Correlation among Routinary Physical Activity, Salivary Cortisol, and Chronic Neck Pain Severity in Office Workers: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Sample Size Calculation
2.4. Outcomes
2.4.1. Demographic and Vital Signs
2.4.2. Salivary Cortisol
2.4.3. Chronic Neck Pain Severity
2.4.4. Physical Activity
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Cortisol and Pain
4.2. Physical Activity and Pain
4.3. Physical Activity and Cortisol
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bier, J.D.; Scholten-Peeters, W.G.M.; Staal, J.B.; Pool, J.; van Tulder, M.V.; Beekman, E.; Knoop, J.; Meerhoff, G.; Verhagen, A. Clinical Practice Guideline for Physical Therapy Assessment and Treatment in Patients With Nonspecific Neck Pain. Phys. Ther. 2018, 98, 162–171. [Google Scholar] [CrossRef] [Green Version]
- Fejer, R.; Kyvik, K.O.; Hartvigsen, J. The prevalence of neck pain in the world population: A systematic critical review of the literature. Eur. Spine J. 2006, 15, 834–848. [Google Scholar] [CrossRef] [Green Version]
- US Burden of Disease Collaborators. The state of US health, 1990–2010: Burden of diseases, injuries, and risk factors. JAMA 2013, 310, 591–608. [Google Scholar] [CrossRef] [Green Version]
- Russell, G.; Lightman, S. The human stress response. Nat. Rev. Endocrinol. 2019, 15, 525–534. [Google Scholar] [CrossRef] [Green Version]
- Noushad, S.; Ahmed, S.; Ansari, B.; Mustafa, U.H.; Saleem, Y.; Hazrat, H. Physiological biomarkers of chronic stress: A systematic review. Int. J. Health Sci. 2021, 15, 46–59. [Google Scholar]
- Lightman, S.L.; Birnie, M.T.; Conway-Campbell, B.L. Dynamics of ACTH and Cortisol Secretion and Implications for Disease. Endocr. Rev. 2020, 41, bnaa002. [Google Scholar] [CrossRef] [Green Version]
- Wong, W.S.; Lam, H.M.; Chow, Y.F.; Chen, P.P.; Lim, H.S.; Wong, S.; Fielding, R. The effects of anxiety sensitivity, pain hypervigilance, and pain catastrophizing on quality of life outcomes of patients with chronic pain: A preliminary, cross-sectional analysis. Qual. Life Res. 2014, 23, 2333–2341. [Google Scholar] [CrossRef]
- Tennant, F. The physiologic effects of pain on the endocrine system. Pain Ther. 2013, 2, 75–86. [Google Scholar] [CrossRef] [Green Version]
- Geva, N.; Defrin, R. Opposite Effects of Stress on Pain Modulation Depend on the Magnitude of Individual Stress Response. J. Pain 2018, 19, 360–371. [Google Scholar] [CrossRef]
- Hannibal, K.E.; Bishop, M.D. Chronic stress, cortisol dysfunction, and pain: A psychoneuroendocrine rationale for stress management in pain rehabilitation. Phys. Ther. 2014, 94, 1816–1825. [Google Scholar] [CrossRef]
- Godfrey, K.M.; Strachan, E.; Dansie, E.; Crofford, L.J.; Buchwald, D.; Goldberg, J.; Poeschla, B.; Succop, A.; Noonan, C.; Afari, N. Salivary cortisol and cold pain sensitivity in female twins. Ann. Behav. Med. 2014, 47, 180–188. [Google Scholar] [CrossRef]
- Naugle, K.M.; Riley, J.L. Self-reported Physical Activity Predicts Pain Inhibitory and Facilitatory Function. Med. Sci. Sports Exerc. 2014, 46, 622–629. [Google Scholar] [CrossRef] [Green Version]
- Rabbitts, J.A.; Holley, A.L.; Karlson, C.W.; Palermo, T.M. Bidirectional Associations between Pain and Physical Activity in Adolescents. Clin. J. Pain 2014, 30, 251–258. [Google Scholar]
- Ellingson, L.D.; Shields, M.R.; Stegner, A.J.; Cook, D.B. Physical Activity, Sustained Sedentary Behavior and Pain Modulation in Women with Fibromyalgia. J. Pain 2012, 13, 195–206. [Google Scholar] [CrossRef] [Green Version]
- McLoughlin, M.J.; Stegner, A.J.; Cook, D.B. The Relationship between Physical Activity and Brain Responses to Pain in Fibromyalgia. J. Pain 2011, 12, 640–651. [Google Scholar] [CrossRef] [Green Version]
- Marshall, P.W.M.; Schabrun, S.; Knox, M.F. Physical activity and the mediating effect of fear, depression, anxiety, and catastrophizing on pain related disability in people with chronic low back pain. PLoS ONE 2017, 12, e0180788. [Google Scholar] [CrossRef] [Green Version]
- Palmlöf, L.; Holm, L.W.; Alfredsson, L.; Magnusson, C.; Vingard, E.; Skillgate, E. The impact of work related physical activity and leisure physical activity on the risk and prognosis of neck pain—A population based cohort study on workers. BMC Musculoskelet. Disord. 2016, 17, 219. [Google Scholar] [CrossRef] [Green Version]
- Cheung, J.; Kajaks, T.; Macdermid, J.C. The Relationship Between Neck Pain and Physical Activity. Open Orthop. J. 2013, 7, 521–529. [Google Scholar] [CrossRef]
- Brady, S.R.; Hussain, S.M.; Brown, W.J.; Heritier, S.; Billah, B.; Wang, Y.; Teede, H.; Urquhart, D.M.; Cicuttini, F.M. Relationships Between Weight, Physical Activity, and Back Pain in Young Adult Women. Medicine 2016, 95, e3368. [Google Scholar] [CrossRef]
- Sluka, K.A.; O’Donnell, J.M.; Danielson, J.; Rasmussen, L.A. Regular physical activity prevents development of chronic pain and activation of central neurons. J. Appl. Physiol. 2013, 114, 725–733. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, M.; Carberry, A.; Evans, E.S.; Hall, E.E.; Nepocatych, S. The effects of power and stretch yoga on affect and salivary cortisol in women. J. Health Psychol. 2017, 24, 1658–1667. [Google Scholar] [CrossRef]
- Wood, C.J.; Clow, A.; Hucklebridge, F.; Law, R.; Smyth, N. Physical fitness and prior physical activity are both associated with less cortisol secretion during psychosocial stress. Anxiety Stress Coping 2018, 31, 135–145. [Google Scholar] [CrossRef]
- Tada, A. Psychological effects of exercise on community-dwelling older adults. Clin. Interv. Aging 2018, 13, 271–276. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.J.; Duan, X.N.; Fang, J.; Xu, N.; Wan, Y.H.; Su, P.Y.; Tao, F.B.; Sun, Y. Association between hair cortisol concentration and overweight and obesity in 6–9 years old childhood. Zhonghua Yu Fang Yi Xue Za Zhi 2017, 51, 1065–1068. [Google Scholar] [PubMed]
- Leone, M.; Lalande, D.; Thériault, L.; Kalinova, É.; Fortin, A. Effects of an exercise program on the physiological, biological and psychological profiles in patients with mood disorders: A pilot study. Int. J. Psychiatry Clin. Pract. 2018, 22, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Paungmali, A.; Joseph, L.H.; Punturee, K.; Sitilertpisan, P.; Pirunsan, U.; Uthaikhup, S. Immedicate Effects of Core Stabilization Exercise on β-Endorphin and Cortisol Levels Among Patients With Chronic Nonspecific Low Back Pain: A Randomized Crossover Design. J. Manip. Physiol. Ther. 2018, 41, 181–188. [Google Scholar]
- Anderson, T.; Wideman, L. Exercise and the Cortisol Awakening Response: A Systematic Review. Sports Med. Open 2017, 3, 37. [Google Scholar] [CrossRef] [Green Version]
- Paridon, K.N.; Timmis, M.A.; Nevison, C.M.; Bristow, M. The anticipatory stress response to sport competition; a systematic review with meta-analysis of cortisol reactivity. BMJ Open Sport Exerc. Med. 2017, 3, e000261. [Google Scholar]
- Cuschieri, S. The STROBE guidelines. Saudi J. Anaesth. 2019, 13, S31–S34. [Google Scholar]
- Roche, D.J.; King, A.C.; Cohoon, A.J.; Lovallo, W.R. Hormonal contraceptive use diminishes salivary cortisol response to psychosocial stress and naltrexone in healthy women. Pharmacol. Biochem. Behav. 2013, 109, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Beneciuk, J.M.; Bishop, M.D.; George, S.Z. Clinical prediction rules for physical therapy interventions: A systematic review. Phys. Ther. 2009, 89, 114–124. [Google Scholar] [CrossRef] [Green Version]
- Putignano, P.; Dubini, A.; Toja, P.; Invitti, C.; Bonfanti, S.; Redaelli, G.; Zappulli, D.; Cavagnini, F. Salivary cortisol measurement in normal-weight, obese and anorexic women: Comparison with plasma cortisol. Eur. J. Endocrinol. 2001, 145, 165–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aardal, E.; Holm, A.C. Cortisol in saliva, reference ranges and relation to cortisol in serum. Eur. J. Clin. Chem. Clin. Biochem. 1995, 33, 927–932. [Google Scholar] [CrossRef] [Green Version]
- Hellhammer, D.H.; Wüst, S.; Kudielka, B.M. Salivary cortisol as a biomarker in stress research. Psychoneuroendocrinology 2009, 34, 163–171. [Google Scholar] [CrossRef]
- Blair, J.; Adaway, J.; Keevil, B.; Ross, R. Salivary cortisol and cortisone in the clinical setting. Curr. Opin. Endocrinol. Diabetes Obes. 2017, 24, 161–168. [Google Scholar] [CrossRef]
- Kirschbaum, C.; Hellhammer, D.H. Salivary cortisol in psychobiological research: An overview. Neuropsychobiology 1989, 22, 150–169. [Google Scholar] [CrossRef]
- Vernon, H.; Mior, S. The Neck Disability Index: A study of reliability and validity. J. Manip. Physiol. Ther. 1991, 14, 409–415. [Google Scholar]
- Price, D.D.; McGrath, P.A.; Rafii, A.; Buckingham, B. The validation of visual analogue scales as ratio scale measures for chronic and experimental pain. Pain 1983, 17, 45–56. [Google Scholar] [CrossRef]
- Kinser, A.M.; Sands, W.A.; Stone, M.H. Reliability and validity of a pressure algometer. J. Strength Cond. Res. 2009, 23, 312–314. [Google Scholar] [CrossRef]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [Green Version]
- Riva, R.; Mork, P.J.; Westgaard, R.H.; Lundberg, U. Comparison of the cortisol awakening response in women with shoulder and neck pain and women with fibromyalgia [published correction appears in Psychoneuroendocrinology. Psychoneuroendocrinology 2012, 37, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Úbeda-D’Ocasar, E.; Jiménez Díaz-Benito, V.; Gallego-Sendarrubias, G.M.; Valera-Calero, J.A.; Vicario-Merino, Á.; Hervás-Pérez, J.P. Pain and Cortisol in Patients with Fibromyalgia: Systematic Review and Meta-Analysis. Diagnostics 2020, 10, 922. [Google Scholar] [CrossRef] [PubMed]
- Keller, J.; Gomez, R.; Williams, G.; Lembke, A.; Lazzeroni, L.; Murphy, G.M., Jr.; Schatzberg, A.F. HPA axis in major depression: Cortisol, clinical symptomatology and genetic variation predict cognition. Mol. Psychiatry 2017, 22, 527–536. [Google Scholar] [CrossRef]
- Fiksdal, A.; Hanlin, L.; Kuras, Y.; Gianferante, D.; Chen, X.; Thoma, M.V.; Rohleder, N. Associations between symptoms of depression and anxiety and cortisol responses to and recovery from acute stress. Psychoneuroendocrinology 2019, 102, 44–52. [Google Scholar] [CrossRef]
- Field, T.; Hernandez Reif, M.; Diego, M.; Schanberg, S.; Kuhn, C. Cortisol decreases and serotonin and dopamine increase following massage therapy. Int. J. Neurosci. 2005, 115, 1397–1413. [Google Scholar] [CrossRef]
- Sampath, K.K.; Botnmark, E.; Mani, R.; Cotter, J.D.; Katare, R.; Munasinghe, P.E.; Tumilty, S. Neuroendocrine Response Following a Thoracic Spinal Manipulation in Healthy Men. J. Orthop. Sports Phys. Ther. 2017, 47, 617–627. [Google Scholar] [CrossRef]
- Valera-Calero, A.; Lluch Girbés, E.; Gallego-Izquierdo, T.; Malfliet, A.; Pecos-Martín, D. Endocrine response after cervical manipulation and mobilization in people with chronic mechanical neck pain: A randomized controlled trial. Eur. J. Phys. Rehabil. Med. 2019, 55, 792–805. [Google Scholar] [CrossRef]
- Plaza-Manzano, G.; Molina-Ortega, F.; Lomas-Vega, R.; Martínez-Amat, A.; Achalandabaso, A.; Hita-Contreras, F. Changes in biochemical markers of pain perception and stress response after spinal manipulation. J. Orthop. Sports Phys. Ther. 2014, 44, 231–239. [Google Scholar] [CrossRef] [Green Version]
- Malfliet, A.; Lluch Girbés, E.; Pecos-Martin, D.; Gallego-Izquierdo, T.; Valera-Calero, A. The Influence of Treatment Expectations on Clinical Outcomes and Cortisol Levels in Patients With Chronic Neck Pain: An Experimental Study. Pain Pract. 2019, 19, 370–381. [Google Scholar] [CrossRef]
- Fillingim, R.B. Individual differences in pain: Understanding the mosaic that makes pain personal. Pain 2017, 158 (Suppl. 1), S11–S18. [Google Scholar] [CrossRef] [Green Version]
- Beltran-Alacreu, H.; López-de-Uralde-Villanueva, I.; Calvo-Lobo, C.; Fernández-Carnero, J.; La Touche, R. Clinical features of patients with chronic non-specific neck pain per disability level: A novel observational study. Rev. Assoc. Med. Bras. 2018, 64, 700–709, Erratum in Rev. Assoc. Med. Bras. 1992, 65, 291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.K.; Oh, J. The relationship between sleep quality, neck pain, shoulder pain and disability, physical activity, and health perception among middle-aged women: A cross-sectional study. BMC Womens Health 2022, 22, 186. [Google Scholar] [CrossRef] [PubMed]
- Kim, R.; Wiest, C.; Clark, K.; Cook, C.; Horn, M. Identifying risk factors for first-episode neck pain: A systematic review. Musculoskelet. Sci. Pract. 2018, 33, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Sitthipornvorakul, E.; Janwantanakul, P.; Purepong, N.; Pensri, P.; van der Beek, A.J. The association between physical activity and neck and low back pain: A systematic review. Eur. Spine J. 2011, 20, 677–689. [Google Scholar] [CrossRef] [Green Version]
- Lyng, K.D.; Thorsen, J.B.B.; Larsen, D.B.; Petersen, K.K. The Modulatory Effect of Quantitative Sensory Testing in Shoulder Pain: A Systematic Review and Meta-Analysis. Pain Med. 2022, 23, 733–744. [Google Scholar] [CrossRef]
- Hill, E.E.; Zack, E.; Battaglini, C.; Viru, M.; Viru, A.; Hackney, A.C. Exercise and circulating cortisol levels: The intensity threshold effect. J. Endocrinol. Investig. 2008, 31, 587–591. [Google Scholar] [CrossRef] [PubMed]
- Budde, H.; Machado, S.; Ribeiro, P.; Wegner, M. The cortisol response to exercise in young adults. Front. Behav. Neurosci. 2015, 9, 13. [Google Scholar] [CrossRef] [Green Version]
- Jakicic, J.M.; Davis, K.K. Obesity and physical activity. Psychiatr. Clin. N. Am. 2011, 34, 829–840. [Google Scholar] [CrossRef]
Variables | Sample | Males | Females |
---|---|---|---|
Demographic characteristics | |||
Smoking, n (yes (cigarettes) /no) | 22 (6.4 ± 4.9)/72 | 8 (6.3 ± 4.9)/12 | 14 (6.4 ± 4.9)/60 |
Weight (kg) * | 66.6 ± 10.1 | 77.3 ± 6.5 | 63.7 ± 8.8 |
Height (m) * | 1.67 ± 0.07 | 1.74 ± 0.04 | 1.64 ± 0.06 |
BMI (kg/m2) ** | 23.9 ± 3.4 | 25.3 ± 2.6 | 23.6 ± 3.5 |
Age (years) ** | 38.1 ± 8.7 | 34.6 ± 5.8 | 39.1 ± 9.1 |
Clinical characteristics | |||
NDI (0–100) | 24.9 ± 10.0 | 25.2 ± 8.9 | 24.8 ± 10.3 |
VAS (0–10) | 6.1 ± 1.9 | 5.7 ± 1.9 | 6.3 ± 1.9 |
PPT (kPa) * | 193.2 ± 71.8 | 271.7 ± 70.3 | 172.0 ± 56.0 |
Physiological characteristics | |||
Systolic pressure (mm Hg) | 119.5 ± 10.8 | 120.2 ± 11.1 | 118.9 ± 10.9 |
Diastolic pressure (mm Hg) | 73.9 ± 8.8 | 74.6 ± 11.4 | 73.2 ± 8.0 |
Heart rate at rest (bpm) * | 65.0 ± 9.1 | 59.0 ± 7.8 | 66.5 ± 8.8 |
Cortisol (µg/dL) | 0.79 ± 0.57 | 0.69 ± 0.61 | 0.81 ± 0.55 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. Cortisol | |||||||||||||
2. Vigorous at workplace | −0.273 * | ||||||||||||
3. Moderate at workplace | −0.277 * | n.s | |||||||||||
4. Walking at workplace | n.s | 0.350 ** | 0.419 ** | ||||||||||
5. Car: home to workplace | n.s | n.s | n.s | n.s | |||||||||
6. Cycling: home to workplace | n.s | n.s | n.s | n.s | n.s | ||||||||
7. Walking: home to workplace | n.s | 0.578 ** | n.s | 0.350 ** | n.s | n.s | |||||||
8. Vigorous at home | −0.231 * | 0.896 ** | n.s | 0.292 ** | n.s | n.s | 0.508 ** | ||||||
9. Moderate at home | −0.265 * | n.s | 0.343 ** | n.s | n.s | n.s | 0.407 ** | n.s | |||||
10. Walking in leisure time | n.s | n.s | n.s | n.s | −0.247 * | n.s | n.s | n.s | n.s | ||||
11. Vigorous in leisure time | −0.298 ** | n.s | n.s | 0.288 ** | 0.412 ** | n.s | n.s | n.s | n.s | n.s | |||
12. Moderate in leisure time | −0.326 ** | 0.474 ** | n.s | n.s | n.s | n.s | 0.419 ** | 0.479 ** | n.s | n.s | 0.379 ** | ||
13. Sitting at workplace | 0.315 ** | n.s | n.s | n.s | n.s | n.s | n.s | n.s | n.s | n.s | −0.373 ** | −0.413 ** | |
14. Sitting in leisure time | n.s | n.s | n.s | n.s | 0.503 ** | −0.248 * | n.s | n.s | n.s | −0.335 ** | n.s. | n.s. | 0.305 ** |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. Cortisol | |||||||||||||
Demographic Characteristics | 2. Gender | 0.321 ** | |||||||||||
3. Weight | −0.303 ** | −0.510 ** | |||||||||||
4. Height | n.s | −0.562 ** | 0.443 ** | ||||||||||
5. Age | n.s | 0.339 * | n.s | n.s | |||||||||
6. BMI | −0.333 ** | n.s | 0.823 ** | n.s | n.s | ||||||||
7. Smoking | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | |||||||
Physiological Characteristics | 8. Systolic pressure | −0.441 ** | n.s | 0.402 ** | n.s | n.s | 0.422 ** | n.s. | |||||
9. Diastolic pressure | n.s | n.s | n.s | n.s | n.s | 0.229 * | n.s. | 0.536 ** | |||||
10. Heart rate | 0.284 ** | 0.416 ** | n.s | −0.295 ** | n.s | n.s | n.s | n.s | n.s | ||||
Clinical Characteristics | 11. NDI | n.s | n.s | n.s | −0.262 * | n.s | n.s | n.s | n.s | n.s | n.s | ||
12.VAS | n.s | n.s | n.s | −0.203 * | −0.275 * | n.s | n.s | n.s | n.s | n.s | n.s | ||
13. PPT | −0.259 * | −0.545 ** | 0.526 ** | 0.320 ** | n.s | 0.406 ** | n.s | n.s | n.s | n.s | −0.424 ** | −0.267 * |
Physical Activity Variables | NDI | PPT | VAS |
---|---|---|---|
Vigorous at workplace | n.s | 0.276 * | n.s |
Moderate at workplace | n.s | n.s | n.s |
Walking at workplace | n.s | n.s | n.s |
Car from home to workplace | n.s | n.s | n.s |
Cycling from home to workplace | n.s | 0.252 * | n.s |
Walking from home to workplace | n.s | n.s | −0.234 * |
Vigorous at home | n.s | 0.348 ** | n.s |
Moderate at home | 0.258 * | n.s | n.s |
Walking in leisure time | n.s | n.s | n.s |
Vigorous in leisure time | −0.320 ** | 0.254 * | −0.222 * |
Moderate in leisure time | n.s | 0.220 * | −0.245 ** |
Sitting at workplace | n.s | n.s | 0.220 * |
Sitting in leisure time | n.s | n.s | n.s |
Targeted Variable | Predictor Outcome | B | SE B | 95% CI | β | t | p-Value |
---|---|---|---|---|---|---|---|
VAS | Step 1 Walking to workplace | −0.216 | 0.004 | −0.017, 0.000 | −0.008 | −1.949 | 0.05 |
Step 2 Walking to workplace Age | −0.230 −0.287 | 0.004 0.017 | −0.017, −0.001 −0.080, −0.012 | −0.009 −0.046 | −2.163 −2.690 | 0.034 0.009 | |
Step 3 Walking to workplace Age PPT | −0.278 −0.325 −0.333 | 0.004 0.016 0.010 | −0.019, −0.003 −0.084, −0.020 −0.054, −0.013 | −0.011 −0.052 −0.034 | −2.742 −3.217 −3.268 | 0.008 0.002 0.002 | |
NDI | Step 1 Moderate at home | 0.258 | 0.004 | 0.002, 0.018 | 0.010 | 2.358 | 0.021 |
Step 2 Moderate at home Vigorous leisure | 0.252 −0.323 | 0.004 0.005 | 0.002, 0.018 −0.026, −0.006 | 0.010 −0.016 | 2.425 −3.117 | 0.018 0.003 | |
Step 3 Moderate at home Vigorous leisure PPT | 0.264 −0.229 −0.373 | 0.004 0.005 0.076 | 0.003, 0.018 −0.021, −0.002 −0.440, −0.135 | 0.010 −0.011 −0.287 | 2.746 −2.304 −3.757 | 0.008 0.024 0.000 | |
PPT | Step 1 NDI | −0.424 | 0.133 | −0.814, −0.285 | −0.550 | −4.132 | 0.000 |
Step 2 NDI Cycling | −0.409 0.224 | 0.130 0.085 | −0.789, −0.271 0.021, 0.360 | −0.530 0.190 | −4.078 2.238 | 0.000 0.028 | |
Step 3 NDI Cycling Gender | −0.381 0.290 −0.506 | 0.108 0.071 2.531 | −0.709, −0.280 0.105, 0.387 −20.383, −10.301 | −0.494 0.246 −15.342 | −4.593 3.472 −6.061 | 0.000 0.001 0.000 | |
Step 4 NDI Cycling Gender Vigorous at home | −0.425 0.295 −0.401 0.281 | 0.102 0.067 2.560 0.020 | −0.756, −0.348 0.118, 0.383 −17.248, −7.049 0.027,0.108 | −0.552 0.250 −12.148 0.067 | −5.385 3.763 −4.746 3.335 | 0.000 0.000 0.000 0.001 |
Targeted Variable | Predictor Outcome | B | SE B | 95% CI | β | t | p-Value |
---|---|---|---|---|---|---|---|
Salivary Cortisol | Step 1 Systolic Pressure | −0.441 | 0.002 | −0.012, −0.004 | −0.008 | −4.341 | 0.000 |
Step 2 Systolic pressure Vigorous at work | −0.458 −0.299 | 0.002 0.001 | −0.012, −0.005 −0.003, −0.001 | −0.008 −0.002 | −4.737 −3.091 | 0.000 0.003 | |
Step 3 Systolic pressure Vigorous at work Moderate leisure | −0.508 −0.141 −0.340 | 0.002 0.001 0.000 | −0.013, −0.006 −0.002, 0.000 −0.001, 0.000 | −0.009 −0.001 −0.001 | −5.496 −1.364 −3.245 | 0.000 0.007 0.002 | |
Step 4 Systolic pressure Vigorous at work Moderate leisure Vigorous at home | −0.568 −0.561 −0.384 0.488 | 0.002 0.001 0.000 0.001 | −0.014, −0.007 −0.005, −0.001 −0.001, 0.000 0.000, 0.003 | −0.010 −0.003 −0.001 0.002 | −6.078 −2.718 −3.708 2.330 | 0.000 0.008 0.000 0.022 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valera-Calero, J.A.; Varol, U. Correlation among Routinary Physical Activity, Salivary Cortisol, and Chronic Neck Pain Severity in Office Workers: A Cross-Sectional Study. Biomedicines 2022, 10, 2637. https://doi.org/10.3390/biomedicines10102637
Valera-Calero JA, Varol U. Correlation among Routinary Physical Activity, Salivary Cortisol, and Chronic Neck Pain Severity in Office Workers: A Cross-Sectional Study. Biomedicines. 2022; 10(10):2637. https://doi.org/10.3390/biomedicines10102637
Chicago/Turabian StyleValera-Calero, Juan Antonio, and Umut Varol. 2022. "Correlation among Routinary Physical Activity, Salivary Cortisol, and Chronic Neck Pain Severity in Office Workers: A Cross-Sectional Study" Biomedicines 10, no. 10: 2637. https://doi.org/10.3390/biomedicines10102637
APA StyleValera-Calero, J. A., & Varol, U. (2022). Correlation among Routinary Physical Activity, Salivary Cortisol, and Chronic Neck Pain Severity in Office Workers: A Cross-Sectional Study. Biomedicines, 10(10), 2637. https://doi.org/10.3390/biomedicines10102637