Fourth Dose of mRNA COVID-19 Vaccine Transiently Reactivates Spike-Specific Immunological Memory in People Living with HIV (PLWH)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Characteristics of PLWH Receiving a Fourth mRNA Vaccine Dose
3.2. SARS-CoV-2 Humoral Response after the Fourth Vaccine Dose Is Detectable in PLWH
3.3. Fourth Vaccine Dose Induces the Transient Reactivation of the Wuhan Spike-Specific T and B Cells from Day 7 Post-Administration
3.4. Identification of the CD4+ T and B Cells Binding to the B 1.1.529 SARS-CoV-2 Omicron-Spike
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barouch, D.H. COVID-19 Vaccines—Immunity, Variants, Boosters. N. Engl. J. Med. 2022, 387, 1011–1020. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Iwasaki, A. Impact of Chronic HIV Infection on SARS-CoV-2 Infection, COVID-19 Disease and Vaccines. Curr. HIV/AIDS Rep. 2022, 19, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Nomah, D.K.; Reyes-Urueña, J.; Llibre, J.M.; Ambrosioni, J.; Ganem, F.S.; Miró, J.M.; Casabona, J. HIV and SARS-CoV-2 Co-infection: Epidemiological, Clinical Features, and Future Implications for Clinical Care and Public Health for People Living with HIV (PLWH) and HIV Most-at-Risk Groups. Curr. HIV/AIDS Rep. 2021, 18, 518–526. [Google Scholar] [CrossRef]
- Moir, S.; Chun, T.W.; Fauci, A.S. Pathogenic mechanisms of HIV disease. Annu. Rev. Pathol. 2011, 6, 223–248. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.; Pollock, L.C.; Selwyn, P.A. HIV-Associated Complications: A Systems-Based Approach. Am. Fam. Physician. 2017, 96, 161–169. [Google Scholar] [PubMed]
- World Health Organization (WHO). Coronavirus Disease (COVID-19) and People Living with HIV. Updated 29 July 2022. Available online: https://www.who.int/news-room/questions-and-answers/item/coronavirus-disease-(covid-19)-covid-19-and-people-living-with-hiv (accessed on 15 November 2022).
- U.S. Department of Health and Human Service. Guidance for COVID-19 and People with HIV. Updated 22 February 2022. Available online: https://clinicalinfo.hiv.gov/en/guidelines/guidance-covid-19-and-people-hiv/guidance-covid-19-and-people-hiv?view=full (accessed on 15 November 2022).
- Centers for Disease Control and Prevention (CDC). HIV and COVID-19 Basics. Updated 12 July 2022. Available online: https://www.cdc.gov/hiv/basics/covid-19.html?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Fcoronavirus%2F2019-ncov%2Fneed-extra-precautions%2Fhiv.html (accessed on 15 November 2022).
- National Institutes of Health (NIH). Special Considerations in People With HIV. Updated 2 May 2022. Available online: https://www.covid19treatmentguidelines.nih.gov/special-populations/hiv (accessed on 15 November 2022).
- Western Cape Department of Health in collaboration with the National Institute for Communicable Diseases, South Africa. Risk Factors for Coronavirus Disease 2019 (COVID-19) Death in a Population Cohort Study from the Western Cape Province, South Africa. Clin. Infect. Dis. 2021, 73, e2005–e2015. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, E.M.; Rosenberg, E.S.; Patterson, W.; Ferguson, W.P.; Gonzalez, C.; De Hovitz, J.; Udo, T.; Rajulu, D.T.; Hart-Malloy, R.; Tesoriero, J. Factors associated with SARS-CoV-2-related hospital outcomes among and between persons living with and without diagnosed HIV infection in New York State. PLoS ONE. 2022, 17, e0268978. [Google Scholar] [CrossRef]
- Karmen-Tuohy, S.; Carlucci, P.M.; Zervou, F.N.; Zacharioudakis, I.M.; Rebick, G.; Klein, E.; Reich, J.; Jones, S.; Rahimian, J. Outcomes Among HIV-Positive Patients Hospitalized With COVID-19. J. Acquir. Immune. Defic. Syndr. 2020, 85, 6–10. [Google Scholar] [CrossRef]
- Ambrosioni, J.; Blanco, J.L.; Reyes-Urueña, J.M.; Davies, M.A.; Sued, O.; Marcos, M.A.; Martínez, E.; Bertagnolio, S.; Alcamí, J.; Miro, J.M. COVID-19 in HIV Investigators. Overview of SARS-CoV-2 infection in adults living with HIV. Lancet HIV. 2021, 8, e294–e305. [Google Scholar] [CrossRef]
- Moir, S.; Fauci, A.S. B-cell responses to HIV infection. Immunol. Rev. 2017, 275, 33–48. [Google Scholar] [CrossRef]
- Clinical Info HIV. Guidelines for the Prevention and Treatment of Opportunistic Infections in Adults and Adolescents with HIV. Updated 28 September 2022. Available online: https://clinicalinfo.hiv.gov/en/guidelines/hiv-clinical-guidelines-adult-and-adolescent-opportunistic-infections/whats-new (accessed on 13 December 2022).
- Brichacek, B.; Swindells, S.; Janoff, E.N.; Pirruccello, S.; Stevenson, M. Increased plasma human immunodeficiency virus type 1 burden following antigenic challenge with pneumococcal vaccine. J. Infect. Dis. 1996, 174, 1191–1199. [Google Scholar] [CrossRef] [PubMed]
- Viganò, A.; Bricalli, D.; Trabattoni, D.; Salvaggio, A.; Ruzzante, S.; Barbi, M.; Di Sanzo, G.; Principi, N.; Clerici, M. Immunization with both T cell-dependent and T cell-independent vaccines augments HIV viral load secondarily to stimulation of tumor necrosis factor alpha. AIDS Res. Hum. Retrovir. 1998, 14, 727–734. [Google Scholar] [CrossRef] [PubMed]
- Christensen-Quick, A.; Chaillon, A.; Yek, C.; Zanini, F.; Jordan, P.; Ignacio, C.; Caballero, G.; Gianella, S.; Smith, D. Influenza Vaccination Can Broadly Activate the HIV Reservoir During Antiretroviral Therapy. J. Acquir. Immune Defic. Syndr. 2018, 79, e104–e107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yek, C.; Gianella, S.; Plana, M.; Castro, P.; Scheffler, K.; García, F.; Massanella, M.; Smith, D.M. Standard vaccines increase HIV-1 transcription during antiretroviral therapy. AIDS 2016, 30, 2289–2298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levy, I.; Wieder-Finesod, A.; Litchevsky, V.; Biber, A.; Indenbaum, V.; Olmer, L.; Huppert, A.; Mor, O.; Goldstein, M.; Levin, E.G.; et al. Immunogenicity and safety of the BNT162b2 mRNA COVID-19 vaccine in people living with HIV-1. Clin. Microbiol. Infect. 2021, 27, 1851–1855. [Google Scholar] [CrossRef]
- Bozzi, G.; Lombardi, A.; Ludovisi, S.; Muscatello, A.; Manganaro, L.; Cattaneo, D.; Gori, A.; Bandera, A. Transient increase in plasma HIV RNA after COVID-19 vaccination with mRNA-1272. Int. J. Infect. Dis. 2021, 113, 125–126. [Google Scholar] [CrossRef]
- Mullender, C.; da Costa, K.A.S.; Alrubayyi, A.; Pett, S.L.; Peppa, D. SARS-CoV-2 immunity and vaccine strategies in people with HIV. Oxf. Open Immunol. 2022, 3, iqac005. [Google Scholar] [CrossRef]
- Vergori, A.; Cozzi Lepri, A.; Cicalini, S.; Matusali, G.; Bordoni, V.; Lanini, S.; Meschi, S.; Iannazzo, R.; Mazzotta, V.; Colavita, F.; et al. HIV-VAC study group. Immunogenicity to COVID-19 mRNA vaccine third dose in people living with HIV. Nat. Commun. 2022, 13, 4922. [Google Scholar] [CrossRef]
- Regev-Yochay, G.; Gonen, T.; Gilboa, M.; Mandelboim, M.; Indenbaum, V.; Amit, S.; Meltzer, L.; Asraf, K.; Cohen, C.; Fluss, R.; et al. Efficacy of a Fourth Dose of COVID-19 mRNA Vaccine against Omicron. N. Engl. J. Med. 2022, 386, 1377–1380. [Google Scholar] [CrossRef]
- Grewal, R.; Kitchen, S.A.; Nguyen, L.; Buchan, S.A.; Wilson, S.E.; Costa, A.P.; Kwong, J.C. Effectiveness of a fourth dose of covid-19 mRNA vaccine against the omicron variant among long term care residents in Ontario, Canada: Test negative design study. BMJ 2022, 378, e071502. [Google Scholar] [CrossRef]
- Nordström, P.; Ballin, M.; Nordström, A. Effectiveness of a fourth dose of mRNA COVID-19 vaccine against all-cause mortality in long-term care facility residents and in the oldest old: A nationwide, retrospective cohort study in Sweden. Lancet Reg. Health Eur. 2022, 21, 100466. [Google Scholar] [CrossRef] [PubMed]
- Magen, O.; Waxman, J.G.; Makov-Assif, M.; Vered, R.; Dicker, D.; Hernán, M.A.; Lipsitch, M.; Reis, B.Y.; Balicer, R.D.; Dagan, N. Fourth Dose of BNT162b2 mRNA COVID-19 Vaccine in a Nationwide Setting. N. Engl. J. Med. 2022, 386, 1603–1614. [Google Scholar] [CrossRef] [PubMed]
- Canetti, M.; Barda, N.; Gilboa, M.; Indenbaum, V.; Asraf, K.; Gonen, T.; Weiss-Ottolenghi, Y.; Amit, S.; Doolman, R.; Mendelson, E.; et al. Six-Month Follow-up after a Fourth BNT162b2 Vaccine Dose. N. Engl. J. Med. 2022, 387, 2092–2094. [Google Scholar] [CrossRef] [PubMed]
- Mazzoni, A.; Vanni, A.; Spinicci, M.; Lamacchia, G.; Kiros, S.T.; Rocca, A.; Capone, M.; Di Lauria, N.; Salvati, L.; Carnasciali, A.; et al. SARS-CoV-2 infection and vaccination trigger long-lived B and CD4+ T lymphocytes with implications for booster strategies. J. Clin. Invest. 2022, 132, e157990. [Google Scholar] [CrossRef]
- Zhang, Z.; Mateus, J.; Coelho, C.H.; Dan, J.M.; Moderbacher, C.R.; Gálvez, R.I.; Cortes, F.H.; Grifoni, A.; Tarke, A.; Chang, J.; et al. Humoral and cellular immune memory to four COVID-19 vaccines. Cell 2022, 185, 2434–2451.e17. [Google Scholar] [CrossRef] [PubMed]
- Mazzoni, A.; Salvati, L.; Maggi, L.; Annunziato, F.; Cosmi, L. Hallmarks of immune response in COVID-19: Exploring dysregulation and exhaustion. Semin. Immunol. 2021, 55, 101508. [Google Scholar] [CrossRef]
- Lin, K.Y.; Wu, P.Y.; Liu, W.D.; Sun, H.Y.; Hsieh, S.M.; Sheng, W.H.; Huang, Y.S.; Hung, C.C.; Chang, S.C. Effectiveness of COVID-19 vaccination among people living with HIV during a COVID-19 outbreak. J. Microbiol. Immunol. Infect. 2022, 55, 535–539. [Google Scholar] [CrossRef]
- Nault, L.; Marchitto, L.; Goyette, G.; Tremblay-Sher, D.; Fortin, C.; Martel-Laferrière, V.; Trottier, B.; Richard, J.; Durand, M.; Kaufmann, D.; et al. COVID-19 vaccine immunogenicity in people living with HIV-1. Vaccine 2022, 40, 3633–3637. [Google Scholar] [CrossRef]
- Touizer, E.; Alrubbayi, A.; Ford, R.; Hussain, N.; Gerber, P.P.; Shum, H.L.; Rees-Spear, C.; Muir, L.; Gea-Mallorquí, E.; Kopycinski, J.; et al. Attenuated humoral responses in HIV infection after SARS-CoV-2 vaccination are linked to global B cell defects and cellular immune profiles. bioRxiv 2022. [Google Scholar] [CrossRef]
- Saha, R.; Raizada, A.; Dewan, P.; Nirmal, K.; Saini, V.; Khan, A.M.; Mogha, N.S.; Jain, S.; Gomber, S.; Singh, N.P. Antibody Response to SARS-CoV-2 in HIV Patients Co-Infected with COVID-19. Int. J. Virol. AIDS 2021, 8, 79. [Google Scholar] [CrossRef]
- Perez-Andres, M.; Paiva, B.; Nieto, W.G.; Caraux, A.; Schmitz, A.; Almeida, J.; Vogt, R.F., Jr.; Marti, G.E.; Rawstron, A.C.; Van Zelm, M.C.; et al. Primary Health Care Group of Salamanca for the Study of MBL. Human peripheral blood B-cell compartments: A crossroad in B-cell traffic. Cytom. B Clin. Cytom. 2010, 78 (Suppl. S1), S47–S60. [Google Scholar] [CrossRef]
- Watson, O.J.; Barnsley, G.; Toor, J.; Hogan, A.B.; Winskill, P.; Ghani, A.C. Global impact of the first year of COVID-19 vaccination: A mathematical modelling study. Lancet Infect. Dis. 2022, 22, 1293–1302. [Google Scholar] [CrossRef]
- Lamacchia, G.; Mazzoni, A.; Spinicci, M.; Vanni, A.; Salvati, L.; Peruzzi, B.; Bencini, S.; Capone, M.; Carnasciali, A.; Farahvachi, P.; et al. Clinical and Immunological Features of SARS-CoV-2 Breakthrough Infections in Vaccinated Individuals Requiring Hospitalization. J. Clin. Immunol. 2022, 42, 1379–1391. [Google Scholar] [CrossRef] [PubMed]
- Mazzoni, A.; Vanni, A.; Spinicci, M.; Capone, M.; Lamacchia, G.; Salvati, L.; Coppi, M.; Antonelli, A.; Carnasciali, A.; Farahvachi, P.; et al. SARS-CoV-2 Spike-Specific CD4+ T Cell Response Is Conserved Against Variants of Concern, Including Omicron. Front. Immunol. 2022, 13, 801431. [Google Scholar] [CrossRef]
- Richardson, S.I.; Madzorera, V.S.; Spencer, H.; Manamela, N.P.; van der Mescht, M.A.; Lambson, B.E.; Oosthuysen, B.; Ayres, F.; Makhado, Z.; Moyo-Gwete, T.; et al. SARS-CoV-2 Omicron triggers cross-reactive neutralization and Fc effector functions in previously vaccinated, but not unvaccinated, individuals. Cell Host. Microbe. 2022, 30, 880–886.e4. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Li, P.; Ji, Y.; Ikram, A.; Pan, Q. Cross-reactivity towards SARS-CoV-2: The potential role of low-pathogenic human coronaviruses. Lancet Microbe 2020, 1, e151. [Google Scholar] [CrossRef] [PubMed]
- Ai, J.; Zhang, H.; Zhang, Y.; Lin, K.; Zhang, Y.; Wu, J.; Wan, Y.; Huang, Y.; Song, J.; Fu, Z.; et al. Omicron variant showed lower neutralizing sensitivity than other SARS-CoV-2 variants to immune sera elicited by vaccines after boost. Emerg. Microbes. Infect. 2022, 11, 337–343. [Google Scholar] [CrossRef] [PubMed]
PLWH | Age at Fourth Dose Vaccination (Years of Age) | Age at HIV Diagnosis (Years of Age) | Time from HIV Diagnosis to ART Start (Days) | CD4+ T Cell Nadir Count (Cell/mm3) | HIV-1 RNA Zenith (Copies/mL) | AIDS (Years of Age) | AIDS Event | Comorbidities | Latest CD4+ T Cell Count (Cell/mm3) | Latest HIV-1 RNA (Copies/mL) | Adherent to ART | Vaccine Type (First + Second + Third + Fourth Dose) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
V1 | 47 | 22 | 29 | 355 | >500,000 | NA | No | Allogenic HSCT in AML at 41 years | 1300 | TND | Yes | S + S + C + C |
V2 | 64 | 31 | 1034 | 300 | ND | NA | No | Cardiovascular disease | 989 | TND | Yes | S + S + C + C |
V3 | 64 | 50 | 42 | 8 | 227,015 | Yes (50) | Cryptococcal meningitis and pneumonia; MAC infection | Major depressive disorder | 172 | <20 | No | S + S + S + C |
V4 | 65 | 30 | 1461 | 15 | 231,833 | Yes (60) | Pneumocystis jiroveci pneumonia; CMV infection | Chronic hepatitis C | 253 | 22,000 | No | S + S + C + C |
V5 | 48 | 45 | 3 | 3 | 1,420,000 | NA | No | None | 210 | <20 | Yes | S + S + S + C |
V6 | 58 | 48 | 28 | 28 | >10,000,000 | Yes (55) | Wasting syndrome; esophageal candidiasis | None | 243 | 58 | Yes | S + S + S + C |
V7 | 51 | 31 | 128 | 103 | 449,000 | NA | No | Severe obesity | 390 | TND | Yes | S + S + C + C |
V8 | 71 | 70 | 7 | 186 | 2,810,000 | NA | No | None | 829 | 84 | Yes | S + S + S + C |
Mean | 58.5 | 40.9 | 341.5 | 124.7 | - | - | - | - | 548.2 | - | - | - |
SD | 8.9 | 15.4 | 572 | 140.3 | - | - | - | - | 430.8 | - | - | - |
PLWH | CD4/CD8 Ratio | Anti-N IgG * T0 Pre-Fourth Dose | Anti-N IgG * T +7 Days | Anti-N IgG * T +1 Month | Anti-N IgG * T +2 Months | Time between the Third and Fourth Vaccine Doses (Days) |
---|---|---|---|---|---|---|
V1 | 1.7 | 0.01 | 0.01 | 0.01 | 0.01 | 167 |
V2 | 1 | 0.02 | 0.02 | 0.02 | 0.03 | 160 |
V3 | 0.4 | 0.08 | 0.06 | 0.02 | 0.02 | 107 |
V4 | 1 | 0.01 | 0.06 | 0.02 | 0.01 | 108 |
V5 | 0.4 | 0.08 | 0.08 | 0.08 | 0.07 | 101 |
V6 | 0.8 | 0.56 | 0.56 | 0.50 | 0.56 | 94 |
V7 | 0.1 | 0.04 | 0.03 | 0.03 | 3.38 | 117 |
V8 | 0.7 | 0.92 | 0.64 | 0.41 | 8.14 | 94 |
Mean SD | 0.8 0.5 | 0.2 0.3 | 0.2 0.3 | 0.1 0.2 | 1.5 2.9 | 119 29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lamacchia, G.; Salvati, L.; Kiros, S.T.; Mazzoni, A.; Vanni, A.; Capone, M.; Carnasciali, A.; Farahvachi, P.; Lagi, F.; Di Lauria, N.; et al. Fourth Dose of mRNA COVID-19 Vaccine Transiently Reactivates Spike-Specific Immunological Memory in People Living with HIV (PLWH). Biomedicines 2022, 10, 3261. https://doi.org/10.3390/biomedicines10123261
Lamacchia G, Salvati L, Kiros ST, Mazzoni A, Vanni A, Capone M, Carnasciali A, Farahvachi P, Lagi F, Di Lauria N, et al. Fourth Dose of mRNA COVID-19 Vaccine Transiently Reactivates Spike-Specific Immunological Memory in People Living with HIV (PLWH). Biomedicines. 2022; 10(12):3261. https://doi.org/10.3390/biomedicines10123261
Chicago/Turabian StyleLamacchia, Giulia, Lorenzo Salvati, Seble Tekle Kiros, Alessio Mazzoni, Anna Vanni, Manuela Capone, Alberto Carnasciali, Parham Farahvachi, Filippo Lagi, Nicoletta Di Lauria, and et al. 2022. "Fourth Dose of mRNA COVID-19 Vaccine Transiently Reactivates Spike-Specific Immunological Memory in People Living with HIV (PLWH)" Biomedicines 10, no. 12: 3261. https://doi.org/10.3390/biomedicines10123261