The Effect of Citicoline on the Expression of Matrix Metalloproteinase-2 (MMP-2), Transforming Growth Factor-β1 (TGF-β1), and Ki-67, and on the Thickness of Scleral Tissue of Rat Myopia Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Design
2.2. Population and Sample
2.3. Acclimatization
2.4. Induction of Myopia and Administration of Citicoline
2.5. Sample Collections and Measurement of Axial Length
2.6. Measurement of The Thickness of Scleral Tissue
2.7. Measurement of MMP-2, TGF-β1, and Ki-67 Expression Using Immunohistochemistry
2.8. Statistical Analysis
3. Results
3.1. Axial Length and Histological Structure of Scleral Tissue
3.2. MMP-2 Expression
3.3. Scleral Tissue Thickness
3.4. TGF-β1 Expression
3.5. Fibroblast Proliferation
4. Discussion
4.1. Elongation of the Eyeball of Rats after the Lens-Induced Myopia (LIM) Treatment
4.2. The Effect of Citicoline on the Thickness of Rats’ Scleral Tissue
4.3. The Effect of Citicoline on the MMP-2 Expression
4.4. The Effects of Citicoline on TGF-β1 Expression in the Rats’ Anterior and Posterior Scleral Tissues
4.5. The Effects of Citicoline on Fibroblast Cell Proliferation through Ki-67 Expression in Rats’ Scleral Tissue
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chakraborty, R.; Ostrin, L.A.; Nickla, D.L. Circadian Rhythms, Refractice Development, and Myopia. Ophthalmic. Physiol. Opt. 2018, 383, 217–245. [Google Scholar] [CrossRef] [PubMed]
- Morgan, I.G. The Biological Basis of Myopic Refractive Error. Clin. Exp. Optom. 2003, 86, 276–288. [Google Scholar] [CrossRef] [PubMed]
- Poster, P.J.; Jiang, Y. Epidemiology of Myopia. Cambridge Ophthalmological Symposium. Eye 2014, 28, 202–208. [Google Scholar]
- Damian, C. Myopia: Incidence, Pathogenesis, Management, and New Possibilities of Treatment. Russ. Ophthalmol. J. 2014, 1, 96–101. [Google Scholar]
- Secades, J.J. Citicoline: Pharmacological and Clinical Review, 2016 update. Methods Find Exp. Clin. Pharmacol. 2016, 63, 1–56. [Google Scholar]
- Mao, J.; Liu, S.; Fu, C. Citicoline Retards Myopia Progression Following Form Deprivation in Guinea Pigs. Exp. Biol. Med. 2016, 241, 1258–6123. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.H.; Kenning, M.S.; Jobling, A.I.; McBrien, N.A.; Gentle, A. Reduced Scleral TIMP-2 Expression is Associated with Myopia Development: TIMP-2 Supplementation Stabilizes Scleral Biomarkers of Myopia and Limits Myopia Development. Investig. Ophthalmol. Vis. Sci. 2017, 58, 1971–1981. [Google Scholar] [CrossRef] [Green Version]
- Nickla, D.L.; Totonelly, K.; Dhillon, B. Dopaminergic agonists that result in ocular growth inhibition also elicit transient increases in choroidal thickness in chicks. Exp. Eye Res. 2010, 9, 715–720. [Google Scholar] [CrossRef] [Green Version]
- Jalava, P.; Kuopio, T.; Juntti, P.; Kotkansalo, T.; Kornqist, P.; Collan, Y. Ki67 Immunohistochemistry: A Valuable Marker in Prognostication with a Risk of Missclasification: Proliferation Subgroup Formed Based on Ki7 Immunoreactivity and Standardized Mitotic Index. Hystopatology 2006, 48, 674–682. [Google Scholar] [CrossRef]
- Rejdak, R.; Toczotowski, J.; Solski, J.; Duma, D.; Grieb, P. Citicoline Treatment Increases Retinal Dopamine Content in Rabbits. Ophthalmic. Res 2002, 34, 146–149. [Google Scholar] [CrossRef]
- Barathi, V.A.; Boopathi, V.G.; Yap, E.P.H.; Beuerman, R.W. Two Models of Experimental Myopia in The Mouse. Vis. Res. 2008, 48, 904–916. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Kurihara, T.; Kunimi, H. A Highly Efficient Murine Model of Experimental Myopia. Sci. Rep. 2018, 8, 2026. [Google Scholar] [CrossRef] [Green Version]
- Tkatchenko, T.V.; Shen, Y.; Tkatchenko, A.V. Mouse Experimental Myopia Has Features of Primate Myopia. Invest. Ophthalmol. Vis Sci. 2010, 51, 1297–1303. [Google Scholar] [CrossRef]
- Ridge, K.D.; Abdulaev, N.G.; Sousa, M.; Palczewski, K. Phototransduction: Crystal Clear. Trends Biochem. Sci. 2003, 28, 479–487. [Google Scholar] [CrossRef]
- Malik, C.D. Anatomy of the Visual Pathways. J. Glaucoma 2013, 22, S2–S7. [Google Scholar]
- Yan, Z.; Christine, F. RPE and Choroid Mechanism Underlying Ocular Growth and Myopia. Prog. Mol. Biol. Transl. Sci. 2015, 134, 221–240. [Google Scholar]
- McBrien, N.A.; Cornell, L.M.; Gentle, A. Structural and Ultrastructural Changes to the Sclera in a Mammalian Model of High Myopia. Investig. Ophthalmol. Vis. Sci. 2001, 42, 2179–2187. [Google Scholar]
- Zhang, y.; Dan-Ning, H.; Yi, H.; Hao, S.; Ping, G.; Dongqing, Z.; Jibo, Z. Regulation of Matrix Metalloproteinase-2 Secretion From Scleral Fibroblasts And Retinal Pigment Epithelial Cells By Mir-29. BioMed Res. Int. Vol. 2017, 2017, 155–159. [Google Scholar]
- Grieb, P.; Rejdak, R. Pharmacodynamics of Citicoline Relevant to the Treatment of Glaucoma. J. Neurosci. Res. 2002, 67, 143–148. [Google Scholar] [CrossRef] [Green Version]
- Chitu, I.; Tudosescu, R.; Leasu-Branet, C.; Voinea, L.M. Citicoline—A Neuroprotector With Proven Effects on Glaucomatous Disease. Rom. J. Ophthalmol. 2017, 61, 152–158. [Google Scholar] [CrossRef]
- Guggenheim, J.A.; McBrien, N.A. Form-deprivation Myopia Induces Activation of Scleral Matrix Metalloproteinase-2 in Tree Shrew. Invest. Ophthalmol. Vis. Sci. 1996, 37, 380–1395. [Google Scholar]
- Pawar, P.; Ramakrishnan, S.; Mumbare, S.; Patil, M. Effectiveness of the Addition of Citicoline to Patching in the Treatment of Amblyopia Around Visual Maturity: A Randomized Controlled Trial. Indian J. Ophthalmol. 2014, 62, 124. [Google Scholar] [CrossRef]
- Mc Brien, N. Regulation of scleral metabolism in myopia and the role of transforming growth factor-beta. Exp. Eye Res. 2013, 114, 128–140. [Google Scholar] [CrossRef]
- Iomdina, E.; Tarutta, E.; Markossian, G.; Aksenova, J.; Smirnova, T.; Bedretdinov, A. Sclera as the Target Tissue in Progressive Myopia. Pomeranian J. Life Sci. 2015, 61, 146–152. [Google Scholar] [CrossRef] [Green Version]
- Metlapally, R.; Wildsoet, C.F. Scleral Mechanisms Underlying Ocular Growth and Myopia. Prog. Mol. Biol. Transl. Sci. 2015, 134, 241–248. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.; Hu, D.N.; Zhu, D. MMP-2, MMP-3, TIMP-1, TIMP-2, and TIMP-3 Protein Levels in Human Aqueous Humor: Relationship with Axial Length. Invest. Ophthalmol. Vis. Sci. 2014, 55, 3922–3928. [Google Scholar] [CrossRef] [Green Version]
- Li, H.H.; Huo, L.J.; Gao, Z.Y.; Zhao, F.; Zeng, J.W. Regulation of Scleral Fibroblast Differentiation by Bone Morphogenetic Protein-2. Int. J. Ophthalmol 2014, 7, 152–156. [Google Scholar] [CrossRef]
- Meng, X.; Nikolic-Paterson, D.J.; Lan, H.Y. TGF-β: The master regulator of fibrosis. Nat. Rev. |Nephrol. 2016, 12, 325–338. [Google Scholar] [CrossRef]
- Jobling, A.I.; Wan, R.; Gentle, A.; Bui, B.V.; McBrien, N.A. Retinal and choroidal TGF-b in the tree shrew model of myopia: Isoform expression, activation and effects on function. Exp. Eye Res. 2009, 88, 458–466. [Google Scholar] [CrossRef]
- Dhakal, R.; Vupparaboina, K.; Verkicharia, P. Anterior Sclera Undergoes Thinning With Increasing Degree of Myopia. Investig. Ophthalmol. Vis. Sci. ARVO J. 2020, 61, 6. [Google Scholar] [CrossRef]
- Markov, P.; Eliasy, A.; Pijanka, J.; Htoon, H. Bulk Changes in Poserior Scleral Colllagen Microstructure in Human High Myopia. Mol. Vis. 2018, 24, 818–833. [Google Scholar]
- Simon, B.; Alex, G. Scleral Remodelling In Myopia and Its Manipulation: A Review Of Recent Advices In Sceral Strenghthening and Myopia Control. Russ. Ophthalmol. J. 2017, 2, 97–117. [Google Scholar]
- Morgan, I.G.; Kathryn, A.; Rose, K.A.; Regan, S.A. Animal Models of Experimental Myopia: Limitations and Synergies with Studies on Human Myopia. In Pathologic Myopia; Spaide, R.F., Ohno-Matsui, K., Yannuzzi, L.A., Eds.; Springer: New York, NY, USA, 2013; p. 46. [Google Scholar]
Regio | Negative Control | Positive Control | Citicoline 100 mg/kg BW/day | Citicoline 200 mg/kg BW/day | Citicoline 300 mg/kg BW/day |
---|---|---|---|---|---|
Anterior sclera | |||||
(a) | (b) | (c) | (d) | (e) | |
Posterior pole | |||||
(f) | (g) | (h) | (i) | (j) |
Regio | Negative Control | Positive Control | Citicoline 100 mg/kg BW/day | Citicoline 200 mg/kg BW/day | Citicoline 300 mg/kg BW/day |
---|---|---|---|---|---|
Anterior sclera | |||||
(a) | (b) | (c) | (d) | (e) | |
Posterior pole | |||||
(f) | (g) | (h) | (i) | (j) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wahyuningsih, E.; Wigid, D.; Dewi, A.; Moehariadi, H.; Sujuti, H.; Anandita, N. The Effect of Citicoline on the Expression of Matrix Metalloproteinase-2 (MMP-2), Transforming Growth Factor-β1 (TGF-β1), and Ki-67, and on the Thickness of Scleral Tissue of Rat Myopia Model. Biomedicines 2022, 10, 2600. https://doi.org/10.3390/biomedicines10102600
Wahyuningsih E, Wigid D, Dewi A, Moehariadi H, Sujuti H, Anandita N. The Effect of Citicoline on the Expression of Matrix Metalloproteinase-2 (MMP-2), Transforming Growth Factor-β1 (TGF-β1), and Ki-67, and on the Thickness of Scleral Tissue of Rat Myopia Model. Biomedicines. 2022; 10(10):2600. https://doi.org/10.3390/biomedicines10102600
Chicago/Turabian StyleWahyuningsih, Eka, Dimas Wigid, Astrid Dewi, Hariwati Moehariadi, Hidayat Sujuti, and Nanda Anandita. 2022. "The Effect of Citicoline on the Expression of Matrix Metalloproteinase-2 (MMP-2), Transforming Growth Factor-β1 (TGF-β1), and Ki-67, and on the Thickness of Scleral Tissue of Rat Myopia Model" Biomedicines 10, no. 10: 2600. https://doi.org/10.3390/biomedicines10102600
APA StyleWahyuningsih, E., Wigid, D., Dewi, A., Moehariadi, H., Sujuti, H., & Anandita, N. (2022). The Effect of Citicoline on the Expression of Matrix Metalloproteinase-2 (MMP-2), Transforming Growth Factor-β1 (TGF-β1), and Ki-67, and on the Thickness of Scleral Tissue of Rat Myopia Model. Biomedicines, 10(10), 2600. https://doi.org/10.3390/biomedicines10102600