Immune Response after COVID-19 mRNA Vaccination in Multiple Sclerosis Patients Treated with DMTs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Protocol Approvals and Patient Consents
2.2. Patients Cohort
2.3. Study Protocol, Samples Collection and Analysis
2.3.1. Anti-Spike IgG Titers
2.3.2. Inflammatory Mediators’ Level
2.3.3. Immunophenotyping of Blood Lymphocytes
2.4. Statistical Analysis
3. Results
3.1. Anti-spike IgG Seroconversion
3.2. Anti-spike IgG Titers
3.3. Inflammatory Mediators Levels Pre- and Post-Vaccination
3.4. Lymphocytes Immunophenotype Pre- and Post-Vaccination and Their Association with Anti-Spike IgG Production
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bordoni, V.; Sacchi, A.; Cimini, E.; Notari, S.; Grassi, G.; Tartaglia, E.; Casetti, R.; Giancola, M.; Bevilacqua, N.; Maeurer, M.; et al. An Inflammatory Profile Correlates With Decreased Frequency of Cytotoxic Cells in Coronavirus Disease 2019. Clin. Infect. Dis. 2020, 71, 2272–2275. [Google Scholar] [CrossRef] [PubMed]
- Tortorella, C.; Aiello, A.; Gasperini, C.; Agrati, C.; Castilletti, C.; Ruggieri, S.; Meschi, S.; Matusali, G.; Colavita, F.; Farroni, C.; et al. Humoral- and T-Cell–Specific Immune Responses to SARS-CoV-2 mRNA Vaccination in Patients With MS Using Different Disease-Modifying Therapies. Neurology 2021, 98, e541–e554. [Google Scholar] [CrossRef] [PubMed]
- Reyes, S.; Cunningham, A.L.; Kalincik, T.; Havrdová, E.K.; Isobe, N.; Pakpoor, J.; Airas, L.; Bunyan, R.F.; van der Walt, A.; Oh, J.; et al. Update on the management of multiple sclerosis during the COVID-19 pandemic and post pandemic: An international consensus statement. J. Neuroimmunol. 2021, 357, 577627. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Wang, L.; Shen, L.; Tang, K. Response of COVID-19 vaccination in multiple sclerosis patients following disease-modifying therapies: A meta-analysis. EbioMedicine 2022, 81, 104102. [Google Scholar] [CrossRef] [PubMed]
- Kalincik, T.; Manouchehrinia, A.; Sobisek, L.; Jokubaitis, V.; Spelman, T.; Horakova, D.; Havrdova, E.; Trojano, M.; Izquierdo, G.; Lugaresi, A.; et al. Towards personalized therapy for multiple sclerosis: Prediction of individual treatment response. Brain J. Neurol. 2017, 140, 2426–2443. [Google Scholar] [CrossRef] [Green Version]
- European Medicines Agency. EMA Recommends First COVID-19 Vaccine for Authorisation in the EU. European Medicines Agency. 2020. Available online: https://www.ema.europa.eu/en/news/ema-recommends-first-covid-19-vaccine-authorisation-eu (accessed on 21 December 2020).
- Agrati, C.; Castilletti, C.; Goletti, D.; Meschi, S.; Sacchi, A.; Matusali, G.; Bordoni, V.; Petrone, L.; Lapa, D.; Notari, S.; et al. Coordinate Induction of Humoral and Spike Specific T-Cell Response in a Cohort of Italian Health Care Workers Receiving BNT162b2 mRNA Vaccine. Microorganisms 2021, 9, 1315. [Google Scholar] [CrossRef]
- Achiron, A.; Mandel, M.; Dreyer-Alster, S.; Harari, G.; Dolev, M.; Menascu, S.; Magalashvili, D.; Flechter, S.; Givon, U.; Guber, D.; et al. Humoral immune response in multiple sclerosis patients following Pfizer BNT162b2 COVID19 vaccination: Up to 6 months cross-sectional study. J. Neuroimmunol. 2021, 361, 577746. [Google Scholar] [CrossRef]
- Achiron, A.; Dolev, M.; Menascu, S.; Zohar, D.; Dreyer-Alster, S.; Miron, S.; Shirbint, E.; Magalashvili, D.; Flechter, S.; Givon, U.; et al. COVID-19 vaccination in patients with multiple sclerosis: What we have learnt by February 2021. Mult. Scler. J. 2021, 27, 864–870. [Google Scholar] [CrossRef]
- Guerrieri, S.; Lazzarin, S.; Zanetta, C.; Nozzolillo, A.; Filippi, M.; Moiola, L. Serological response to SARS-CoV-2 vaccination in multiple sclerosis patients treated with fingolimod or ocrelizumab: An initial real-life experience. J. Neurol. 2022, 269, 39–43. [Google Scholar] [CrossRef]
- Brill, L.; Rechtman, A.; Zveik, O.; Haham, N.; Oiknine-Djian, E.; Wolf, D.G.; Levin, N.; Raposo, C.; Vaknin-Dembinsky, A. Humoral and T-Cell Response to SARS-CoV-2 Vaccination in Patients With Multiple Sclerosis Treated With Ocrelizumab. JAMA Neurol. 2021, 78, 1510–1514. [Google Scholar] [CrossRef]
- Apostolidis, S.; Kakara, M.; Painter, M.; Goel, R.; Mathew, D.; Lenzi, K.; Rezk, A.; Patterson, K.; Espinoza, D.; Kadri, J.; et al. Cellular and humoral immune responses following SARS-CoV-2 mRNA vaccination in patients with multiple sclerosis anti-CD20 therapy. Nat. Med. 2021, 27, 1990–2001. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.; Banwell, B.; Barkhof, F.; Carroll, W.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.; et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Teunissen, C.; Tumani, H.; Bennett, J.; Berven, F.; Brundin, L.; Comabella, M.; Franciotta, D.; Federiksen, J.; Fleming, J.; Furlan, R.; et al. Consensus Guidelines for CSF and Blood Biobanking for CNS Biomarker Studies. Mult. Scler. Int. 2011, 2011, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Schulte, E.; Sellner, J. SARS-CoV-2 vaccination in multiple sclerosis: A clearer picture for the time point during CD20 depleting therapy. EbioMedicine 2021, 73, 103635. [Google Scholar] [CrossRef]
- Corey, L.; Mascola, J.R.; Fauci, A.S.; Collins, F.S. A strategic approach to COVID-19 vaccine R&D. Science 2020, 368, 948–950. [Google Scholar] [CrossRef]
- Dreyer-Alster, S.; Menascu, S.; Mandel, M.; Shirbint, E.; Magalashvili, D.; Dolev, M.; Flechter, S.; Givon, U.; Guber, D.; Stern, Y.; et al. COVID-19 vaccination in patients with multiple sclerosis: Safety and humoral efficacy of the third booster dose. J. Neurol. Sci. 2022, 434, 120155. [Google Scholar] [CrossRef]
- Capone, F.; Lucchini, M.; Ferraro, E.; Bianco, A.; Rossi, M.; Cicia, A.; Cortese, A.; Cruciani, A.; De Arcangelis, V.; De Giglio, L.; et al. Immunogenicity and safety of mRNA COVID-19 vaccines in people with multiple sclerosis treated with different disease-modifying therapies. Neurother. J. Am. Soc. Exp. NeuroTherapeutics 2022, 19, 325–333. [Google Scholar] [CrossRef]
- Kappos, L.; Mehling, M.; Arroyo, R.; Izquierdo, G.; Selmaj, K.; Curovic-Perisic, V.; Keil, A.; Bijarnia, M.; Singh, A.; von Rosenstiel, P. Randomized trial of vaccination in fingolimod-treated patients with multiple sclerosis. Neurology 2015, 84, 872–879. [Google Scholar] [CrossRef]
- Tallantyre, E.C.; Vickaryous, N.; Anderson, V.; Asardag, A.N.; Baker, D.; Bestwick, J.; Bramhall, K.; Chance, R.; Evangelou, N.; George, K.; et al. COVID-19 Vaccine Response in People with Multiple Sclerosis. Ann. Neurol. 2022, 91, 89–100. [Google Scholar] [CrossRef]
- Frampton, J.E. Ocrelizumab: First Global Approval. Drugs 2017, 77, 1035–1041. [Google Scholar] [CrossRef]
- Bar-Or, A.; Calkwood, J.; Chognot, C.; Evershed, J.; Fox, E.; Herman, A.; Manfrini, M.; McNamara, J.; Robertson, D.; Stokmaier, D.; et al. Effect of ocrelizumab on vaccine responses in patients with multiple sclerosis. Neurology 2020, 95, e1999–e2008. [Google Scholar] [CrossRef] [PubMed]
- Levit, E.; Longbrake, E.E.; Stoll, S.S. Seroconversion after COVID-19 vaccination for multiple sclerosis patients on high efficacy disease modifying medications. Mult. Scler. Relat. Disord. 2022, 60, 103719. [Google Scholar] [CrossRef] [PubMed]
- Gadani, S.P.; Reyes-Mantilla, M.; Jank, L.; Harris, S.; Douglas, M.; Smith, M.D.; Calabresi, P.A.; Mowry, E.M.; Fitzgerald, K.C.; Bhargava, P. Discordant humoral and T cell immune responses to SARS-CoV-2 vaccination in people with multiple sclerosis on anti-CD20 therapy. EbioMedicine 2021, 73, 103636. [Google Scholar] [CrossRef]
- Iannetta, M.; Landi, D.; Cola, G.; Malagnino, V.; Teti, E.; Fraboni, D.; Buccisano, F.; Grelli, S.; Coppola, L.; Campogiani, L.; et al. T-cell responses to SARS-CoV-2 in multiple sclerosis patients treated with ocrelizumab healed from COVID-19 with absent or low anti-spike antibody titers. Mult. Scler. Relat. Disord. 2021, 55, 103157. [Google Scholar] [CrossRef]
- Guerrera, G.; Picozza, M.; D’Orso, S.; Placido, R.; Pirronello, M.; Verdiani, A.; Termine, A.; Fabrizio, C.; Giannessi, F.; Sambucci, M.; et al. BNT162b2 vaccination induces durable SARS-CoV-2– specific T cells with a stem cell memory phenotype. Sci. Immunol. 2021, 6, eabl5344. [Google Scholar] [CrossRef]
- Krzysiek, R.; de Goër de Herve, M.-G.; Yang, H.; Taoufik, Y. Tissue Competence Imprinting and Tissue Residency of CD8 T Cells. Front. Immunol. 2013, 4, eabd2071. [Google Scholar] [CrossRef] [Green Version]
- Taoufik, Y.; de Goër de Herve, M.G.; Corgnac, S.; Durrbach, A.; Mami-Chouaib, F. When Immunity Kills: The Lessons of SARS-CoV-2 Outbreak. Front. Immunol. 2021, 12, 692598. [Google Scholar] [CrossRef]
Cladribine (n = 29) | Fingolimod (n = 15) | Ocrelizumab (n = 54) | p | |
---|---|---|---|---|
Gender (F:M) | 20:9 | 12:3 | 22:32 | p = 0.107 a |
Age, years (mean ± SD) | 41 ± 12 | 40 ± 10 | 51 ± 10 | p = 0.023 a |
EDSS score (median (range)) | 1.5 (0–7.5) | 1.0 (0–4) | 6.0 (0–7.5) | p = 0.525 a |
DMTs (n) | 29 | 15 | 54 | p < 0.001 a |
Disease duration, years (mean ± SD) | 7.1 ± 7.0 | 10.5 ± 6.4 | 10.7 ± 6.3 | p = 0.571 a |
Treatment duration, years (mean ± SD) | 1.4 ± 0.6 | 2.6 ± 2.0 | 2.2 ± 0.1 | p = 0.739 a |
Seroconversion vaccine-related (n; %) | 25; 86% | 12; 80% | 20; 37% | p < 0.001 b |
COVID-19 infection post-vaccine (n; %) | 0; 0% | 0; 0% | 1; 1.85% c |
DMTs | Seroconversion (n; %) | Spike-Specific IgG Antibody Titers (Mean ± SD) | Range (Min–Max) |
---|---|---|---|
Cladribine | 25/29 (86%) | 6.517 ± 2.298 AU/mL | 1.900–9.500 |
Fingolimod | 12/15 (80%) | 4.992 ± 2.395 AU/mL | 1.500–9.300 |
Ocrelizumab | 20/54 (37%) | 3.040 ± 2.56 AU/mL | 1.100–9.900 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazziotti, V.; Crescenzo, F.; Tamanti, A.; Dapor, C.; Ziccardi, S.; Guandalini, M.; Colombi, A.; Camera, V.; Peloso, A.; Pezzini, F.; et al. Immune Response after COVID-19 mRNA Vaccination in Multiple Sclerosis Patients Treated with DMTs. Biomedicines 2022, 10, 3034. https://doi.org/10.3390/biomedicines10123034
Mazziotti V, Crescenzo F, Tamanti A, Dapor C, Ziccardi S, Guandalini M, Colombi A, Camera V, Peloso A, Pezzini F, et al. Immune Response after COVID-19 mRNA Vaccination in Multiple Sclerosis Patients Treated with DMTs. Biomedicines. 2022; 10(12):3034. https://doi.org/10.3390/biomedicines10123034
Chicago/Turabian StyleMazziotti, Valentina, Francesco Crescenzo, Agnese Tamanti, Caterina Dapor, Stefano Ziccardi, Maddalena Guandalini, Annalisa Colombi, Valentina Camera, Angela Peloso, Francesco Pezzini, and et al. 2022. "Immune Response after COVID-19 mRNA Vaccination in Multiple Sclerosis Patients Treated with DMTs" Biomedicines 10, no. 12: 3034. https://doi.org/10.3390/biomedicines10123034
APA StyleMazziotti, V., Crescenzo, F., Tamanti, A., Dapor, C., Ziccardi, S., Guandalini, M., Colombi, A., Camera, V., Peloso, A., Pezzini, F., Turano, E., Marastoni, D., & Calabrese, M. (2022). Immune Response after COVID-19 mRNA Vaccination in Multiple Sclerosis Patients Treated with DMTs. Biomedicines, 10(12), 3034. https://doi.org/10.3390/biomedicines10123034