The Expanded Endocannabinoid System Contributes to Metabolic and Body Mass Shifts in First-Episode Schizophrenia: A 5-Year Follow-Up Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Measurement of Metabolites
2.3.1. eCBs and eCB-like Compounds Quantification
2.3.2. PCs Quantification
2.4. Statistical Analyses
3. Results
3.1. General Description of the Study Samples
3.2. Biomolecule’s Alterations and BMI Change in Patients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tandon, R.; Nasrallah, H.A.; Keshavan, M.S. Schizophrenia, “just the Facts” 4. Clinical Features and Conceptualization. Schizophr. Res. 2009, 110, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Oakley, P.; Kisely, S.; Baxter, A.; Harris, M.; Desoe, J.; Dziouba, A.; Siskind, D. Increased Mortality among People with Schizophrenia and Other Non-Affective Psychotic Disorders in the Community: A Systematic Review and Meta-Analysis. J. Psychiatr. Res. 2018, 102, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Brown, H.E. Management of Metabolic Syndrome in Schizophrenia. Psychiatr. Ann. 2020, 50, 340–345. [Google Scholar] [CrossRef]
- Horrobin, D.F. The Membrane Phospholipid Hypothesis as a Biochemical Basis for the Neurodevelopmental Concept of Schizophrenia. Schizophr. Res. 1998, 30, 193–208. [Google Scholar] [CrossRef]
- Horrobin, D.F.; Glen, A.I.; Vaddadi, K. The Membrane Hypothesis of Schizophrenia. Schizophr. Res. 1994, 13, 195–207. [Google Scholar] [CrossRef]
- Müller-Vahl, K.R.; Emrich, H.M. Cannabis and Schizophrenia: Towards a Cannabinoid Hypothesis of Schizophrenia. Expert Rev. Neurother. 2008, 8, 1037–1048. [Google Scholar] [CrossRef] [PubMed]
- Horrobin, D.F.; Bennett, C.N. The Membrane Phospholipid Concept of Schizophrenia. In Search for the Causes of Schizophrenia; Gattaz, W.F., Häfner, H., Eds.; Steinkopff: Heidelberg, Germany, 1999; pp. 261–277. ISBN 978-3-642-47078-3. [Google Scholar]
- Di Forti, M.; Quattrone, D.; Freeman, T.P.; Tripoli, G.; Gayer-Anderson, C.; Quigley, H.; Rodriguez, V.; Jongsma, H.E.; Ferraro, L.; La Cascia, C.; et al. The Contribution of Cannabis Use to Variation in the Incidence of Psychotic Disorder across Europe (EU-GEI): A Multicentre Case-Control Study. Lancet Psychiatry 2019, 6, 427–436. [Google Scholar] [CrossRef] [Green Version]
- Marsicano, G.; Lutz, B. Neuromodulatory Functions of the Endocannabinoid System. J. Endocrinol. Investig. 2006, 29 (Suppl. 3), 27–46. [Google Scholar]
- Witkamp, R. Fatty Acids, Endocannabinoids and Inflammation. Eur. J. Pharmacol. 2016, 785, 96–107. [Google Scholar] [CrossRef]
- Murray, R.M.; Morrison, P.D.; Henquet, C.; Forti, M.D. Cannabis, the Mind and Society: The Hash Realities. Nat. Rev. Neurosci. 2007, 8, 885–895. [Google Scholar] [CrossRef]
- Fezza, F.; Bari, M.; Florio, R.; Talamonti, E.; Feole, M.; Maccarrone, M. Endocannabinoids, Related Compounds and Their Metabolic Routes. Molecules 2014, 19, 17078–17106. [Google Scholar] [CrossRef] [PubMed]
- Chawla, A. Nuclear Receptors and Lipid Physiology: Opening the X-Files. Science 2001, 294, 1866–1870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferguson, L.B.; Zhang, L.; Wang, S.; Bridges, C.; Harris, R.A.; Ponomarev, I. Peroxisome Proliferator Activated Receptor Agonists Modulate Transposable Element Expression in Brain and Liver. Front. Mol. Neurosci. 2018, 11, 331. [Google Scholar] [CrossRef] [Green Version]
- Iannotti, F.A.; Vitale, R.M. The Endocannabinoid System and PPARs: Focus on Their Signalling Crosstalk, Action and Transcriptional Regulation. Cells 2021, 10, 586. [Google Scholar] [CrossRef]
- Fidaleo, M.; Fanelli, F.; Ceru, M.; Moreno, S. Neuroprotective Properties of Peroxisome Proliferator-Activated Receptor Alpha (PPARα) and Its Lipid Ligands. Curr. Med. Chem. 2014, 21, 2803–2821. [Google Scholar] [CrossRef] [PubMed]
- Watkins, B.A.; Kim, J. The Endocannabinoid System: Directing Eating Behavior and Macronutrient Metabolism. Front. Psychol. 2015, 5, 1506. [Google Scholar] [CrossRef] [PubMed]
- Chevaleyre, V.; Castillo, P.E. Heterosynaptic LTD of Hippocampal GABAergic Synapses. Neuron 2003, 38, 461–472. [Google Scholar] [CrossRef] [Green Version]
- Harkany, T.; Mackie, K.; Doherty, P. Wiring and Firing Neuronal Networks: Endocannabinoids Take Center Stage. Curr. Opin. Neurobiol. 2008, 18, 338–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrocellis, L.D.; Cascio, M.G.; Marzo, V.D. The Endocannabinoid System: A General View and Latest Additions: Endocannabinoid Biochemistry Updated. Br. J. Pharmacol. 2004, 141, 765–774. [Google Scholar] [CrossRef]
- Jean-Gilles, L.; Gran, B.; Constantinescu, C.S. Interaction between Cytokines, Cannabinoids and the Nervous System. Immunobiology 2010, 215, 606–610. [Google Scholar] [CrossRef]
- Matias, I.; Gatta-Cherifi, B.; Cota, D. Obesity and the Endocannabinoid System: Circulating Endocannabinoids and Obesity. Curr. Obes. Rep. 2012, 1, 229–235. [Google Scholar] [CrossRef] [Green Version]
- Desfossés, J.; Stip, E.; Bentaleb, L.A.; Potvin, S. Endocannabinoids and Schizophrenia. Pharmaceuticals 2010, 3, 3101–3126. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Dyer, R.A.; Beasley, C.L. Evidence for Altered Cell Membrane Lipid Composition in Postmortem Prefrontal White Matter in Bipolar Disorder and Schizophrenia. J. Psychiatr. Res. 2017, 95, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Ranganathan, M.; Cortes-Briones, J.; Radhakrishnan, R.; Thurnauer, H.; Planeta, B.; Skosnik, P.; Gao, H.; Labaree, D.; Neumeister, A.; Pittman, B.; et al. Reduced Brain Cannabinoid Receptor Availability in Schizophrenia. Biol. Psychiatry 2016, 79, 997–1005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minichino, A.; Senior, M.; Brondino, N.; Zhang, S.H.; Godlewska, B.R.; Burnet, P.W.J.; Cipriani, A.; Lennox, B.R. Measuring Disturbance of the Endocannabinoid System in Psychosis: A Systematic Review and Meta-Analysis. JAMA Psychiatry 2019, 76, 914. [Google Scholar] [CrossRef]
- Desfossés, J.; Stip, E.; Bentaleb, L.A.; Lipp, O.; Chiasson, J.-P.; Furtos, A.; Venne, K.; Kouassi, E.; Potvin, S. Plasma Endocannabinoid Alterations in Individuals with Substance Use Disorder Are Dependent on the “Mirror Effect” of Schizophrenia. Front. Psychiatry 2012, 3, 85. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. The ICD–10 Classification of Mental and Behavioural Disorders: Clinical Descriptions and Diagnostic Guidelines; World Health Organization: Geneva, Switzerland, 1992. [Google Scholar]
- Gardner, D.M.; Murphy, A.L.; O’Donnell, H.; Centorrino, F.; Baldessarini, R.J. International Consensus Study of Antipsychotic Dosing. Am. J. Psychiatry 2010, 167, 686–693. [Google Scholar] [CrossRef] [Green Version]
- Kriisa, K.; Leppik, L.; Balõtšev, R.; Ottas, A.; Soomets, U.; Koido, K.; Volke, V.; Innos, J.; Haring, L.; Vasar, E.; et al. Profiling of Acylcarnitines in First Episode Psychosis before and after Antipsychotic Treatment. J. Proteome Res. 2017, 16, 3558–3566. [Google Scholar] [CrossRef]
- Leppik, L.; Parksepp, M.; Janno, S.; Koido, K.; Haring, L.; Vasar, E.; Zilmer, M. Profiling of Lipidomics before and after Antipsychotic Treatment in First-Episode Psychosis. Eur. Arch. Psychiatry Clin. Neurosci. 2020, 270, 59–70. [Google Scholar] [CrossRef]
- Parksepp, M.; Leppik, L.; Koch, K.; Uppin, K.; Kangro, R.; Haring, L.; Vasar, E.; Zilmer, M. Metabolomics Approach Revealed Robust Changes in Amino Acid and Biogenic Amine Signatures in Patients with Schizophrenia in the Early Course of the Disease. Sci. Rep. 2020, 10, 13983. [Google Scholar] [CrossRef]
- Overall, J.E.; Gorham, D.R. The Brief Psychiatric Rating Scale. Psychol. Rep. 1962, 10, 799–812. [Google Scholar] [CrossRef]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research Electronic Data Capture (REDCap)—A Metadata-Driven Methodology and Workflow Process for Providing Translational Research Informatics Support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, P.A.; Taylor, R.; Minor, B.L.; Elliott, V.; Fernandez, M.; O’Neal, L.; McLeod, L.; Delacqua, G.; Delacqua, F.; Kirby, J.; et al. The REDCap Consortium: Building an International Community of Software Platform Partners. J. Biomed. Inform. 2019, 95, 103208. [Google Scholar] [CrossRef] [PubMed]
- Zoerner, A.A.; Batkai, S.; Suchy, M.-T.; Gutzki, F.-M.; Engeli, S.; Jordan, J.; Tsikas, D. Simultaneous UPLC–MS/MS Quantification of the Endocannabinoids 2-Arachidonoyl Glycerol (2AG), 1-Arachidonoyl Glycerol (1AG), and Anandamide in Human Plasma: Minimization of Matrix-Effects, 2AG/1AG Isomerization and Degradation by Toluene Solvent Extraction. J. Chromatogr. B 2012, 883–884, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Di Leo, G.; Sardanelli, F. Statistical Significance: P Value, 0.05 Threshold, and Applications to Radiomics—Reasons for a Conservative Approach. Eur. Radiol. Exp. 2020, 4, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D. Nlme: Linear and Nonlinear Mixed Effects Models; R Core Team: Vienna, Austria, 2019. [Google Scholar]
- StataCorp. Stata Statistical Software: Release 13; StataCorp LP: College Station, TX, USA, 2013. [Google Scholar]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis, 2nd ed.; Use R! Springer: Cham, Switzerland, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Garani, R.; Watts, J.J.; Mizrahi, R. Endocannabinoid System in Psychotic and Mood Disorders, a Review of Human Studies. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2021, 106, 110096. [Google Scholar] [CrossRef]
- Potvin, S.; Mahrouche, L.; Assaf, R.; Chicoine, M.; Giguère, C.-É.; Furtos, A.; Godbout, R. Peripheral Endogenous Cannabinoid Levels Are Increased in Schizophrenia Patients Evaluated in a Psychiatric Emergency Setting. Front. Psychiatry 2020, 11, 628. [Google Scholar] [CrossRef]
- Dickens, A.M.; Borgan, F.; Laurikainen, H.; Lamichhane, S.; Marques, T.; Rönkkö, T.; Veronese, M.; Lindeman, T.; Hyötyläinen, T.; Howes, O.; et al. Links between Central CB1-Receptor Availability and Peripheral Endocannabinoids in Patients with First Episode Psychosis. NPJ Schizophr. 2020, 6, 21. [Google Scholar] [CrossRef]
- Leweke, F.M.; Giuffrida, A.; Koethe, D.; Schreiber, D.; Nolden, B.M.; Kranaster, L.; Neatby, M.A.; Schneider, M.; Gerth, C.W.; Hellmich, M.; et al. Anandamide Levels in Cerebrospinal Fluid of First-Episode Schizophrenic Patients: Impact of Cannabis Use. Schizophr. Res. 2007, 94, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Giuffrida, A.; Leweke, F.M.; Gerth, C.W.; Schreiber, D.; Koethe, D.; Faulhaber, J.; Klosterkötter, J.; Piomelli, D. Cerebrospinal Anandamide Levels Are Elevated in Acute Schizophrenia and Are Inversely Correlated with Psychotic Symptoms. Neuropsychopharmacology 2004, 29, 2108–2114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demuth, D.G.; Molleman, A. Cannabinoid Signalling. Life Sci. 2006, 78, 549–563. [Google Scholar] [CrossRef] [PubMed]
- Pertwee, R.G.; Howlett, A.C.; Abood, M.E.; Alexander, S.P.H.; Di Marzo, V.; Elphick, M.R.; Greasley, P.J.; Hansen, H.S.; Kunos, G.; Mackie, K.; et al. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid Receptors and Their Ligands: Beyond CB 1 and CB 2. Pharm. Rev. 2010, 62, 588–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stella, N.; Schweitzer, P.; Piomelli, D. A Second Endogenous Cannabinoid That Modulates Long-Term Potentiation. Nature 1997, 388, 773–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howlett, A.C. International Union of Pharmacology. XXVII. Classification of Cannabinoid Receptors. Pharmacol. Rev. 2002, 54, 161–202. [Google Scholar] [CrossRef]
- Sun, Y.; Bennett, A. Cannabinoids: A New Group of Agonists of PPARs. PPAR Res. 2007, 2007, 23513. [Google Scholar] [CrossRef] [Green Version]
- Tsuboi, K.; Uyama, T.; Okamoto, Y.; Ueda, N. Endocannabinoids and Related N-Acylethanolamines: Biological Activities and Metabolism. Inflamm. Regen. 2018, 38, 28. [Google Scholar] [CrossRef]
- Hillard, C.J.; Manna, S.; Greenberg, M.J.; DiCamelli, R.; Ross, R.A.; Stevenson, L.A.; Murphy, V.; Pertwee, R.G.; Campbell, W.B. Synthesis and Characterization of Potent and Selective Agonists of the Neuronal Cannabinoid Receptor (CB1). J Pharm. Exp. 1999, 289, 1427–1433. [Google Scholar]
- Pacher, P.; Bátkai, S.; Kunos, G. The Endocannabinoid System as an Emerging Target of Pharmacotherapy. Pharm. Rev. 2006, 58, 389–462. [Google Scholar] [CrossRef] [Green Version]
- Pertwee, R.G. Pharmacology of Cannabinoid Receptor Ligands. Curr. Med. Chem. 1999, 6, 635–664. [Google Scholar]
- Starowicz, K.; Nigam, S.; Di Marzo, V. Biochemistry and Pharmacology of Endovanilloids. Pharmacol. Ther. 2007, 114, 13–33. [Google Scholar] [CrossRef] [PubMed]
- Christie, S.; Wittert, G.A.; Li, H.; Page, A.J. Involvement of TRPV1 Channels in Energy Homeostasis. Front. Endocrinol. 2018, 9, 420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tutunchi, H.; Saghafi-Asl, M.; Ostadrahimi, A. A Systematic Review of the Effects of Oleoylethanolamide, a High-affinity Endogenous Ligand of PPAR-α, on the Management and Prevention of Obesity. Clin. Exp. Pharm. Physiol. 2020, 47, 543–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Marzo, V.; Bisogno, T.; De Petrocellis, L. Anandamide: Some like It Hot. Trends Pharmacol. Sci. 2001, 22, 346–349. [Google Scholar] [CrossRef]
- Lo Verme, J.; Fu, J.; Astarita, G.; La Rana, G.; Russo, R.; Calignano, A.; Piomelli, D. The Nuclear Receptor Peroxisome Proliferator-Activated Receptor-α Mediates the Anti-Inflammatory Actions of Palmitoylethanolamide. Mol. Pharm. 2005, 67, 15–19. [Google Scholar] [CrossRef]
- Pertwee, R.G. GPR55: A New Member of the Cannabinoid Receptor Clan?: Commentary. Br. J. Pharmacol. 2007, 152, 984–986. [Google Scholar] [CrossRef] [Green Version]
- Ryberg, E.; Larsson, N.; Sjögren, S.; Hjorth, S.; Hermansson, N.-O.; Leonova, J.; Elebring, T.; Nilsson, K.; Drmota, T.; Greasley, P.J. The Orphan Receptor GPR55 Is a Novel Cannabinoid Receptor: GPR55, a Novel Cannabinoid Receptor. Br. J. Pharmacol. 2007, 152, 1092–1101. [Google Scholar] [CrossRef]
- Petrosino, S.; Di Marzo, V. The Pharmacology of Palmitoylethanolamide and First Data on the Therapeutic Efficacy of Some of Its New Formulations: Palmitoylethanolamide and Its New Formulations. Br. J. Pharmacol. 2017, 174, 1349–1365. [Google Scholar] [CrossRef]
- Fruchart, J.-C. Peroxisome Proliferator-Activated Receptor-Alpha (PPARα): At the Crossroads of Obesity, Diabetes and Cardiovascular Disease. Atherosclerosis 2009, 205, 1–8. [Google Scholar] [CrossRef]
- Bowen, K.J.; Kris-Etherton, P.M.; Shearer, G.C.; West, S.G.; Reddivari, L.; Jones, P.J.H. Oleic Acid-Derived Oleoylethanolamide: A Nutritional Science Perspective. Prog. Lipid Res. 2017, 67, 1–15. [Google Scholar] [CrossRef]
- Syed, S.K.; Bui, H.H.; Beavers, L.S.; Farb, T.B.; Ficorilli, J.; Chesterfield, A.K.; Kuo, M.-S.; Bokvist, K.; Barrett, D.G.; Efanov, A.M. Regulation of GPR119 Receptor Activity with Endocannabinoid-like Lipids. Am. J. Physiol.-Endocrinol. Metab. 2012, 303, E1469–E1478. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.; Singh, R.; Lee, J.; Colucci, L.; Graff-Guerrero, A.; Remington, G.; Hahn, M.; Agarwal, S.M. Adiposity in Schizophrenia: A Systematic Review and Meta-analysis. Acta Psychiatr. Scand. 2021, 144, 524–536. [Google Scholar] [CrossRef] [PubMed]
- Pillinger, T.; McCutcheon, R.A.; Vano, L.; Mizuno, Y.; Arumuham, A.; Hindley, G.; Beck, K.; Natesan, S.; Efthimiou, O.; Cipriani, A.; et al. Comparative Effects of 18 Antipsychotics on Metabolic Function in Patients with Schizophrenia, Predictors of Metabolic Dysregulation, and Association with Psychopathology: A Systematic Review and Network Meta-Analysis. Lancet Psychiatry 2020, 7, 64–77. [Google Scholar] [CrossRef]
- Pillinger, T.; Beck, K.; Gobjila, C.; Donocik, J.G.; Jauhar, S.; Howes, O.D. Impaired Glucose Homeostasis in First-Episode Schizophrenia: A Systematic Review and Meta-Analysis. JAMA Psychiatry 2017, 74, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Perry, B.I.; McIntosh, G.; Weich, S.; Singh, S.; Rees, K. The Association between First-Episode Psychosis and Abnormal Glycaemic Control: Systematic Review and Meta-Analysis. Lancet Psychiatry 2016, 3, 1049–1058. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.S.; Goldstein, J.L. Sterol Regulatory Element Binding Proteins (SREBPs): Controllers of Lipid Synthesis and Cellular Uptake. Nutr. Rev. 2009, 56, S1–S3. [Google Scholar] [CrossRef]
- Rakotoarivelo, V.; Sihag, J.; Flamand, N. Role of the Endocannabinoid System in the Adipose Tissue with Focus on Energy Metabolism. Cells 2021, 10, 1279. [Google Scholar] [CrossRef]
- Lu, D.; Dopart, R.; Kendall, D.A. Controlled Downregulation of the Cannabinoid CB1 Receptor Provides a Promising Approach for the Treatment of Obesity and Obesity-Derived Type 2 Diabetes. Cell Stress Chaperones 2016, 21, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Lago-Fernandez, A.; Zarzo-Arias, S.; Jagerovic, N.; Morales, P. Relevance of Peroxisome Proliferator Activated Receptors in Multitarget Paradigm Associated with the Endocannabinoid System. Int. J. Mol. Sci. 2021, 22, 1001. [Google Scholar] [CrossRef]
- Sullivan, C.R.; Mielnik, C.A.; O’Donovan, S.M.; Funk, A.J.; Bentea, E.; DePasquale, E.A.; Alganem, K.; Wen, Z.; Haroutunian, V.; Katsel, P.; et al. Connectivity Analyses of Bioenergetic Changes in Schizophrenia: Identification of Novel Treatments. Mol. Neurobiol. 2019, 56, 4492–4517. [Google Scholar] [CrossRef]
- Wada, Y.; Maekawa, M.; Ohnishi, T.; Balan, S.; Matsuoka, S.; Iwamoto, K.; Iwayama, Y.; Ohba, H.; Watanabe, A.; Hisano, Y.; et al. Peroxisome Proliferator-Activated Receptor α as a Novel Therapeutic Target for Schizophrenia. EBioMedicine 2020, 62, 103130. [Google Scholar] [CrossRef] [PubMed]
- Bordet, R. PPARs: A New Target for Neuroprotection. J. Neurol. Neurosurg. Psychiatry 2005, 77, 285–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Stelt, M.; Di Marzo, V. Cannabinoid Receptors and Their Role in Neuroprotection. NMM 2005, 7, 37–50. [Google Scholar] [CrossRef]
- Dlugos, A.; Childs, E.; Stuhr, K.L.; Hillard, C.J.; de Wit, H. Acute Stress Increases Circulating Anandamide and Other N-Acylethanolamines in Healthy Humans. Neuropsychopharmacology 2012, 37, 2416–2427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, M.N.; McLaughlin, R.J.; Bingham, B.; Shrestha, L.; Lee, T.T.Y.; Gray, J.M.; Hillard, C.J.; Gorzalka, B.B.; Viau, V. Endogenous Cannabinoid Signaling Is Essential for Stress Adaptation. Proc. Natl. Acad. Sci. USA 2010, 107, 9406–9411. [Google Scholar] [CrossRef] [Green Version]
- Hauer, D.; Schelling, G.; Gola, H.; Campolongo, P.; Morath, J.; Roozendaal, B.; Hamuni, G.; Karabatsiakis, A.; Atsak, P.; Vogeser, M.; et al. Plasma Concentrations of Endocannabinoids and Related Primary Fatty Acid Amides in Patients with Post-Traumatic Stress Disorder. PLoS ONE 2013, 8, e62741. [Google Scholar] [CrossRef] [Green Version]
- Appiah-Kusi, E.; Wilson, R.; Colizzi, M.; Foglia, E.; Klamerus, E.; Caldwell, A.; Bossong, M.G.; McGuire, P.; Bhattacharyya, S. Childhood Trauma and Being At-Risk for Psychosis Are Associated with Higher Peripheral Endocannabinoids. Psychol. Med. 2020, 50, 1862–1871. [Google Scholar] [CrossRef]
- Holloman, B.L.; Nagarkatti, M.; Nagarkatti, P. Epigenetic Regulation of Cannabinoid-Mediated Attenuation of Inflammation and Its Impact on the Use of Cannabinoids to Treat Autoimmune Diseases. Int. J. Mol. Sci. 2021, 22, 7302. [Google Scholar] [CrossRef]
- Leuti, A.; Fazio, D.; Fava, M.; Piccoli, A.; Oddi, S.; Maccarrone, M. Bioactive Lipids, Inflammation and Chronic Diseases. Adv. Drug Deliv. Rev. 2020, 159, 133–169. [Google Scholar] [CrossRef]
- Moreno, E.; Cavic, M.; Canela, E.I. Functional Fine-Tuning of Metabolic Pathways by the Endocannabinoid System—Implications for Health and Disease. Int. J. Mol. Sci. 2021, 22, 3661. [Google Scholar] [CrossRef]
- Haring, L.; Koido, K.; Vasar, V.; Leping, V.; Zilmer, K.; Zilmer, M.; Vasar, E. Antipsychotic Treatment Reduces Psychotic Symptoms and Markers of Low-Grade Inflammation in First Episode Psychosis Patients, but Increases Their Body Mass Index. Schizophr. Res. 2015, 169, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Balõtšev, R.; Haring, L.; Koido, K.; Leping, V.; Kriisa, K.; Zilmer, M.; Vasar, V.; Piir, A.; Lang, A.; Vasar, E. Antipsychotic Treatment Is Associated with Inflammatory and Metabolic Biomarkers Alterations among First-Episode Psychosis Patients: A 7-Month Follow-up Study. Early Interv. Psychiatry 2019, 13, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Kohler, I.; Hankemeier, T.; van der Graaf, P.H.; Knibbe, C.A.J.; van Hasselt, J.G.C. Integrating Clinical Metabolomics-Based Biomarker Discovery and Clinical Pharmacology to Enable Precision Medicine. Eur. J. Pharm. Sci. 2017, 109, S15–S21. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Participants | Comparison between Groups | ||||
---|---|---|---|---|---|---|
CSs | FEPb | FEP(0.6-year) | FEP(5.1-year) | FEPb and CSs | FEPb, FEP(0.6-year) and FEP(5.1-year) | |
Participants | 58 | 54 | 47 | 38 | ||
Age (years), mean ± SD (range) | 24.7 ± 4.5 (19.1–39.3) | 26.6 ± 6.1 (18.7–41.1) | 27.3 ± 6.4 (19.3–41.7) | 31.8 ± 5.9 (23.7–46.2) | t(110) = 1.87 ns | - |
Men (%) | 24 (44%) | 31 (57%) | 27 (51%) | 23 (43%) | χ2(1) = 3.58 ns | - |
Current cigarette smoker (n,%) | 15 (26%) | 18 (33%) | 16 (30%) | 20 (37%) | χ2(1) = 0.33 ns | - |
BMI (kg/m2), mean ± SD (range) | 22.6 ± 2.8 (16.8–28.9) | 22.8 ± 3.0 (18.4–30.2) | 25.3 ± 3.9 a (18.8–34.7) | 27.8 ± 4.7 b,c (18.8–43.0) | t(110) = 0.34 ns | F(2) = 19.26 p < 10−6 |
BPRS score mean ± SD (range) | - | 49.9 ± 15.4 (13–85) | 22.9 ± 12.7 a (2–48) | 14.2 ± 10.5 b,c (0–49) | - | F(2) = 93.6 p < 10−6 |
AP dose mean ± SD (range) | - | - | 365 ± 163 (60–680) | 442 ± 297 (75–1566) | - | t(52) = −0.36 ns |
Length of education mean ± SD (range) | 14.6 ± 1.8 (10.0–19.0) | 12.6 ± 2.5 (8.0–18.0) | - | - | t(109) = −4.86 p < 10−5 | - |
Intercept | Age | Gender | Smoking | Disease and Treatment Effect | TimeDiff1 | TimeDiff2 | |||
---|---|---|---|---|---|---|---|---|---|
FEP Patients before Treatment | FEP Patients after 0.6-Year Treatment | FEP Patients after 5.1-Year Treatment | |||||||
Effects of Independent Variables on the Dependent Variable (F-Value, p-Value) | |||||||||
t-Value, p-Value | |||||||||
2-Arachidonoylglycerol (2-AG) | F(1,110) = 81.02, p < 10−4 | F(1,76) = 1.41, p = 0.24 | F(1,110) = 0.46, p = 0.50 | F(2,76) = 1.89, p = 0.16 | F(3,76) = 25.19, p < 1 × 10−4 | F(1,76) = 0.72, p = 0.40 | F(1,76) = 5.97, p = 0.02 | ||
t(76) = −2.97, p = 0.004 | t(76) = −0.34, p = 0.73 | t(76) = 5.34, p < 10−4 | |||||||
Anandamide (AEA) (N-arachidonoylethanolamine) | F(1,110) = 12.59, p = 6 × 10−4 | F(1,72) = 2.59, p = 0.11 | F(1,110) = 0.07, p = 0.79 | F(2,72) = 0.80, p = 0.45 | F(3,72) = 4.62, p = 0.005 | F(1,72) = 5.08, p = 0.03 | F(1,72) = 2.11, p = 0.15 | ||
t(72) = 3.03, p = 0.003 | t(72) = 0.48, p = 0.64 | t(72) = 1.59, p = 0.12 | |||||||
Linoleoylethanolamide (LEA) (C18:2, N-cylethanolamine) | F(1,109) = 32.48, p < 10−4 | F(1,72) = 0.39, p = 0.54 | F(1,109) = 2.39, p = 0.13 | F(2,72) = 0.76, p = 0.47 | F(3,72) = 15.11, p < 10−4 | F(1,72) = 0.38, p = 0.54 | F(1,72) = 2.59, p = 0.11 | ||
t(72) = 3.17, p = 0.002 | t(72) = 1.97, p = 0.05 | t(72) = −2.62, p = 0.01 | |||||||
Oleoylethanolamide (OEA) (C18:1, N-acylethanolamine) | F(1,109) = 136, p < 10−4 | F(1,72) = 2.94, p = 0.09 | F(1,109) = 0.005, p = 0.95 | F(2,72) = 0.54, p = 0.58 | F(3,72) = 6.63, p = 5 × 10−4 | F(1,72) = 2.46, p = 0.12 | F(1,72) = 1.47, p = 0.23 | ||
t(72) = 3.84, p = 3 × 10−4 | t(72) = 0.98, p = 0.33 | t(72) = 0.52, p = 0.60 | |||||||
Palmitoylethanolamide (PEA) (C16:0, N-acylethanolamine) | F(1,110) = 251, p < 10−4 | F(1,71) = 1.91, p = 0.17 | F(1,110) = 0.01, p = 0.90 | F(2,71) = 0.95, p = 0.39 | F(3,71) = 4.36, p = 0.007 | F(1,71) = 2.64, p = 0.11 | F(1,71) = 3.84, p = 0.05 | ||
t(71) = 3.36, p = 0.001 | t(71) = 1.51, p = 0.14 | t(71) = 0.97, p = 0.33 | |||||||
AEA/2-AG | F(1,110) = 73.88, p < 10−4 | F(1,72) = 1.18, p = 0.28 | F(1,110) = 0.02, p = 0.88 | F(2,72) = 2.52, p = 0.09 | F(3,72) = 13.95, p < 10−4 | F(1,72) = 4.11, p = 0.05 | F(1,72) = 0.09, p = 0.76 | ||
t(72)= 4.67, p < 10−4 | t(72) = 0.79, p = 0.43 | t(72) = −1.10, p = 0.28 | |||||||
LEA/2-AG | F(1,109) = 0.47, p = 0.50 | F(1,72) = 0.02, p = 0.90 | F(1,109) = 1.18, p = 0.28 | F(2,72) = 1.76, p = 0.18 | F(3,72) = 41.61, p < 10−4 | F(1,72) = 0.15, p = 0.70 | F(1,72) = 0.03, p = 0.86 | ||
t(72)= 4.38, p < 10−4 | t(72) = 2.08, p = 0.04 | t(72)= −4.87, p < 10−4 | |||||||
OEA/2-AG | F(1,109) = 29.18, p < 10−4 | F(1,72) = 0.79, p = 0.38 | F(1,109) = 0.10, p = 0.75 | F(2,72) = 1.10, p = 0.34 | F(3,72) = 23.56, p < 10−4 | F(1,72) = 2.10, p = 0.15 | F(1,72) = 0.10, p = 0.75 | ||
t(72)= 5.24, p < 10−4 | t(72) = 1.29, p = 0.20 | t(72) = −2.52, p = 0.01 | |||||||
PEA/2-AG | F(1,110) = 84.69, p < 10−4 | F(1,71) = 0.39, p = 0.54 | F(1,110) = 0.23, p = 0.63 | F(2,71) = 1.58, p = 0.21 | F(3,71) = 18.41, p < 10−4 | F(1,71) = 1.89, p = 0.17 | F(1,71) = 0.47, p = 0.50 | ||
t(71)= 4.95, p < 10−4 | t(71) = 1.72, p = 0.09 | t(71) = −2.72, p = 0.008 | |||||||
LEA/AEA | F(1,109) = 102, p < 10−4 | F(1,72) = 1.08, p = 0.30 | F(1,109) = 1.51, p = 0.22 | F(2,72) = 0.58, p = 0.56 | F(3,72) = 17.97, p < 10−4 | F(1,72) = 6.11, p = 0.02 | F(1,72) = 0.10, p = 0.76 | ||
t(72) = 0.08, p = 0.94 | t(72) = 1.82, p = 0.07 | t(72)= −4.65, p < 10−4 | |||||||
OEA/AEA | F(1,109) = 280, p < 10−4 | F(1,72) = 0.08, p = 0.77 | F(1,109) = 0.05, p = 0.82 | F(2,72) = 0.97, p = 0.38 | F(3,72) = 1.63, p = 0.19 | F(1,72) = 2.18, p = 0.14 | F(1,72) = 0.35, p = 0.55 | ||
t(72) = 0.29, p = 0.78 | t(72) = 0.54, p = 0.59 | t(72) = −1.43, p = 0.16 | |||||||
PEA/AEA | F(1,110) = 296, p < 10−4 | F(1,71) = 0.77, p = 0.38 | F(1,110) = 0.18, p = 0.67 | F(2,71) = 0.72, p = 0.49 | F(3,71) = 0.72, p = 0.15 | F(1,71) = 2.77, p = 0.10 | F(1,71) = 0.50, p = 0.48 | ||
t(71) = −0.89, p = 0.38 | t(71) = 0.69, p = 0.49 | t(71) = −0.76, p = 0.45 | |||||||
Body mass index (BMI) | F(1,110) = 1798, p < 10−4 | F(1,77) = 2.84, p = 0.10 | F(1,110) = 0.41, p = 0.52 | F(2,77) = 0.40, p = 0.68 | F(3,77) = 26.88, p < 10−4 | F(1,77) = 1.29, p = 0.26 | F(1,77) = 3.90, p = 0.05 | ||
t(77) = −0.13, p = 0.90 | t(77) = 3.59, p = 6 × 10−4 | t(77)= 4.63, p < 10−4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parksepp, M.; Haring, L.; Kilk, K.; Koch, K.; Uppin, K.; Kangro, R.; Zilmer, M.; Vasar, E. The Expanded Endocannabinoid System Contributes to Metabolic and Body Mass Shifts in First-Episode Schizophrenia: A 5-Year Follow-Up Study. Biomedicines 2022, 10, 243. https://doi.org/10.3390/biomedicines10020243
Parksepp M, Haring L, Kilk K, Koch K, Uppin K, Kangro R, Zilmer M, Vasar E. The Expanded Endocannabinoid System Contributes to Metabolic and Body Mass Shifts in First-Episode Schizophrenia: A 5-Year Follow-Up Study. Biomedicines. 2022; 10(2):243. https://doi.org/10.3390/biomedicines10020243
Chicago/Turabian StyleParksepp, Madis, Liina Haring, Kalle Kilk, Kadri Koch, Kärt Uppin, Raul Kangro, Mihkel Zilmer, and Eero Vasar. 2022. "The Expanded Endocannabinoid System Contributes to Metabolic and Body Mass Shifts in First-Episode Schizophrenia: A 5-Year Follow-Up Study" Biomedicines 10, no. 2: 243. https://doi.org/10.3390/biomedicines10020243
APA StyleParksepp, M., Haring, L., Kilk, K., Koch, K., Uppin, K., Kangro, R., Zilmer, M., & Vasar, E. (2022). The Expanded Endocannabinoid System Contributes to Metabolic and Body Mass Shifts in First-Episode Schizophrenia: A 5-Year Follow-Up Study. Biomedicines, 10(2), 243. https://doi.org/10.3390/biomedicines10020243