Genetic Association Study and Machine Learning to Investigate Differences in Platelet Reactivity in Patients with Acute Ischemic Stroke Treated with Aspirin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Platelet Aggregation
2.3. DNA Extraction
2.4. Selection of SNPs and Genotyping
2.5. Statistical Analysis
2.6. Machine Learning
3. Results
3.1. Baseline Characteristics of AR and AS Patients
3.2. The Association of SNPs with Aspirin Resistance in Whole Cohort of Patients
3.3. The Association of SNPs with AR and Platelet Reactivity in Patients with Noncardioembolic Ischemic Stroke
3.4. Clinical Outcome Evaluation
3.5. Machine Learning Model
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Parameters of the Best-Performing Model
loss_function = ‘Logloss’ |
learning_rate = 0.01 |
Iterations = 500 |
depth = 10 |
grow_policy = ‘Lossguide’ |
max_leaves = 30 |
od_type = ‘IncToDec’ |
od_pval = 0.05 |
od_wait = 10 |
References
- Rothwell, P.M.; Algra, A.; Chen, Z.; Diener, H.-C.; Norrving, B.; Mehta, Z. Effects of aspirin on risk and severity of early recurrent stroke after transient ischaemic attack and ischaemic stroke: Time-course analysis of randomised trials. Lancet 2016, 388, 365–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capodanno, D.; Angiolillo, D.J. Aspirin for Primary Cardiovascular Risk Prevention and Beyond in Diabetes Mellitus. Circulation 2016, 134, 1579–1594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; Zheng, L.; Fei, Q.; Fu, Y.; Weng, Y.; Wu, H.; Li, H.; Jun, Q.; Shao, J.; Xu, Y. Association of thromboxane A2 receptor gene polymorphisms with cerebral infarction in a Chinese population. Neurol. Sci. 2013, 34, 1791–1796. [Google Scholar] [CrossRef] [PubMed]
- Goodman, T.; Ferro, A.; Sharma, P. Pharmacogenetics of aspirin resistance: A comprehensive systematic review. Br. J. Clin. Pharmacol. 2008, 66, 222–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- SSantos-Gallego, C.G.; Badimon, J. Overview of Aspirin and Platelet Biology. Am. J. Cardiol. 2021, 144, S2–S9. [Google Scholar] [CrossRef]
- Ferreira, M.; Freitas-Silva, M.; Assis, J.; Pinto, R.; Nunes, J.P.; Medeiros, R. The emergent phenomenon of aspirin resistance: Insights from genetic association studies. Pharmacogenomics 2020, 21, 125–140. [Google Scholar] [CrossRef]
- Kuliczkowski, W.; Witkowski, A.; Polonski, L.; Watala, C.; Filipiak, K.; Budaj, A.; Golanski, J.; Sitkiewicz, D.; Pregowski, J.; Gorski, J.; et al. Interindividual variability in the response to oral antiplatelet drugs: A position paper of the Working Group on antiplatelet drugs resistance appointed by the Section of Cardiovascular Interventions of the Polish Cardiac Society, endorsed by the Working Group on Thrombosis of the European Society of Cardiology. Eur. Heart J. 2008, 30, 426–435. [Google Scholar] [CrossRef] [Green Version]
- Grinstein, J.; Cannon, C.P. Aspirin resistance: Current status and role of tailored therapy. Clin. Cardiol. 2012, 35, 673–680. [Google Scholar] [CrossRef]
- Lordkipanidzé, M.; Pharand, C.; Schampaert, E.; Turgeon, J.; Palisaitis, D.A.; Diodati, J.G. A comparison of six major platelet function tests to determine the prevalence of aspirin resistance in patients with stable coronary artery disease. Eur. Heart J. 2007, 28, 1702–1708. [Google Scholar] [CrossRef] [Green Version]
- Van Oosterom, N.; Barras, M.; Cottrell, N.; Bird, R. Platelet Function Assays for the Diagnosis of Aspirin Resistance. Platelets 2021, 33, 329–338. [Google Scholar] [CrossRef]
- Le Blanc, J.; Mullier, F.; Vayne, C.; Lordkipanidzé, M. Advances in Platelet Function Testing—Light Transmission Aggregometry and Beyond. J. Clin. Med. 2020, 9, 2636. [Google Scholar] [CrossRef]
- Venketasubramanian, N.; Agustin, S.J.; Padilla, J.L.; Yumul, M.P.; Sum, C.; Lee, S.H.; Ponnudurai, K.; Gan, R.N. Comparison of Different Laboratory Tests to Identify “Aspirin Resistance” and Risk of Vascular Events among Ischaemic Stroke Patients: A Double-Blind Study. J. Cardiovasc. Dev. Dis. 2022, 9, 156. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.; Jain, S.; Gallant, R.C.; Syed, M.H.; Zamzam, A.; Al-Omran, M.; Rand, M.L.; Ni, H.; Abdin, R.; Qadura, M. Plateletworks® as a Point-of-Care Test for ASA Non-Sensitivity. J. Pers. Med. 2021, 11, 813. [Google Scholar] [CrossRef] [PubMed]
- Fiolaki, A.; Katsanos, A.H.; Kyritsis, A.P.; Papadaki, S.; Kosmidou, M.; Moschonas, I.C.; Tselepis, A.D.; Giannopoulos, S. High on treatment platelet reactivity to aspirin and clopidogrel in ischemic stroke: A systematic review and meta-analysis. J. Neurol. Sci. 2017, 376, 112–116. [Google Scholar] [CrossRef]
- Lv, H.; Yang, Z.; Wu, H.; Liu, M.; Mao, X.; Liu, X.; Ding, H.; Shi, Z.; Zhou, Y.; Liu, Q.; et al. High On-Treatment Platelet Reactivity as Predictor of Long-term Clinical Outcomes in Stroke Patients with Antiplatelet Agents. Transl. Stroke Res. 2021, 13, 391–398. [Google Scholar] [CrossRef]
- Sikora, J.; Karczmarska-Wódzka, A.; Bugieda, J.; Sobczak, P. The Importance of Platelets Response during Antiplatelet Treatment after Ischemic Stroke—Between Benefit and Risk: A Systematic Review. Int. J. Mol. Sci. 2022, 23, 1043. [Google Scholar] [CrossRef]
- Wiśniewski, A.; Filipska, K.; Sikora, J.; Kozera, G. Aspirin Resistance Affects Medium-Term Recurrent Vascular Events after Cerebrovascular Incidents: A Three-Year Follow-up Study. Brain Sci. 2020, 10, 179. [Google Scholar] [CrossRef] [Green Version]
- Wiśniewski, A. Multifactorial Background for a Low Biological Response to Antiplatelet Agents Used in Stroke Prevention. Medicina 2021, 57, 59. [Google Scholar] [CrossRef]
- Faraday, N.; Yanek, L.R.; Mathias, R.; Herrera-Galeano, J.E.; Vaidya, D.; Moy, T.F.; Fallin, M.D.; Wilson, A.F.; Bray, P.F.; Becker, L.C.; et al. Heritability of platelet responsiveness to aspirin in activation pathways directly and indirectly related to cyclooxygenase-1. Circulation 2007, 115, 2490–2496. [Google Scholar] [CrossRef] [Green Version]
- Strisciuglio, T.; Franco, D.; Di Gioia, G.; De Biase, C.; Morisco, C.; Trimarco, B.; Barbato, E. Impact of genetic polymorphisms on platelet function and response to anti platelet drugs. Cardiovasc. Diagn. Ther. 2018, 8, 610–620. [Google Scholar] [CrossRef]
- Yi, X.; Cheng, W.; Lin, J.; Zhou, Q.; Wang, C. Interaction between COX-1 and COX-2 Variants Associated with Aspirin Resistance in Chinese Stroke Patients. J. Stroke Cerebrovasc. Dis. 2016, 25, 2136–2144. [Google Scholar] [CrossRef] [PubMed]
- Yi, X.; Wang, C.; Zhou, Q.; Lin, J. Interaction among COX-2, P2Y1 and GPIIIa gene variants is associated with aspirin resistance and early neurological deterioration in Chinese stroke patients. BMC Neurol. 2017, 17, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.-L.; Cao, J.; Fan, L.; Wang, Q.; Ye, L.; Cui, C.-P.; Wang, Y.-Z.; Liu, L.; Li, B.; Wu, R.-J.; et al. Genetic polymorphisms of ho-1 and cox-1 are associated with aspirin resistance defined by light transmittance aggregation in chinese han patients. Clin. Appl. Thromb. 2012, 19, 513–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Z.-H.; Jiao, J.-R.; Yang, R.; Luo, B.-Y.; Wang, X.-F.; Wu, F. Aspirin resistance: Clinical significance and genetic polymorphism. J. Int. Med. Res. 2012, 40, 282–292. [Google Scholar] [CrossRef]
- Halushka, M.; Walker, L.P. Genetic variation in cyclooxygenase 1: Effects on response to aspirin. Clin. Pharmacol. Ther. 2003, 73, 122–130. [Google Scholar] [CrossRef]
- Kunicki, T.J.; Williams, S.A.; Nugent, D.J.; Harrison, P.; Segal, H.C.; Syed, A.; Rothwell, P.M. Lack of association between aspirin responsiveness and seven candidate gene haplotypes in patients with symptomatic vascular disease. Thromb. Haemost. 2009, 101, 123–133. [Google Scholar]
- Ulehlova, J.; Slavik, L.; Kucerova, J.; Krcova, V.; Vaclavik, J.; Indrak, K. Genetic polymorphisms of platelet receptors in patients with acute myocardial infarction and resistance to antiplatelet therapy. Genet. Test. Mol. Biomark. 2014, 18, 599–604. [Google Scholar] [CrossRef] [Green Version]
- Maree, A.O.; Curtin, R.J.; Chubb, A.; Dolan, C.; Cox, D.; O’Brien, J.; Crean, P.; Shields, D.C.; Fitzgerald, D.J. Cyclooxygenase-1 haplotype modulates platelet response to aspirin. J. Thromb. Haemost. 2005, 3, 2340–2345. [Google Scholar] [CrossRef]
- Peng, L.-L.; Zhao, Y.-Q.; Zhou, Z.-Y.; Jin, J.; Zhao, M.; Chen, X.-M.; Chen, L.; Cai, Y.-F.; Li, J.-L.; Huang, M. Associations of MDR1, TBXA2R, PLA2G7, and PEAR1 genetic polymorphisms with the platelet activity in Chinese ischemic stroke patients receiving aspirin therapy. Acta Pharmacol. Sin. 2016, 37, 1442–1448. [Google Scholar] [CrossRef] [Green Version]
- Postula, M.; Kaplon-Cieslicka, A.; Rosiak, M.; Kondracka, A.; Serafin, A.; Filipiak, K.J.; Członkowski, A.; Opolski, G.; Janicki, P.K. Genetic determinants of platelet reactivity during acetylsalicylic acid therapy in diabetic patients: Evaluation of 27 polymorphisms within candidate genes. J. Thromb. Haemost. 2011, 9, 2291–2301. [Google Scholar] [CrossRef]
- Milanowski, L.; Pordzik, J.; Janicki, P.K.; Kaplon-Cieslicka, A.; Rosiak, M.; Peller, M.; Tyminska, A.; Ozieranski, K.; Filipiak, K.J.; Opolski, G.; et al. New single-nucleotide polymorphisms associated with differences in platelet reactivity and their influence on survival in patients with type 2 diabetes treated with acetylsalicylic acid: An observational study. Geol. Rundsch. 2016, 54, 343–351. [Google Scholar] [CrossRef]
- Szczeklik, A.; Undas, A.; Sanak, M.; Frołow, M.; Węgrzyn, W. Relationship between bleeding time, aspirin and the PlA1/A2 polymorphism of platelet glycoprotein IIIa. Br. J. Haematol. 2000, 110, 965–967. [Google Scholar] [CrossRef]
- Al-Azzam, S.I.; Alzoubi, K.H.; Khabour, O.F.; Tawalbeh, D.; Al-Azzeh, O. The contribution of platelet glycoproteins (GPIa C807T and GPIba C-5T) and cyclooxygenase 2 (COX-2G-765C) polymorphisms to platelet response in patients treated with aspirin. Gene 2013, 526, 118–121. [Google Scholar] [CrossRef]
- Wang, H.; Sun, X.; Dong, W.; Cai, X.; Zhou, Y.; Zhang, Y.; Jiang, W.; Fang, Q. Association of GPIa and COX-2 gene polymorphism with aspirin resistance. J. Clin. Lab. Anal. 2017, 32, e22331. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Q.; Zhou, S.; Lewis, J.P.; Shuldiner, A.R.; Ren, G.; Cui, Y. Genetic Variants of PEAR1 are Associated with Platelet Function and Antiplatelet Drug Efficacy: A Systematic Review and Meta-Analysis. Curr. Pharm. Des. 2018, 23, 6815–6827. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Jiang, H.; Ding, Y.; Zhang, D.; Zhang, X.; Xue, J.; Ma, R.; Hu, L.; Yue, Y. Platelet Endothelial Aggregation Receptor 1 Polymorphism Is Associated With Functional Outcome in Small-Artery Occlusion Stroke Patients Treated With Aspirin. Front. Cardiovasc. Med. 2021, 8, 664012. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.P.; Ryan, K.; O’Connell, J.R.; Horenstein, R.B.; Damcott, C.M.; Gibson, Q.; Pollin, T.I.; Mitchell, B.D.; Beitelshees, A.L.; Pakzy, R.; et al. Genetic variation in PEAR1 is associated with platelet aggregation and cardiovascular outcomes. Circ. Cardiovasc. Genet. 2013, 6, 184–192. [Google Scholar] [CrossRef] [Green Version]
- Musunuru, K.; Post, W.S.; Herzog, W.; Shen, H.; O’Connell, J.R.; McArdle, P.F.; Ryan, K.A.; Gibson, Q.; Cheng, Y.-C.; Clearfield, E.; et al. Association of single nucleotide polymorphisms on chromosome 9p21.3 with platelet reactivity: A potential mechanism for increased vascular disease. Circ Cardiovasc Genet. Circ. Cardiovasc. Genet. 2010, 3, 445–453. [Google Scholar] [CrossRef] [Green Version]
- Kugai, M.; Uchiyama, K.; Tsuji, T.; Yoriki, H.; Fukui, A.; Qin, Y.; Higashimura, Y.; Mizushima, K.; Yoshida, N.; Katada, K.; et al. MDR1 is Related to intestinal epithelial injury induced by acetylsalicylic acid. Cell. Physiol. Biochem. 2013, 32, 942–950. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Cai, B.; Sun, L.; Zhang, H.; Zhou, S.; Cao, L.; Guo, H.; Sun, W.; Yan, B.; Davis, S.M.; et al. Association between PTGS1 polymorphisms and functional outcomes in Chinese patients with stroke during aspirin therapy: Interaction with smoking. J. Neurol. Sci. 2017, 376, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Cilluffo, G.; Fasola, S.; Ferrante, G.; Malizia, V.; Montalbano, L.; La Grutta, S. Machine Learning: An Overview and Applications in Pharmacogenetics. Genes 2021, 12, 1511. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Zhao, J.; Roden, D.M.; Peterson, J.F. Machine Learning Challenges in Pharmacogenomic Research. Clin. Pharmacol. Ther. 2021, 110, 552–554. [Google Scholar] [CrossRef]
- Madden, K.P.; Karanjia, P.N.; Adams, H.P.; Clarke, W.R. Accuracy of initial stroke subtype diagnosis in the TOAST study. Trial of ORG 10172 in Acute Stroke Treatment. Neurology. Neurology 1995, 45, 1975–1979. [Google Scholar] [CrossRef]
- Kirchhof, P.; Benussi, S.; Kotecha, D.; Ahlsson, A.; Atar, D.; Casadei, B.; Castella, M.; Diener, H.-C.; Heidbuchel, H.; Hendriks, J.; et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur. Heart J. 2016, 37, 2893–2962. [Google Scholar] [CrossRef] [Green Version]
- Gum, P.A.; Kottke-Marchant, K.; Welsh, P.A.; White, J.; Topol, E.J. A prospective, blinded determination of the natural history of aspirin resistance among stable patients with cardiovascular disease. J. Am. Coll. Cardiol. 2003, 41, 961–965. [Google Scholar] [CrossRef] [Green Version]
- Ikonnikova, A.Y.; Filippova, M.A.; Surzhikov, S.A.; Pozhitnova, V.O.; Kazakov, R.E.; Lisitsa, T.S.; Belkov, S.A.; Nasedkina, T.V. Biochip-based approach for comprehensive pharmacogenetic testing. Drug Metab. Drug Interact. 2020, 36, 33–40. [Google Scholar] [CrossRef]
- Shershov, V.E.; Ikonnikova, A.Y.; Vasiliskov, V.A.; Lapa, S.A.; Miftakhov, R.A.; Kuznetsova, V.E.; Chudinov, A.V.; Nasedkina, T.V. The Efficiency of DNA Labeling with Near-Infrared Fluorescent Dyes. Biophysics 2020, 65, 736–741. [Google Scholar] [CrossRef]
- Solé, X.; Guinó, E.; Valls, J.; Iniesta, R.; Moreno, V. SNPStats: A web tool for the analysis of association studies. Bioinformatics 2006, 22, 1928–1929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Duchesnay, E. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016. [Google Scholar]
- Dorogush; Veronika, A.; Ershov, V.; Gulin, A. CatBoost: Gradient boosting with categorical features support. arXiv 2018, arXiv:1810.11363. [Google Scholar]
- Lundberg; Scott, M.; Lee, S. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 2017, 30, 4768–4777. [Google Scholar]
- Le Blanc, J.; Lordkipanidzé, M. Platelet Function in Aging. Front. Cardiovasc. Med. 2019, 6, 109. [Google Scholar] [CrossRef]
- Oh, M.S.; Yu, K.-H.; Lee, J.-H.; Jung, S.; Kim, C.; Jang, M.U.; Lee, J.; Lee, B.C. Aspirin resistance is associated with increased stroke severity and infarct volume. Neurology 2016, 86, 1808–1817. [Google Scholar] [CrossRef]
- Ghorbani-Shirkouhi, S.; Ashouri, F.; Neshin, S.A.S.; Saberi, A.; Hasanzadeh, B.; Shahshahani, P. The prevalence and associated factors of aspirin resistance among prophylactic aspirin users. Rom. J. Neurol. 2021, 20, 50–56. [Google Scholar] [CrossRef]
- Cao, L.; Zhang, Z.; Sun, W.; Bai, W.; Sun, W.; Zhang, Y.; Wang, X.; Cai, B.; Xie, X.; Duan, Z.; et al. Impacts of COX-1 gene polymorphisms on vascular outcomes in patients with ischemic stroke and treated with aspirin. Gene 2014, 546, 172–176. [Google Scholar] [CrossRef]
- Pettinella, C.; Romano, M.; Stuppia, L.; Santilli, F.; Liani, R.; Davì, G. Cyclooxygenase-1 haplotype C50T/A-842G does not affect platelet response to aspirin. Thromb. Haemost. 2009, 101, 687–690. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Chen, B.-L.; Ozdemir, V.; Ji, W.; Mao, Y.-M.; Wang, L.-C.; Lei, H.-P.; Fan, L.; Zhang, W.; Liu, J.; et al. Frequency of genetic polymorphisms of COX1, GPIIIa and P2Y1 in a Chinese population and association with attenuated response to aspirin. Pharmacogenomics 2007, 8, 577–586. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Fang, J.; Zhou, M.; Zhou, J.; Yu, L.; Chen, N.; He, L. Interaction between COX-1 and COX-2 increases susceptibility to ischemic stroke in a Chinese population. BMC Neurol. 2019, 19, 291. [Google Scholar] [CrossRef] [Green Version]
- Johnson, A.D.; Yanek, L.R.; Chen, M.-H.; Faraday, N.; Larson, M.; Tofler, G.; Lin, S.J.; Kraja, A.T.; Province, M.A.; Yang, Q.; et al. Genome-wide meta-analyses identifies seven loci associated with platelet aggregation in response to agonists. Nat. Genet. 2010, 42, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Forgerini, M.; Urbano, G.; de Nadai, T.R.; Batah, S.S.; Fabro, A.T.; Mastroianni, P.D.C. Genetic Variants in PTGS1 and NOS3 Genes Increase the Risk of Upper Gastrointestinal Bleeding: A Case-Control Study. Front. Pharmacol. 2021, 12, 671835. [Google Scholar] [CrossRef] [PubMed]
- Mallah, N.; Zapata-Cachafeiro, M.; Aguirre, C.; Ibarra-García, E.; Palacios–Zabalza, I.; Macías-García, F.; Domínguez-Muñoz, J.E.; Piñeiro-Lamas, M.; Ibáñez, L.; Vidal, X.; et al. Influence of Polymorphisms Involved in Platelet Activation and Inflammatory Response on Aspirin-Related Upper Gastrointestinal Bleeding: A Case-Control Study. Front. Pharmacol. 2020, 11, 860. [Google Scholar] [CrossRef]
- Wu, Y.; Hu, Y.; You, P.; Chi, Y.-J.; Zhou, J.-H.; Zhang, Y.-Y.; Liu, Y.-L. Study of Clinical and Genetic Risk Factors for Aspirin-induced Gastric Mucosal Injury. Chin. Med. J. 2016, 129, 174–180. [Google Scholar] [CrossRef]
- Fujiwara, T.; Ikeda, M.; Esumi, K.; Fujita, T.D.; Kono, M.; Tokushige, H.; Hatoyama, T.; Maeda, T.; Asai, T.; Ogawa, T.; et al. Exploratory aspirin resistance trial in healthy Japanese volunteers (J-ART) using platelet aggregation as a measure of thrombogenicity. Pharm. J. 2007, 7, 395–403. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, F.; Men, J.; Yang, J.; Modi, P.; Wei, M. Polymorphisms and high on-aspirin platelet reactivity after off-pump coronary artery bypass grafting. Scand. Cardiovasc. J. 2013, 47, 194–199. [Google Scholar] [CrossRef]
- Würtz, M.; Nissen, P.H.; Grove, E.L.; Kristensen, S.D.; Hvas, A.-M. Genetic determinants of on-aspirin platelet reactivity: Focus on the influence of pear1. PLoS ONE 2014, 9, e111816. [Google Scholar] [CrossRef]
- Hu, X.; Liu, C.; Zhang, M.; Zhang, W. Impact of the PEAR 1 polymorphism on clinical outcomes in Chinese patients receiving dual antiplatelet therapy after percutaneous coronary intervention. Pharmacogenomics 2022, 23, 639–648. [Google Scholar] [CrossRef]
- Nanda, N.; Bao, M.; Lin, H.; Clauser, K.; Komuves, L.; Quertermous, T.; Conley, P.B.; Phillips, D.R.; Hart, M.J. Platelet endothelial aggregation receptor 1 (pear1), a novel epidermal growth factor repeat-containing transmembrane receptor, participates in platelet contact-induced activation. J. Biol. Chem. 2005, 280, 24680–24689. [Google Scholar] [CrossRef] [Green Version]
- Kauskot, A.; Di Michele, M.; Loyen, S.; Freson, K.; Verhamme, P.; Hoylaerts, M.F. A novel mechanism of sustained platelet αIIbβ3 activation via PEAR1. Blood 2012, 119, 4056–4065. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Hu, Y.; Wen, Z.; Li, H.; Hu, X.; Zhang, Y.; Zhang, Z.; Xiao, J.; Tang, J.; Chen, X. Association of PEAR1 rs12041331 polymorphism and pharmacodynamics of ticagrelor in healthy Chinese volunteers. Xenobiotica 2017, 47, 1130–1138. [Google Scholar] [CrossRef]
- Lewis, J.P.; Riaz, M.; Xie, S.; Polekhina, G.; Wolfe, R.; Nelson, M.; Tonkin, A.M.; Reid, C.M.; Murray, A.M.; McNeil, J.J.; et al. Genetic Variation in PEAR1, Cardiovascular Outcomes and Effects of Aspirin in a Healthy Elderly Population. Clin. Pharmacol. Ther. 2020, 108, 1289–1298. [Google Scholar] [CrossRef]
- Greiff, G.; Pleym, H.; Stenseth, R.; Wahba, A.; Videm, V. Genetic variation influences the risk of bleeding after cardiac surgery: Novel associations and validation of previous findings. Acta Anaesthesiol. Scand. 2015, 59, 796–806. [Google Scholar] [CrossRef] [PubMed]
- Rath, D.; Schaeffeler, E.; Winter, S.; Levertov, S.; Müller, K.; Droppa, M.; Stimpfle, F.; Langer, H.F.; Gawaz, M.; Schwab, M.; et al. GPla Polymorphisms Are Associated with Outcomes in Patients at High Cardiovascular Risk. Front. Cardiovasc. Med. 2017, 4, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maciukiewicz, M.; Marshe, V.S.; Hauschild, A.-C.; Foster, J.A.; Rotzinger, S.; Kennedy, J.L.; Kennedy, S.H.; Müller, D.J.; Geraci, J. GWAS-based machine learning approach to predict duloxetine response in major depressive disorder. J. Psychiatr. Res. 2018, 99, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Fabbri, C.; Corponi, F.; Albani, D.; Raimondi, I.; Forloni, G.; Schruers, K.; Kasper, S.; Kautzky, A.; Zohar, J.; Souery, D.; et al. Pleiotropic genes in psychiatry: Calcium channels and the stress-related FKBP5 gene in antidepressant resistance. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2018, 81, 203–210. [Google Scholar] [CrossRef]
- Shah, J.; Liu, S.; Yu, W. Contemporary antiplatelet therapy for secondary stroke prevention: A narrative review of current literature and guidelines. Stroke Vasc. Neurol. 2022; ahead of print. [Google Scholar] [CrossRef]
- Agayeva, N.; Gungor, L.; Topcuoglu, M.A.; Arsava, E.M. Pathophysiologic, rather than laboratory-defined resistance drives aspirin failure in ischemic stroke. J. Stroke Cerebrovasc. Dis. 2015, 24, 745–750. [Google Scholar] [CrossRef]
- Rocca, B.; Petrucci, G. Variability in the Responsiveness to low-dose aspirin: Pharmacological and disease-related mechanisms. Thrombosis 2012, 2012, 376721. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Conejero, R.; Rivera, J.; Corral, J.; Acuña, C.; Guerrero, J.A.; Vicente, V. Biological assessment of aspirin efficacy on healthy individuals: Heterogeneous response or aspirin failure? Stroke 2005, 36, 276–280. [Google Scholar] [CrossRef]
Gene | rs ID | Wild-Type Allele | Minor Allele | Protein |
---|---|---|---|---|
ITGB3 | rs5918 | T | C | Platelet glycoprotein IIIa/Integrin subunit-Beta3 |
GPIBA | rs2243093 | T | C | Glycoprotein Ib platelet subunit alpha |
rs6065 | C | T | ||
TBXA2R | rs1131882 | C | T | Thromboxane A2 receptor |
rs4523 | C | T | ||
ITGA2 | rs1126643 | C | T | GPIa/IIa- Integrin alpha 2 |
rs1062535 | G | A | ||
PLA2G7 | rs1051931 | C | T | Lipoprotein-associated phospholipase A2/ Plasma platelet-activating factor acetylhydrolase |
rs7756935 | A | C | ||
HMOX1 | rs2071746 | A | T | Heme oxygenase 1 |
PTGS1 | rs10306114 | A | G | Prostaglandin G/H synthase 1 (cyclooxygenase-1) |
rs1330344 | T | C | ||
PTGS2 | rs20417 | G | C | Prostaglandin G/H synthase 2 (cyclooxygenase-2) |
rs689466 | T | C | ||
ADRA2A | rs4311994 | C | T | Alpha-2A-adrenergic receptor |
9p21.3 | rs10120688 | G | A | Intergenic |
ABCB1 | rs1045642 | T | C | MDR1, ATP-binding cassette subfamily B member 1 |
PEAR1 | rs12041331 | G | A | Platelet endothelial aggregation receptor-1 |
Characteristics | AS Group (n = 241) | AR Group (n = 220) | p-Value |
---|---|---|---|
Age, (mean ± sd) | 68.72 ± 14.56 | 73.21 ± 14.52 | <0.001 |
Sex, n (%) | |||
women | 117 (48.5%) | 119 (54.1%) | 0.235 |
Type of stroke according to TOAST criteria, n (%): | |||
LAA | 55 (12.04%) | 43 (9.41%) | 0.0859 |
Cardioembolism | 49 (10.72%) | 60 (13.13%) | |
Undetermined etiology (with LAA and Cardioembolism) | 22 (4.81%) | 31 (6.78%) | |
Undetermined etiology (without LAA and Cardioembolism) | 113 (24.73%) | 84 (18.38%) | |
NHISS score at admission, (mean ± sd) | 10.45 ± 6.49 | 12.35 ± 6.67 | <0.001 |
AF, n (%) | 71 (29.58%) | 91 (41.74%) | 0.0088 |
Stenosis, % (mean ± sd) | 11.53 ± 7.18 | 12.01 ± 7.15 | 0.5408 |
BMI, mmol/L (mean ± sd) | 27.64 ± 4.83 | 28.17 ± 4.99 | 0.2219 |
HDL, mmol/L (mean ± sd) | 1.18 ± 0.34 | 1.15 ± 0.35 | 0.3584 |
LDL, mmol/L (mean ± sd) | 2.96 ± 0.97 | 2.98 ± 0.99 | 0.9437 |
Cholesterol, mmol/L (mean ± sd) | 4.84 ± 1.24 | 4.84 ± 1.32 | 0.9882 |
Triglycerides, mmol/L (mean ± sd) | 1.52 ± 1.15 | 1.47 ± 0.85 | 0.4851 |
Atherogenic coefficient (mean ± sd) | 3.22 ± 1.1 | 3.37 ± 1.24 | 0.2309 |
AS Group | AR Group | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Gene | rs ID | wt, n | het, n | mut, n | Wild-Type Allele, % | Minor Allele, % | wt, n | het, n | mut, n | Wild-Type Allele, % | Minor Allele, % | p-Value * |
ITGB3 | rs5918 | 164 | 68 | 9 | 82 | 18 | 148 | 63 | 9 | 82 | 18 | 0.864 |
GPIba | rs2243093 | 167 | 68 | 6 | 83 | 17 | 154 | 61 | 5 | 84 | 16 | 0.859 |
GPIba | rs6065 | 211 | 29 | 1 | 94 | 6 | 182 | 37 | 1 | 91 | 9 | 0.173 |
TBXA2R | rs1131882 | 162 | 72 | 7 | 82 | 18 | 164 | 50 | 6 | 86 | 14 | 0.127 |
TBXA2R | rs4523 | 92 | 114 | 35 | 62 | 38 | 91 | 99 | 30 | 64 | 36 | 0.54 |
ITGA2 | rs1062535 | 87 | 114 | 40 | 60 | 40 | 84 | 109 | 27 | 63 | 37 | 0.343 |
PLA2G7 | rs1051931 | 159 | 75 | 6 | 82 | 18 | 150 | 64 | 6 | 83 | 17 | 0.795 |
HMOX1 | rs2071746 | 74 | 120 | 47 | 56 | 44 | 57 | 115 | 48 | 52 | 48 | 0.29 |
PTGS1 | rs10306114 | 213 | 28 | 0 | 94 | 6 | 195 | 24 | 1 | 94 | 6 | 1 |
PTGS1 | rs1330344 | 147 | 85 | 8 | 79 | 21 | 119 | 84 | 17 | 73 | 27 | 0.044 ** |
PTGS2 | rs20417 | 166 | 67 | 8 | 83 | 17 | 150 | 62 | 8 | 82 | 18 | 0.862 |
PTGS2 | rs689466 | 176 | 58 | 7 | 85 | 15 | 163 | 54 | 3 | 86 | 14 | 0.638 |
ADRA2A | rs4311994 | 188 | 2 | 51 | 78 | 22 | 174 | 41 | 5 | 88 | 12 | 1 |
9p21.3 | rs10120688 | 65 | 131 | 45 | 54 | 46 | 68 | 115 | 37 | 57 | 43 | 0.389 |
ABCB1 | rs1045642 | 64 | 120 | 57 | 51 | 49 | 61 | 106 | 53 | 52 | 48 | 0.947 |
PEAR1 | rs12041331 | 202 | 37 | 2 | 91 | 9 | 179 | 39 | 2 | 90 | 10 | 0.567 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ikonnikova, A.; Anisimova, A.; Galkin, S.; Gunchenko, A.; Abdukhalikova, Z.; Filippova, M.; Surzhikov, S.; Selyaeva, L.; Shershov, V.; Zasedatelev, A.; et al. Genetic Association Study and Machine Learning to Investigate Differences in Platelet Reactivity in Patients with Acute Ischemic Stroke Treated with Aspirin. Biomedicines 2022, 10, 2564. https://doi.org/10.3390/biomedicines10102564
Ikonnikova A, Anisimova A, Galkin S, Gunchenko A, Abdukhalikova Z, Filippova M, Surzhikov S, Selyaeva L, Shershov V, Zasedatelev A, et al. Genetic Association Study and Machine Learning to Investigate Differences in Platelet Reactivity in Patients with Acute Ischemic Stroke Treated with Aspirin. Biomedicines. 2022; 10(10):2564. https://doi.org/10.3390/biomedicines10102564
Chicago/Turabian StyleIkonnikova, Anna, Anastasia Anisimova, Sergey Galkin, Anastasia Gunchenko, Zhabikai Abdukhalikova, Marina Filippova, Sergey Surzhikov, Lidia Selyaeva, Valery Shershov, Alexander Zasedatelev, and et al. 2022. "Genetic Association Study and Machine Learning to Investigate Differences in Platelet Reactivity in Patients with Acute Ischemic Stroke Treated with Aspirin" Biomedicines 10, no. 10: 2564. https://doi.org/10.3390/biomedicines10102564
APA StyleIkonnikova, A., Anisimova, A., Galkin, S., Gunchenko, A., Abdukhalikova, Z., Filippova, M., Surzhikov, S., Selyaeva, L., Shershov, V., Zasedatelev, A., Avdonina, M., & Nasedkina, T. (2022). Genetic Association Study and Machine Learning to Investigate Differences in Platelet Reactivity in Patients with Acute Ischemic Stroke Treated with Aspirin. Biomedicines, 10(10), 2564. https://doi.org/10.3390/biomedicines10102564