceptor β2 gene |
SNCA | α-synuclein gene |
TIMP | Tissue inhibitor of metalloproteinase |
MMP | Metalloproteinase |
COX2 | Cyclooxygenase 2 |
MAPK | Mitogen-activated protein kinase |
ERK | Extracellular signal-regulated kinase |
NO | Nitric Oxide synthase |
GABA | Gamma-Aminobutyric acid |
JNK | c-Jun N-terminal kinase |
ROCK | Rho kinase |
NOX | Nicotinamide adenine dinucleotide phosphate oxidase complex |
6-OHDA | 6-hidroxy dopamine |
HCN | Hyperpolarization and cyclic nucleotide-activated cation |
GRADE | Grading of Recommendations, Assessment, Development and Evaluation |
References
- Simon, D.K.; Tanner, C.M.; Brundin, P. Parkinson Disease Epidemiology, Pathology, Genetics, and Pathophysiology. Clin. Geriatr. Med. 2020, 36, 1–12. [Google Scholar] [CrossRef] [PubMed]
- GBD 2016 Parkinson’s Disease Collaborators. Global, regional, and national burden of Parkinson’s disease, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018, 17, 939–953. [Google Scholar] [CrossRef] [Green Version]
- Parkinson, J. An essay on the shaking palsy 1817. J. Neuropsychiatry Clin. Neurosci. 2002, 14, 223–236. [Google Scholar] [CrossRef] [PubMed]
- Coenen, V.A.; Gielen, F.L.H.; Castro-Prado, F.; Rahman, A.A.; Honey, C.R. Noradrenergic modulation of subthalamic nucleus activity in human: Metoprolol reduces spiking activity in microelectrode recordings during deep brain stimulation surgery for Parkinson’s disease. Acta Neurochir. 2008, 150, 757–762. [Google Scholar] [CrossRef] [PubMed]
- Hopfner, F.; Höglinger, G.U.; Kuhlenbäumer, G.; Pottegård, A.; Wod, M.; Christensen, K.; Tanner, C.M.; Deuschl, G. Beta-Adrenoreceptors and the risk of Parkinson’s disease. Lancet Neurol. 2020, 19, 247–254. [Google Scholar] [CrossRef]
- Hertz, L.; Lovatt, D.; Goldman, S.A. Adrenoceptors in brain: Cellular gene expression and effects on astrocytic metabolism and [Ca(2+)] i. Neurochem. Int. 2010, 57, 411–420. [Google Scholar] [CrossRef] [Green Version]
- Mittal, S.; Bjørnevik, K.; Im, D.S.; Flierl, A.; Dong, X.; Locascio, J.J.; Abo, K.M.; Long, E.; Jin, M.; Xu, B.; et al. Beta2-Adrenoreceptor is a regulator of the alpha-synuclein gene driving risk of Parkinson’s disease. Science 2017, 357, 891–898. [Google Scholar] [CrossRef] [Green Version]
- Malik, S.; Siddiqi, M.K.; Majid, N.; Masroor, A.; Ali, S.M.; Khan, R.H. Unravelling the inhibitory and cytoprotective potential of diuretics towards amyloid fibrillation. Int. J. Biol. Macromol. 2020, 150, 1258–1271. [Google Scholar] [CrossRef]
- Lu, M.; Ma, L.; Wang, X.; Jiang, W.; Shan, P. Indapamide suppresses amyloid-β production in cellular models of Alzheimer’s disease through regulating BACE1 activity. Int. J. Clin. Exp. Med. 2017, 10, 5922–5930. [Google Scholar]
- Yasar, S.; Lin, F.; Fried, L.P.; Kawas, C.H.; Sink, K.M.; DeKosky, S.T.; Carlson, M.C.; Ginkgo Evaluation of Memory (GEM) Study Investigators. Diuretic use is associated with better learning and memory in older adults in the Ginkgo Evaluation of Memory Study. Alzheimer Dement. 2012, 8, 188–195. [Google Scholar] [CrossRef] [Green Version]
- Shaltiel-Karyo, R.; Frenkel-Pinter, M.; Rockenstein, E.; Patrick, C.; Levy-Sakin, M.; Schiller, A.; Egoz-Matia, N.; Masliah, E.; Segal, D.; Gazit, E. A blood-brain barrier (BBB) disrupter is also a potent alpha-synuclein (alpha-syn) aggregation inhibitor: A novel dual mechanism of mannitol for the treatment of Parkinson disease (PD). J. Biol. Chem. 2013, 288, 17579–17588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, Q.; Zhang, Z.; Zhang, W.; Ding, Y.; Zhao, F.; Zhang, J.; Song, Y. Investigation of the Selectivity of L-Type Voltage-Gated Calcium Channels 1.3 for Pyrimidine-2,4,6-Triones Derivatives Based on Molecular Dynamics Simulation. Molecules 2020, 25, 5440. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.S.; Guzman, J.N.; Ilijic, E.; Mercer, J.N.; Rick, C.; Tkatch, T.; Meredith, G.E.; Surmeier, D.J. ‘Rejuvenation’ protects neurons in mouse models of Parkinson’s disease. Nature 2007, 447, 1081–1086. [Google Scholar] [CrossRef] [PubMed]
- Kaczorowski, G.J.; McManus, O.B.; Priest, B.T.; Garcia, M.L. Ion channels as drug targets: The next GPCRs. J. Gen. Physiol. 2008, 131, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, A.; Cosconati, S.; Micucci, M.; Leoni, A.; Marinelli, L.; Bedini, A.; Ioan, P.; Spampinato, S.M.; Novellino, E.; Chiarini, A.; et al. Ligand based approach to L-type calcium channel by imidazo [2,1-b]thiazole-1,4-dihydropyridines: From heart activity to brain affinity. J. Med. Chem. 2013, 56, 3866–3877. [Google Scholar] [CrossRef]
- Tadross, M.R.; Johny, M.B.; Yue, D.T. Molecular endpoints of Ca2+/calmodulin-and voltage-dependent inactivation of Ca(v)1.3 channels. J. Gen. Physiol. 2010, 135, 197–215. [Google Scholar] [CrossRef] [Green Version]
- Waszkielewicz, A.M.; Gunia-Krzyżak, A.; Szkaradek, N.; Słoczyńska, K.; Krupinska, S.; Marona, H. Ion channels as drug targets in central nervous system disorders. Curr. Med. Chem. 2013, 20, 1241–1285. [Google Scholar] [CrossRef] [Green Version]
- Jefri, M.; Bell, S.; Peng, H.; Hettige, N.; Maussion, G.; Soubannier, V.; Wu, H.; Silveira, H.; Theroux, J.-F.; Moquin, L.; et al. Stimulation of L-type calcium channels increases tyrosine hydroxylase and dopamine in ventral midbrain cells induced from somatic cells. Stem Cells Transl. Med. 2020, 9, 697–712. [Google Scholar] [CrossRef] [Green Version]
- Ji, B.; Wang‡, M.; Gao, D.; Xing, S.; Li, L.; Liu, L.; Zhao, M.; Qi, X.; Dai, K. Combining nanoscale magnetic nimodipine liposomes with magnetic resonance image for Parkinson’s disease targeting therapy. Nanomedicine 2017, 12, 237–253. [Google Scholar] [CrossRef]
- Siddiqi, F.H.; Menzies, F.M.; Lopez, A.; Stamatakou, E.; Karabiyik, C.; Ureshino, R.; Ricketts, T.; Jimenez-Sanchez, M.; Esteban, M.A.; Lai, L.; et al. Felodipine induces autophagy in mouse brains with pharmacokinetics amenable to repurposing. Nat. Commun. 2019, 10, 1817. [Google Scholar] [CrossRef] [Green Version]
- Uchida, S.; Yamada, S.; Nagai, K.; Deguchi, Y.; Kimura, R. Brain pharmacokinetics and in vivo receptor binding of 1,4-dihydropyridine calcium channel antagonists. Life Sci. 1997, 61, 2083–2090. [Google Scholar] [CrossRef]
- Kaur, U.; Das, P.; Gambhir, I.S.; Chakrabarti, S.S. L-type calcium channel blockers and a symptom complex mimicking de Melo-Souza’s syndrome. Neurol. Sci. 2019, 40, 1077–1080. [Google Scholar] [CrossRef] [PubMed]
- Jackson, L.; Eldahshan, W.; Fagan, S.C.; Ergul, A. Within the Brain: The Renin Angiotensin System. Int. J. Mol. Sci. 2018, 19, 876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kandel, E.R.; Schwartz, J.H.; Jessell, T.M.; Siegelbaum, S.A.; Hudspeth, A.J.; Mack, S. (Eds.) Principles of Neural Science; McGraw-Hill Education LLC: New York, NY, USA, 2013; pp. 1098–1099. [Google Scholar]
- Abiodun, O.A.; Ola, M.S. Role of brain renin angiotensin system in neurodegeneration: An update. Saudi. J. Biol. Sci. 2020, 27, 905–912. [Google Scholar] [CrossRef] [PubMed]
- Mertens, B.; Vanderheyden, P.; Michotte, Y.; Sarre, S. The role of the central renin-angiotensin system in Parkinson’s disease. J. Renin Angiotensin Aldosterone Syst. 2010, 11, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Saavedra, J.M. Beneficial effects of Angiotensin II receptor blockers in brain disorders. Pharmacol. Res. 2017, 125 Pt A, 91–103. [Google Scholar] [CrossRef]
- Culman, J.; Blume, A.; Gohlke, P.; Unger, T. The renin-angiotensin system in the brain: Possible therapeutic implications for AT(1)-receptor blockers. J. Hum. Hypertens. 2002, 16 (Suppl. 3), S64–S70. [Google Scholar] [CrossRef]
- Labandeira-Garcia, J.L.; Rodriguez-Pallares, J.; Dominguez-Meijide, A.; Valenzuela, R.; Villar-Cheda, B.; Rodríguez-Perez, A.I. Dopamine-angiotensin interactions in the basal ganglia and their relevance for Parkinson’s disease. Mov. Disord. 2013, 28, 1337–1342. [Google Scholar] [CrossRef]
- Gironacci, M.M.; Vicario, A.; Cerezo, G.; Silva, M.G. The depressor axis of the renin-angiotensin system and brain disorders: A translational approach. Clin. Sci. 2018, 132, 1021–1038. [Google Scholar] [CrossRef]
- Hughes, A.J.; Daniel, S.E.; Kilford, L.; Lees, A.J. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: A clinico-pathological study of 100 cases. J. Neurol. Neurosurg. Psychiatry 1992, 55, 181–184. [Google Scholar] [CrossRef] [Green Version]
- Postuma, R.B.; Berg, D.; Stern, M.; Poewe, W.; Olanow, C.W.; Oertel, W.; Obeso, J.; Marek, K.; Litvan, I.; Lang, A.E.; et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 2015, 30, 1591–1601. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.W.; Chung, S.J. Drug-induced parkinsonism. J. Clin. Neurol. 2012, 8, 15–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohlega, S.A.; Al-Foghom, N.B. Drug-induced Parkinson’s disease. A clinical review. Neurosciences 2013, 18, 215–221. [Google Scholar] [PubMed]
- Hopfner, F.; Wod, M.; Höglinger, G.U.; Blaabjerg, M.; Rösler, T.W.; Kuhlenbäumer, G.; Christensen, K.; Deuschl, G.; Pottegård, A. Use of beta2-adrenoreceptor agonist and antagonist drugs and risk of Parkinson disease. Neurology 2019, 93, e135–e142. [Google Scholar] [CrossRef]
- Koren, G.; Norton, G.; Radinsky, K.; Shalev, V. Chronic Use of beta-Blockers and the Risk of Parkinson’s Disease. Clin. Drug Investig. 2019, 39, 463–468. [Google Scholar] [CrossRef]
- Searles Nielsen, S.; Gross, A.; Camacho-Soto, A.; Willis, A.W.; Racette, B.A. Beta2-adrenoreceptor medications and risk of Parkinson disease. Ann. Neurol. 2018, 84, 683–693. [Google Scholar] [CrossRef]
- Gronich, N.; Abernethy, D.R.; Auriel, E.; Lavi, I.; Rennert, G.; Saliba, W. Beta2-adrenoceptor agonists and antagonists and risk of Parkinson’s disease. Mov. Disord. 2018, 33, 1465–1471. [Google Scholar] [CrossRef]
- Becker, C.; Jick, S.S.; Meier, C.R. Use of antihypertensives and the risk of Parkinson disease. Neurology 2008, 70, 1438–1444. [Google Scholar] [CrossRef]
- Warda, A.; Reese, J.P.; Tanislav, C.; Kostev, K. The association between antihypertensive therapy and the incidence of Parkinson’s disease in patients followed in general practices in Germany. Int. J. Clin. Pharmacol. Ther. 2019, 57, 483–488. [Google Scholar] [CrossRef]
- De Germay, S.; Conte, C.; Rascol, O.; Montastruc, J.L.; Lapeyre-Mestre, M. Beta-Adrenoceptor Drugs and Parkinson’s Disease: A Nationwide Nested Case-Control Study. CNS Drugs 2020, 34, 763–772. [Google Scholar] [CrossRef] [PubMed]
- Ritz, B.; Rhodes, S.L.; Qian, L.; Schernhammer, E.; Olsen, J.H.; Friis, S. L-type calcium channel blockers and Parkinson disease in Denmark. Ann. Neurol. 2010, 67, 600–606. [Google Scholar] [PubMed] [Green Version]
- Ton, T.G.; Heckbert, S.R.; Longstreth, W.T.; Rossing, M.A., Jr.; Kukull, W.A.; Franklin, G.M.; Swanson, P.D.; Smith-Weller, T.; Checkoway, H. Calcium channel blockers and beta-blockers in relation to Parkinson’s disease. Parkinsonism Relat. Disord. 2007, 13, 165–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giorgianni, F.; Ernst, P.; Dell’Aniello, S.; Suissa, S.; Renoux, C. Beta 2-Agonists and the Incidence of Parkinson Disease. Am. J. Epidemiol. 2020, 189, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Laudisio, A.; Monaco, M.R.L.; Silveri, M.C.; Bentivoglio, A.R.; Vetrano, D.L.; Pisciotta, M.S.; Brandi, V.; Bernabei, R.; Zuccalà, G. Use of ACE-inhibitors and falls in patients with Parkinson’s disease. Gait Posture 2017, 54, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Teive, H.A.; Munhoz, R.P.; Werneck, L.C. Worsening of motor symptoms and gynecomastia during spironolactone treatment in a patient with Parkinson’s disease and congestive heart failure. Mov. Disord. 2007, 22, 1678–1679. [Google Scholar] [CrossRef] [PubMed]
- Damier, P.; Hammond, C.; Ben-Ari, Y. Bumetanide to Treat Parkinson Disease: A Report of 4 Cases. Clin. Neuropharmacol. 2016, 39, 57–59. [Google Scholar] [CrossRef]
- Lee, Y.C.; Lin, C.-H.; Wu, R.-M.; Lin, J.-W.; Chang, C.-H.; Lai, M.-S. Antihypertensive agents and risk of Parkinson’s disease: A nationwide cohort study. PLoS ONE 2014, 9, e98961. [Google Scholar] [CrossRef]
- Louis, E.D.; Benito-León, J.; Bermejo-Pareja, F.; Neurological Disorders in Central Spain (NEDICES) Study Group. Antihypertensive agents and risk of Parkinson’s disease, essential tremor and dementia: A population-based prospective study (NEDICES). Neuroepidemiology 2009, 33, 286–292. [Google Scholar] [CrossRef] [Green Version]
- Reardon, K.A.; Mendelsohn, F.A.; Chai, S.Y.; Horne, M.K. The angiotensin converting enzyme (ACE) inhibitor, perindopril, modifies the clinical features of Parkinson’s disease. Aust. N. Z. J. Med. 2000, 30, 48–53. [Google Scholar] [CrossRef]
- Tseng, Y.F.; Lin, H.C.; Chao, J.C.; Hsu, C.Y.; Lin, H.L. Calcium Channel blockers are associated with reduced risk of Parkinson’s disease in patients with hypertension: A population-based retrospective cohort study. J. Neurol. Sci. 2021, 424, 117412. [Google Scholar] [CrossRef] [PubMed]
- Pasternak, B.; Svanström, H.; Nielsen, N.M.; Fugger, L.; Melbye, M.; Hviid, A. Use of calcium channel blockers and Parkinson’s disease. Am. J. Epidemiol. 2012, 175, 627–635. [Google Scholar] [CrossRef] [PubMed]
- Simon, K.C.; Gao, X.; Chen, H.; Schwarzschild, M.A.; Ascherio, A. Calcium channel blocker use and risk of Parkinson’s disease. Mov. Disord. 2010, 25, 1818–1822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parkinson Study Group STEADY-PD III Investigators. Isradipine Versus Placebo in Early Parkinson Disease: A Randomized Trial. Ann. Intern. Med. 2020, 172, 591–598. [Google Scholar] [CrossRef]
- Marras, C.; Gruneir, A.; Rochon, P.; Wang, X.; Anderson, G.; Brotchie, J.; Bell, C.; Fox, S.; Austin, P. Dihydropyridine calcium channel blockers and the progression of parkinsonism. Ann. Neurol. 2012, 71, 362–369. [Google Scholar] [CrossRef]
- Pihlstrom, L.; Toft, M. Genetic variability in SNCA and Parkinson’s disease. Neurogenetics 2011, 12, 283–293. [Google Scholar] [CrossRef]
- GeneCards. The Human Gene Database; ADRB2 Gene. Available online: https://www.genecards.org/cgi-bin/carddisp.pl?gene=ADRB2 (accessed on 30 July 2021).
- Luong, K.; Nguyen, L.T. The role of beta-adrenergic blockers in Parkinson’s disease: Possible genetic and cell-signaling mechanisms. Am. J. Alzheimer Dis. Demen. 2013, 28, 306–317. [Google Scholar] [CrossRef]
- Cipriani, S.; Chen, X.; Schwarzschild, M.A. Urate: A novel biomarker of Parkinson’s disease risk, diagnosis and prognosis. Biomark. Med. 2010, 4, 701–712. [Google Scholar] [CrossRef] [Green Version]
- Laurence, C.; Zeghbib, N.; Rivard, M.; Lehri-Boufala, S.; Lachaise, I.; Barau, C.; Le Corvoisier, P.; Martens, T.; Garrigue-Antar, L.; Morin, C. A new human pyridinium metabolite of furosemide, inhibitor of mitochondrial complex I, is a candidate inducer of neurodegeneration. Biochem. Pharmacol. 2019, 160, 14–23. [Google Scholar] [CrossRef]
- Lozovaya, N.; Eftekhari, S.; Cloarec, R.; Gouty-Colomer, L.A.; Dufour, A.; Riffault, B.; Billon-Grand, M.; Pons-Bennaceur, A.; Oumar, N.; Burnashev, N.; et al. GABAergic inhibition in dual-transmission cholinergic and GABAergic striatal interneurons is abolished in Parkinson disease. Nat. Commun. 2018, 9, 1422. [Google Scholar] [CrossRef]
- Rodriguez-Perez, A.I.; Sucunza, D.; Pedrosa, M.A.; Garrido-Gil, P.; Kulisevsky, J.; Lanciego, J.L.; Labandeira-Garcia, J.L. Angiotensin Type 1 Receptor Antagonists Protect Against Alpha-Synuclein-Induced Neuroinflammation and Dopaminergic Neuron Death. Neurotherapeutics 2018, 15, 1063–1081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez-Lloret, S.; Otero-Losada, M.; Toblli, J.E.; Capani, F. Renin-angiotensin system as a potential target for new therapeutic approaches in Parkinson’s disease. Expert Opin. Investig. Drugs 2017, 26, 1163–1173. [Google Scholar] [CrossRef] [PubMed]
- Lang, Y.; Gong, D.; Fan, Y. Calcium channel blocker use and risk of Parkinson’s disease: A meta-analysis. Pharmacoepidemiol. Drug Saf. 2015, 24, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Guzman, J.N.; Ilijic, E.; Yang, B.; Sanchez-Padilla, J.; Wokosin, D.; Galtieri, D.; Kondapalli, J.; Schumacker, P.T.; Surmeier, D.J. Systemic isradipine treatment diminishes calcium-dependent mitochondrial oxidant stress. J. Clin. Investig. 2018, 128, 2266–2280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez-Padilla, J.; Guzman, J.N.; Ilijic, E.; Kondapalli, J.; Galtieri, D.J.; Yang, B.; Schieber, S.; Oertel, W.; Wokosin, D.; Schumacker, P.T.; et al. Mitochondrial oxidant stress in locus coeruleus is regulated by activity and nitric oxide synthase. Nat. Neurosci. 2014, 17, 832–840. [Google Scholar] [CrossRef] [Green Version]
- Guzman, J.N.; Sanchez-Padilla, J.; Wokosin, D.; Kondapalli, J.; Ilijic, E.; Schumacker, P.T.; Surmeier, D.J. Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature 2010, 468, 696–700. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Verma, P.; Raju, A.; Mohanakumar, K.P. Nimodipine attenuates the parkinsonian neurotoxin, MPTP-induced changes in the calcium binding proteins, calpain and calbindin. J. Chem. Neuroanat. 2019, 95, 89–94. [Google Scholar] [CrossRef]
- Liu, N.; Yang, Y.; Ge, L.; Liu, M.; Colecraft, H.M.; Liu, X. Cooperative and acute inhibition by multiple C-terminal motifs of L-type Ca(2+) channels. eLife 2017, 6, e21989. [Google Scholar] [CrossRef] [Green Version]
- Swart, T.; Hurley, M.J. Calcium Channel Antagonists as Disease-Modifying Therapy for Parkinson’s Disease: Therapeutic Rationale and Current Status. CNS Drugs 2016, 30, 1127–1135. [Google Scholar] [CrossRef] [Green Version]
- Gudala, K.; Kanukula, R.; Bansal, D. Reduced Risk of Parkinson’s Disease in Users of Calcium Channel Blockers: A Meta-Analysis. Int. J. Chronic Dis. 2015, 2015, 697404. [Google Scholar] [CrossRef] [Green Version]
- Zamponi, G.W. Targeting voltage-gated calcium channels in neurological and psychiatric diseases. Nat. Rev. Drug Discov. 2016, 15, 19–34. [Google Scholar] [CrossRef] [PubMed]
- Zamponi, G.W.; Striessnig, J.; Koschak, A.; Dolphin, A.C. The Physiology, Pathology, and Pharmacology of Voltage-Gated Calcium Channels and Their Future Therapeutic Potential. Pharmacol. Rev. 2015, 67, 821–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mosharov, E.V.; Larsen, K.E.; Kanter, E.; Phillips, K.A.; Wilson, K.; Schmitz, Y.; Krantz, D.E.; Kobayashi, K.; Edwards, R.H.; Sulzer, D. Interplay between cytosolic dopamine, calcium, and alpha-synuclein causes selective death of substantia nigra neurons. Neuron 2009, 62, 218–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.; Kwon, S.-H.; Kam, T.-I.; Panicker, N.; Karuppagounder, S.S.; Lee, S.; Lee, J.H.; Kim, W.R.; Kook, M.; Foss, C.A.; et al. Transneuronal Propagation of Pathologic alpha-Synuclein from the Gut to the Brain Models Parkinson’s Disease. Neuron 2019, 103, 627–641.e7. [Google Scholar] [CrossRef] [PubMed]
- Rees, K.; Stowe, R.; Patel, S.; Ives, N.; Breen, K.; Ben-Shlomo, Y.; E Clarke, C. Anti-hypertensive drugs as disease-modifying agents for Parkinson’s disease: Evidence from observational studies and clinical trials. Cochrane Database Syst. Rev. 2011, 11, CD008535. [Google Scholar] [CrossRef]
- Aguayo-Albasini, J.L.; Flores-Pastor, B.; Soria-Aledo, V. GRADE system: Classification of quality of evidence and strength of recommendation. Cir. Esp. 2014, 92, 82–88. [Google Scholar] [CrossRef]
- Youdim, M.B.; Kupershmidt, L.; Amit, T.; Weinreb, O. Promises of novel multi-target neuroprotective and neurorestorative drugs for Parkinson’s disease. Parkinsonism. Relat. Disord. 2014, 20 (Suppl. 1), S132–S136. [Google Scholar] [CrossRef]
Authors | Year | Type of Study | PD Patients Exposed (No.) | Controls Exposed (No.) | Drug | Mean Follow–Up Duration (Years) | Drug Dosage (mg) | Possible Effect | Conclusion |
---|---|---|---|---|---|---|---|---|---|
Tseng Y.F. et al. | 2021 | Retrospective cohort study | 832 | 66,588 | CCBs | 7.18 | Cumulative defined daily dose: 0–90; 90–180; 180–360; 360–720; > 720 | Yes | Treatment with CCBs was associated with a significantly reduced risk of PD in patients with newly diagnosed hypertension. |
de Germay S. et al. | 2020 | Nested case–control study | 595 | 561 | BBs (separate analysis for propranolol) | 1–2 | – | No, except for propranolol | Exposure to BBs did not increase the risk of PD occurrence, except for propranolol. |
Giorgianni F. et al. | 2020 | Cohort study with nested case–control analysis | 1818 | 13,488 | BBs | <1; 1–5; >5 | – | Yes | Use of BBs was associated with an increased risk of PD, that was highest with short duration of use and decreased thereafter. |
Warda A. et al. | 2019 | Case–control study | Model I: 53.8% –BBs; 44.8%–Ds; 43.7%–ACEIs; 18.8%–ARBs; 33.9%–CCBs | Model I: 50.9%–BBs; 38.4%–Ds; 41.1–ACEIs; 18.0%–ARBs; 32.4%–CCBs | BBs; Ds; ACEIs; ARBs; CCBs | >/= 3 vs. </= 3 | – | No | No association was found between antihypertensive therapy and PD incidence. |
Koren G. et al. | 2019 | Prospective cohort study | – | – | BBs | 0.98; 1.64; 2.73; 4.1 | Mean defined daily dose: 1.43 | Yes | Chronic use of BBs conferred a time and dose–dependent increased risk of PD. |
Hopfner F. et al. | 2019 | Retrospective case–control study | 407 | 1488 | BBs | 0–1; 1–3; 3–5; 5–8; >/= 8 | – | No | Use of BBs was associated with an increased PD risk, which was markedly stronger for short–term use compared to long–term use. |
Nielsen S.S. et al. | 2018 | Case–control study | 4.4%–propranolol; 6.9%–carvedilol; 26.3%–metoprolol | 1.3%–propranolol;6.1%–carvedilol; 22.6%–metoprolol | BBs | 1; 1.5 | < 40; 40–80; >/= 80/day–propranolol;< 12.5; 12.5–25; >/= 25/day–carvedilol; < 50; 50; > 50/day–metoprolol | Yes | Carvedilol and metoprolol appeared to reduce PD risk. |
Gronich N. et al. | 2018 | Nested case–control study | 3032–selective BBs; 1073–non–selective BBs | 27,290–selective BBs; 50,306–non–selective BBs | BBs | 2; 5; 8 | – | Yes | The use of non–selective BBs was associated with an increased risk of PD. |
Lee Y.C. et al. | 2014 | Retrospective study | – | – | CCBs; ACEIs; ARBs | 4.6 | Any use; low dose; high dose | Yes | Centrally acting CCBs use and high cumulative doses of ACEIs and ARBs were associated with a decreased incidence of PD in hypertensive patients. |
Pasternak B. et al. | 2012 | Historical cohort study | 173 | 5538 | CCBs | 461,984 person–years | Standard dose; high dose | Yes | CCBs use was associated with a reduced risk of PD. |
Simon C.K. et al. | 2010 | Prospective cohort study | 18 | 52 | CCBs | <4; >/= 4 | – | No | No association was observed between PD risk and baseline use, frequency, or duration of CCBs use. |
Ritz B. et al. | 2010 | Retrospective population–based case–control study | 55 | 368 | CCBs | 2 | – | Yes | Centrally acting CCBs use was associated with a 25–30% decrease in PD risk. |
Louis E.D. et al. | 2009 | Case–control and prospective cohort analysis | 3–BBs; 10–ACEIs; 11–CCBs; 16–Ds | 187–BBs; 592–ACEIs; 514–CCBs; 861–Ds | BBs; ACEIs; CCBs; Ds | 3 | – | No | Antihypertensive medication use was not associated with prevalent or incident PD. |
Becker C. et al. | 2008 | Retrospective case–control study | 1704: 1168–BBs; 629–ACEIs; 89–ARBs; 807–CCBs | 991–BBs; 639–ACEIs; 98–ARBs; 863–CCBs | ACEIs, ARBs, BBs, CCBs | 1–9; 10–19; 20–29; 30–39; > 40 prescriptions | – | Yes (CCBs) | Current long–term use of CCBs was associated with a significantly reduced risk of PD emergence, as opposed to the intake of other antihypertensive drug classes. |
Ton T.G.N. et al. | 2007 | Population based, case–control study | 191–CCBs; 165–BBs | 365–CCBs; 321–BBs | CCBs, BBs | Cumulative duration of use: CCBs: no use; < 2.5; >/= 2.5; BBs: no use; < 3; >/= 3 | Cumulative standard doses: CCBs: no use; < 886; >/= 886; BBs: no use; < 4300; >/= 4300 | No | No association was found between PD risk and use of CCBs or BBs in terms of duration, dose, number of prescriptions or pattern of use. |
Year | Type of Study | PD Patients Exposed (No.) | Mean Age (Years) | Males (%) | Mean Disease Duration (mo.) | Mean H&Y Stage | Mean UPDRS Score | PD Controls (No.) | Drug | Exposure Duration (mo.) | Drug Dosage | Possible Benefit | Full Conclusion | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Parkinson Study Group STEADY-PD III Investigators | 2020 | Multi-center, RCT | 170 | 62.1 | 71.8 | 9.90 | 1.70 | 23.70 | 166 | CCBs (isradipine) | 36 | 5 mg × 2/day | No | Long-term treatment with immediate-release isradipine did not slow the clinical progression of early-stage PD. |
Laudisio A. et al. | 2017 | Single-center, retrospective cross-sectional study | 42–ACEIs; 46–ARBs; 41–BBs; 33–CCBs | 73 | 63.9 | 45.3 | - | 43.34 | 152–ACEIs; 148–ARBs; 153–BBs; 161–CCBs | ACEIs; ARBs; BBs; CCBs | - | - | Yes–ACEIs; No–ARBs; No–BBs; No–CCBs | Use of ACEIs was associated with reduced probability of falling in PD patients. No association was found between use of ARBs and falls. |
Marras C. et al. | 2012 | Retrospective cohort study | 378 | 78.6 | 50.8 | - | - | - | 1087 (amlodipine) | CCBs–except amlodipine | > 9 | - | No | CCBs did not have a clinically significant effect on the course of PD in the antihypertensive doses. |
Pasternak B. et al. | 2012 | Historical cohort study | 173 | - | - | - | - | - | - | CCBs | - | - | Yes | Among patients with PD, CCBs use was associated with reduced risk of death but no dementia. |
Reardon K.A. et al. | 2000 | Single-center, double blind placebo-controlled crossover pilot study | 6 | 59.6 | 16.6 | 144 | 3 | - | 6 (themselves) | ACEIs–perindopril | 1 | 2 mg/day –1st week; 4 mg/day –3 weeks | Yes | Perindopril improved motor complications in PD. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tulbă, D.; Avasilichioaiei, M.; Dima, N.; Crăciun, L.; Bălănescu, P.; Buzea, A.; Băicuș, C.; Popescu, B.O. Shared Molecular Targets in Parkinson’s Disease and Arterial Hypertension: A Systematic Review. Biomedicines 2022, 10, 653. https://doi.org/10.3390/biomedicines10030653
Tulbă D, Avasilichioaiei M, Dima N, Crăciun L, Bălănescu P, Buzea A, Băicuș C, Popescu BO. Shared Molecular Targets in Parkinson’s Disease and Arterial Hypertension: A Systematic Review. Biomedicines. 2022; 10(3):653. https://doi.org/10.3390/biomedicines10030653
Chicago/Turabian StyleTulbă, Delia, Mioara Avasilichioaiei, Natalia Dima, Laura Crăciun, Paul Bălănescu, Adrian Buzea, Cristian Băicuș, and Bogdan Ovidiu Popescu. 2022. "Shared Molecular Targets in Parkinson’s Disease and Arterial Hypertension: A Systematic Review" Biomedicines 10, no. 3: 653. https://doi.org/10.3390/biomedicines10030653
APA StyleTulbă, D., Avasilichioaiei, M., Dima, N., Crăciun, L., Bălănescu, P., Buzea, A., Băicuș, C., & Popescu, B. O. (2022). Shared Molecular Targets in Parkinson’s Disease and Arterial Hypertension: A Systematic Review. Biomedicines, 10(3), 653. https://doi.org/10.3390/biomedicines10030653