High Pretreatment Serum PD-L1 Levels Are Associated with Muscle Invasion and Shorter Survival in Upper Tract Urothelial Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Cohort
2.2. Serum PD-L1 and MMP-7 Analyses
2.3. Statistical Analysis
3. Results
3.1. Clinical Background
3.2. Correlations of PD-L1 Concentrations with Clinicopathological Parameters
3.3. Correlation of Pretreatment sPD-L1 Levels with Patients’ Prognosis
3.4. Changes in sPD-L1 Levels during and after Therapy
3.5. Correlation between sPD-L1 and sMMP-7 Levels
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Visser, O.; Adolfsson, J.; Rossi, S.; Verne, J.; Gatta, G.; Maffezzini, M.; Franks, K.N.; The RARECARE Working Group. Incidence and survival of rare urogenital cancers in Europe. Eur. J. Cancer 2012, 48, 456–464. [Google Scholar] [CrossRef]
- Petros, F.G. Epidemiology, clinical presentation, and evaluation of upper-tract urothelial carcinoma. Transl. Androl. Urol. 2020, 9, 1794–1798. [Google Scholar] [CrossRef]
- Craig Hall, M.W.S.; Sagalowsky, I.A.; Carmody, T.; Erickstad, M.D.; Roehrborn, C.G. Prognostic factors, recurrence, and survival in transitional cell carcinoma of the upper urinary tract: A 30-year experience in 252 patients PATIENTS. Urology 1998, 52, 594–601. [Google Scholar] [CrossRef]
- Szarvas, T.; Modos, O.; Horvath, A.; Nyirady, P. Why are upper tract urothelial carcinoma two different diseases? Transl. Androl. Urol. 2016, 5, 636–647. [Google Scholar] [CrossRef] [Green Version]
- Roupret, M.; Babjuk, M.; Comperat, E.; Zigeuner, R.; Sylvester, R.J.; Burger, M.; Cowan, N.C.; Gontero, P.; Van Rhijn, B.W.G.; Mostafid, A.H.; et al. European Association of Urology Guidelines on Upper Urinary Tract Urothelial Carcinoma: 2017 Update. Eur. Urol. 2018, 73, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Margulis, V.; Shariat, S.F.; Matin, S.F.; Kamat, A.M.; Zigeuner, R.; Kikuchi, E.; Lotan, Y.; Weizer, A.; Raman, J.D.; Wood, C.G.; et al. Outcomes of radical nephroureterectomy: A series from the Upper Tract Urothelial Carcinoma Collaboration. Cancer 2009, 115, 1224–1233. [Google Scholar] [CrossRef] [PubMed]
- Clements, T.; Messer, J.C.; Terrell, J.D.; Herman, M.P.; Ng, C.K.; Scherr, D.S.; Scoll, B.; Boorjian, S.A.; Uzzo, R.G.; Wille, M.; et al. High-grade ureteroscopic biopsy is associated with advanced pathology of upper-tract urothelial carcinoma tumors at definitive surgical resection. J. Endourol. 2012, 26, 398–402. [Google Scholar] [CrossRef]
- Birtle, A.; Johnson, M.; Chester, J.; Jones, R.; Dolling, D.; Bryan, R.T.; Harris, C.; Winterbottom, A.; Blacker, A.; Catto, J.W.F.; et al. Adjuvant chemotherapy in upper tract urothelial carcinoma (the POUT trial): A phase 3, open-label, randomised controlled trial. Lancet 2020, 395, 1268–1277. [Google Scholar] [CrossRef]
- Zhang, J.; Ye, Z.W.; Tew, K.D.; Townsend, D.M. Cisplatin chemotherapy and renal function. Adv. Cancer Res. 2021, 152, 305–327. [Google Scholar] [CrossRef]
- Califano, G.; Ouzaid, I.; Verze, P.; Hermieu, J.F.; Mirone, V.; Xylinas, E. Immune checkpoint inhibition in upper tract urothelial carcinoma. World J. Urol. 2021, 39, 1357–1367. [Google Scholar] [CrossRef] [PubMed]
- Balar, A.V.; Galsky, M.D.; Rosenberg, J.E.; Powles, T.; Petrylak, D.P.; Bellmunt, J.; Loriot, Y.; Necchi, A.; Hoffman-Censits, J.; Perez-Gracia, J.L.; et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: A single-arm, multicentre, phase 2 trial. Lancet 2017, 389, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Mezzadra, R.; Schumacher, T.N. Regulation and Function of the PD-L1 Checkpoint. Immunity 2018, 48, 434–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, M.; Albertson, D.; Furtado, L.V.; Deftereos, G. PD-L1 Tumor Cell Expression in Upper Tract Urothelial Carcinomas is Associated with Higher Pathological Stage. Appl. Immunohistochem. Mol. Morphol. 2022, 30, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Kang, J.; Luo, Z.; Song, Y.; Tian, J.; Li, Z.; Wang, X.; Liu, L.; Yang, Y.; Liu, X. The Prevalence and Prognostic Role of PD-L1 in Upper Tract Urothelial Carcinoma Patients Underwent Radical Nephroureterectomy: A Systematic Review and Meta-Analysis. Front. Oncol. 2020, 10, 1400. [Google Scholar] [CrossRef]
- Rouanne, M.; Radulescu, C.; Adam, J.; Allory, Y. PD-L1 testing in urothelial bladder cancer: Essentials of clinical practice. World J. Urol. 2021, 39, 1345–1355. [Google Scholar] [CrossRef]
- Dezutter-Dambuyant, C.; Durand, I.; Alberti, L.; Bendriss-Vermare, N.; Valladeau-Guilemond, J.; Duc, A.; Magron, A.; Morel, A.P.; Sisirak, V.; Rodriguez, C.; et al. A novel regulation of PD-1 ligands on mesenchymal stromal cells through MMP-mediated proteolytic cleavage. Oncoimmunology 2016, 5, e1091146. [Google Scholar] [CrossRef] [Green Version]
- Huang, P.; Hu, W.; Zhu, Y.; Wu, Y.; Lin, H. The Prognostic Value of Circulating Soluble Programmed Death Ligand-1 in Cancers: A Meta-Analysis. Front. Oncol. 2020, 10, 626932. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, P.T.; Mayer, T.; Csizmarik, A.; Varadi, M.; Olah, C.; Szeles, A.; Tschirdewahn, S.; Krafft, U.; Hadaschik, B.; Nyirady, P.; et al. Elevated Pre-Treatment Serum MMP-7 Levels Are Associated with the Presence of Metastasis and Poor Survival in Upper Tract Urothelial Carcinoma. Biomedicines 2022, 10, 698. [Google Scholar] [CrossRef] [PubMed]
- Dev, H.S.; Poo, S.; Armitage, J.; Wiseman, O.; Shah, N.; Al-Hayek, S. Investigating upper urinary tract urothelial carcinomas: A single-centre 10-year experience. World J. Urol. 2017, 35, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Mori, K.; Katayama, S.; Laukhtina, E.; Schuettfort, V.M.; Pradere, B.; Quhal, F.; Sari Motlagh, R.; Mostafaei, H.; Grossmann, N.C.; Rajwa, P.; et al. Discordance Between Clinical and Pathological Staging and Grading in Upper Tract Urothelial Carcinoma. Clin. Genitourin. Cancer 2022, 20, 95.e1–95.e6. [Google Scholar] [CrossRef] [PubMed]
- Simon, C.T.; Skala, S.L.; Weizer, A.Z.; Ambani, S.N.; Chinnaiyan, A.M.; Palapattu, G.; Hafez, K.; Magers, M.J.; Kaffenberger, S.D.; Spratt, D.E.; et al. Clinical utility and concordance of upper urinary tract cytology and biopsy in predicting clinicopathological features of upper urinary tract urothelial carcinoma. Hum. Pathol. 2019, 86, 76–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mbeutcha, A.; Roupret, M.; Kamat, A.M.; Karakiewicz, P.I.; Lawrentschuk, N.; Novara, G.; Raman, J.D.; Seitz, C.; Xylinas, E.; Shariat, S.F. Prognostic factors and predictive tools for upper tract urothelial carcinoma: A systematic review. World J. Urol. 2017, 35, 337–353. [Google Scholar] [CrossRef]
- Dalpiaz, O.; Pichler, M.; Mannweiler, S.; Martin Hernandez, J.M.; Stojakovic, T.; Pummer, K.; Zigeuner, R.; Hutterer, G.C. Validation of the pretreatment derived neutrophil-lymphocyte ratio as a prognostic factor in a European cohort of patients with upper tract urothelial carcinoma. Br. J. Cancer 2014, 110, 2531–2536. [Google Scholar] [CrossRef] [Green Version]
- Obata, J.; Kikuchi, E.; Tanaka, N.; Matsumoto, K.; Hayakawa, N.; Ide, H.; Miyajima, A.; Nakagawa, K.; Oya, M. C-reactive protein: A biomarker of survival in patients with localized upper tract urothelial carcinoma treated with radical nephroureterectomy. Urol. Oncol. 2013, 31, 1725–1730. [Google Scholar] [CrossRef] [PubMed]
- Omura, Y.; Toiyama, Y.; Okugawa, Y.; Yin, C.; Shigemori, T.; Kusunoki, K.; Kusunoki, Y.; Ide, S.; Shimura, T.; Fujikawa, H.; et al. Prognostic impacts of tumoral expression and serum levels of PD-L1 and CTLA-4 in colorectal cancer patients. Cancer Immunol. Immunother. 2020, 69, 2533–2546. [Google Scholar] [CrossRef] [PubMed]
- Shigemori, T.; Toiyama, Y.; Okugawa, Y.; Yamamoto, A.; Yin, C.; Narumi, A.; Ichikawa, T.; Ide, S.; Shimura, T.; Fujikawa, H.; et al. Soluble PD-L1 Expression in Circulation as a Predictive Marker for Recurrence and Prognosis in Gastric Cancer: Direct Comparison of the Clinical Burden between Tissue and Serum PD-L1 Expression. Ann. Surg. Oncol. 2019, 26, 876–883. [Google Scholar] [CrossRef] [PubMed]
- Grossmann, N.C.; Pradere, B.; D’Andrea, D.; Schuettfort, V.M.; Mori, K.; Rajwa, P.; Quhal, F.; Laukhtina, E.; Katayama, S.; Fankhauser, C.D.; et al. Neoadjuvant Chemotherapy in Elderly Patients With Upper Tract Urothelial Cancer: Oncologic Outcomes From a Multicenter Study. Clin. Genitourin. Cancer 2022, 20, 227–236. [Google Scholar] [CrossRef]
- Kikuchi, E.; Miyazaki, J.; Yuge, K.; Hagiwara, M.; Ichioka, D.; Inoue, T.; Kageyama, S.; Sugimoto, M.; Mitsuzuka, K.; Matsui, Y.; et al. Do metastatic upper tract urothelial carcinoma and bladder carcinoma have similar clinical responses to systemic chemotherapy? A Japanese multi-institutional experience. Jpn. J. Clin. Oncol. 2016, 46, 163–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.C.; Hahn, N.M. Emerging role of immunotherapy in urothelial carcinoma-Future directions and novel therapies. Urol. Oncol. 2016, 34, 566–576. [Google Scholar] [CrossRef]
- Costantini, A.; Julie, C.; Dumenil, C.; Helias-Rodzewicz, Z.; Tisserand, J.; Dumoulin, J.; Giraud, V.; Labrune, S.; Chinet, T.; Emile, J.F.; et al. Predictive role of plasmatic biomarkers in advanced non-small cell lung cancer treated by nivolumab. Oncoimmunology 2018, 7, e1452581. [Google Scholar] [CrossRef]
- Ugurel, S.; Schadendorf, D.; Horny, K.; Sucker, A.; Schramm, S.; Utikal, J.; Pfohler, C.; Herbst, R.; Schilling, B.; Blank, C.; et al. Elevated baseline serum PD-1 or PD-L1 predicts poor outcome of PD-1 inhibition therapy in metastatic melanoma. Ann. Oncol. 2020, 31, 144–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krafft, U.; Olah, C.; Reis, H.; Kesch, C.; Darr, C.; Grunwald, V.; Tschirdewahn, S.; Hadaschik, B.; Horvath, O.; Kenessey, I.; et al. High Serum PD-L1 Levels Are Associated with Poor Survival in Urothelial Cancer Patients Treated with Chemotherapy and Immune Checkpoint Inhibitor Therapy. Cancers 2021, 13, 2548. [Google Scholar] [CrossRef]
- Castello, A.; Rossi, S.; Toschi, L.; Mansi, L.; Lopci, E. Soluble PD-L1 in NSCLC Patients Treated with Checkpoint Inhibitors and Its Correlation with Metabolic Parameters. Cancers 2020, 12, 1373. [Google Scholar] [CrossRef]
- Ji, S.; Chen, H.; Yang, K.; Zhang, G.; Mao, B.; Hu, Y.; Zhang, H.; Xu, J. Peripheral cytokine levels as predictive biomarkers of benefit from immune checkpoint inhibitors in cancer therapy. Biomed. Pharmacother. 2020, 129, 110457. [Google Scholar] [CrossRef]
- Incorvaia, L.; Fanale, D.; Badalamenti, G.; Porta, C.; Olive, D.; De Luca, I.; Brando, C.; Rizzo, M.; Messina, C.; Rediti, M.; et al. Baseline plasma levels of soluble PD-1, PD-L1, and BTN3A1 predict response to nivolumab treatment in patients with metastatic renal cell carcinoma: A step toward a biomarker for therapeutic decisions. Oncoimmunology 2020, 9, 1832348. [Google Scholar] [CrossRef] [PubMed]
- Aguirre, J.E.; Beswick, E.J.; Grim, C.; Uribe, G.; Tafoya, M.; Chacon Palma, G.; Samedi, V.; McKee, R.; Villeger, R.; Fofanov, Y.; et al. Matrix metalloproteinases cleave membrane-bound PD-L1 on CD90+ (myo-)fibroblasts in Crohn’s disease and regulate Th1/Th17 cell responses. Int. Immunol. 2020, 32, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Hira-Miyazawa, M.; Nakamura, H.; Hirai, M.; Kobayashi, Y.; Kitahara, H.; Bou-Gharios, G.; Kawashiri, S. Regulation of programmed-death ligand in the human head and neck squamous cell carcinoma microenvironment is mediated through matrix metalloproteinase-mediated proteolytic cleavage. Int. J. Oncol. 2018, 52, 379–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, F.; Tie, Y.; Tu, C.; Wei, X. Surgical trauma-induced immunosuppression in cancer: Recent advances and the potential therapies. Clin. Transl. Med. 2020, 10, 199–223. [Google Scholar] [CrossRef]
- Sun, S.; Chen, Y.; Liu, Z.; Tian, R.; Liu, J.; Chen, E.; Mao, E.; Pan, T.; Qu, H. Serum-soluble PD-L1 may be a potential diagnostic biomarker in sepsis. Scand. J. Immunol. 2021, 94, e13049. [Google Scholar] [CrossRef]
- Oh, S.Y.; Kim, S.; Keam, B.; Kim, T.M.; Kim, D.W.; Heo, D.S. Soluble PD-L1 is a predictive and prognostic biomarker in advanced cancer patients who receive immune checkpoint blockade treatment. Sci. Rep. 2021, 11, 19712. [Google Scholar] [CrossRef]
- Chiarucci, C.; Cannito, S.; Daffina, M.G.; Amato, G.; Giacobini, G.; Cutaia, O.; Lofiego, M.F.; Fazio, C.; Giannarelli, D.; Danielli, R.; et al. Circulating Levels of PD-L1 in Mesothelioma Patients from the NIBIT-MESO-1 Study: Correlation with Survival. Cancers 2020, 12, 361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, B.; Sternheim, N.; Agarwal, P.; Suchomel, J.; Vadhavkar, S.; Bruno, R.; Ballinger, M.; Bernaards, C.A.; Chan, P.; Ruppel, J.; et al. Evaluation of atezolizumab immunogenicity: Clinical pharmacology (part 1). Clin. Transl. Sci. 2022, 15, 130–140. [Google Scholar] [CrossRef] [PubMed]
RNU | CTX | ICI | ||||||
---|---|---|---|---|---|---|---|---|
General data | n | median (range) | p | n | median (range) | p | n | median (range) |
Age at baseline, median (range) | 34 | 68.9 (46.0–90.0) | - | 25 | 72.0 (46.0–84.0) | - | 6 | 64.5 (50.0–76.0) |
Follow-up in months, median (range) | 34 | 24.2 (1.1–81.9) | - | 25 | 17.6 (1.1–67.7) | - | 6 | 20.4 (2.6–28.3) |
Number of patients died | 11 | - | - | 13 | - | - | 2 | - |
Parameters/sPD-L1 concentrations | n | sPD-L1 cc. | p | n | sPD-L1 cc. | p | n | sPD-L1 cc. |
Total No. of patients, median (range) | 34 | 84.0 (49.9–172.3) | 0.347 | 25 | 96.1 (53.1–152.9) | - | 6 | 78.3 (42.17–192.1) |
Non-malignant * | 3 | 68.4 (65.6–83.2) | ||||||
Age ≤ 65 | 10 | 77.3 (49.9–162.4) | 0.183 | 5 | 78.6 (53.1–139.5) | 0.408 | 3 | 94.8 (61.9–122.9) |
Age > 65 | 24 | 91.4 (59.3–172.3) | 20 | 99.4 (65.0–152.9) | 3 | 57.2 (42.2–192.1) | ||
Sex male | 21 | 93.7 (49.9–172.3) | 0.600 | 21 | 102.7 (53.1–152.9) | 0.452 | 5 | 94.8 (57.2–192.1) |
female | 13 | 80.7 (57.9–166.1) | 4 | 93.9 (65.0–106.8) | 1 | 42.2 | ||
ECOG PS 0 | 19 | 80.6 (50.1–166.1) | - | 11 | 89.0 (53.1–128.8) | - | 5 | 61.9 (42.2–192.1) |
1 | 10 | 89.8 (49.9–162.4) | - | 10 | 103.9 (65.0–139.5) | - | 0 | - |
2 | 4 | 98.4 (73.1–172.3) | - | 4 | 107.7 (105.6–152.9) | - | 0 | - |
3 | 1 | 119.6 | - | 0 | - | - | 1 | 122.9 |
ECOG PS 0–1 | 29 | 80.7 (49.9–166.1) | 0.149 | 21 | 91.8 (53.1–139.5) | 0.132 | 5 | 61.9 (42.2–192.1) |
ECOG PS 2–3 | 5 | 106.7 (73.1–172.3) | 4 | 107.7 (105.6–152.9) | 1 | 122.9 | ||
Localization Ureter | 17 | 70.2 (50.1–166.1) | 0.088 | 13 | 90.82 (53.1–152.9) | 0.298 | 2 | 68.5 (42.2–94.8) |
Pyelon | 10 | 90.9 (61.7–172.3) | 12 | 106.2 (65.0–139.5) | 3 | 122.9 (61.9–192.1) | ||
Both | 7 | 97.4 (49.9–155.3) | 0 | 1 | 57.2 | |||
RNU data | ||||||||
pT0 | 3 | 68.4 (65.6–83.2) | - | - | - | - | - | - |
pTa | 7 | 70.2 (50.1–111.7) | - | 0 | - | - | - | - |
CIS | 1 | 57.9 | - | 0 | - | - | 1 | 57.2 |
pT1 | 9 | 68.9 (49.9–113.3) | - | 1 | 135.3 | - | 1 | 122.9 |
pT2 | 2 | 110.0 (64.1–155.3) | - | 6 | 80.0 (68.3–128.8) | - | 1 | 94.78 |
pT3 | 14 | 102.0 (72.7–172.3) | - | 14 | 99.4 (53.1–152.9) | - | 3 | 61.9 (42.2–192.1) |
pT4 | 1 | 126.8 | - | 2 | 92.5 (89.02–96.1) | - | 0 | - |
n.a. | 0 | 2 | 0 | |||||
pTa-pT1-CIS (non-invasive) | 17 | 69.4 (49.9–113.3) | <0.001 | 1 | 135.3 | - | 2 | 90 (57.2–122.9) |
pT2-pT4 (invasive) | 17 | 106.7 (64.6–172.3) | 22 | 93.9 (53.1–152.9) | 4 | 78.3 (42.2–192.1) | ||
G1 | 7 | 62.5 (49.9–85.9) | - | 0 | - | - | 0 | - |
G2 | 12 | 87.3 (59.3–117.3) | - | 5 | 96.1 (68.3–135.3) | 0.951 | 3 | 94.8 (61.9–122.9) |
G3 | 15 | 97.4 (57.9–172.3) | - | 16 | 99.4 (53.1–152.9) | - | 2 | 124.6 (57.2–192.1) |
n.a. | 0 | 4 | 1 | |||||
G1–G2 | 19 | 80.6 (49.9–117.3) | 0.019 | - | - | 3 | 94.8 (61.9–122.9) | |
G3 | 15 | 97.4 (57.9–172.3) | - | - | 2 | 124.6 (57.2–192.1) | ||
R0 | 26 | 81.3 (49.9–166.1) | 0.368 | 14 | 104.2 (65.0–139.5) | 0.305 | 4 | 76.0 (42.2–192.1) |
R+ | 8 | 91.9 (64.6–172.3) | 9 | 89.0 (53.1–152.9) | 1 | 61.9 | ||
n.a. | 0 | 2 | 1 | 122.9 | ||||
Metastatic status at RNU | ||||||||
N0/M0 | 25 | 76.8 (49.9–155.3) | 0.002 | 14 | 86.0 (53.1–134.5) | 0.096 | 2 | 76.0 (57.2–94.8) |
N+ or M+ | 9 | 119.6 (73.1–172.3) | 9 | 102.7 (78.6–152.9) | 3 | 61.9 (42.2–192.1) | ||
n.a. | 0 | 2 | 1 | |||||
Metastatic status at CTX baseline | ||||||||
M0 | - | - | - | 10 | 76.2 (53.1–134.5) | <0.001 | - | - |
M+ | - | - | - | 14 | 110.2 (78.6–152.9) | - | - | |
n.a. | - | - | - | 1 | - | - | - | |
CTX regimen | ||||||||
Gem/Cis | - | - | - | 14 | 89.9 (53.1–125.9) | 0.013 | - | - |
Gem/Carbo | - | - | - | 11 | 111.8 (78.6–152.9) | - | - |
Pat. 1 | Pat. 2 | Pat. 3 | Pat. 4 | Pat. 5 | Pat. 6 | |
---|---|---|---|---|---|---|
Age | 76 | 64 | 64 | 75 | 65 | 50 |
Sex | Female | Male | Male | Male | Male | Male |
Clinicopath. parameters at RNU | ||||||
Stage (pT) | 3 | 2 | 3 | CIS | 3 | 1 |
Grade (G) | - | 2 | 2 | 3 | 3 | 2 |
N+ | yes | no | yes | no | Yes | no |
M+ | no | no | no | no | No | unknown |
Pre-ICI CTX treatment | Gem/Car | Gem/Cis | Gem/Car | n.a. | Gem/Car | Gem/Cis |
Clinicopath. parameters at ICI baseline | ||||||
ICI-treatment | Atezo | Atezo | Atezo | Atezo | Atezo | Pembro |
N+ | yes | yes | yes | no | Yes | unknown |
M+ | yes | yes | no | no | Yes | yes |
sPD-L1 at baseline (pg/mL) | 42.2 | 94.8 | 61.9 | 57.2 | 192.1 | 122.9 |
sPD-L1 at 3 months (pg/mL) | 1903 | 1939 | 1993 | Unknown | 1972 | n.a. |
OS (months) | 14.4 | 30.2 | 28.4 | 28.0 | 9.9 | 2.6 |
status | alive | alive | alive | alive | dead | dead |
Objective response | PD | PD | PD | PD | PD | unknown |
RNU | CTX | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OS | PFS | OS | PFS | |||||||||||
n | HR | 95% CI | p | HR | 95% CI | p | n | HR | 95% CI | p | HR | 95% CI | p | |
Pretreatment sPD-L1 | ||||||||||||||
median cut-off * | 17 | ref. | ref. | 11 | ref. | ref. | ||||||||
median cut-off * | 17 | 4.023 | 1.060–15.269 | 0.041 | 2.793 | 1.011–7.716 | 0.048 | 14 | 6.956 | 1.461–33.110 | 0.015 | 1.584 | 0.560–4.478 | 0.386 |
ROC cut-off ** | 27 | ref. | ref. | 11 | ref. | ref. | ||||||||
ROC cut-off ** | 7 | 12.114 | 2.990–49.082 | <0.001 | 6.667 | 2.140–20.764 | 0.001 | 14 | 6.956 | 1.461–33.110 | 0.015 | 1.584 | 0.560–4.478 | 0.386 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Széles, Á.; Kovács, P.T.; Csizmarik, A.; Váradi, M.; Riesz, P.; Fazekas, T.; Váncsa, S.; Hegyi, P.; Oláh, C.; Tschirdewahn, S.; et al. High Pretreatment Serum PD-L1 Levels Are Associated with Muscle Invasion and Shorter Survival in Upper Tract Urothelial Carcinoma. Biomedicines 2022, 10, 2560. https://doi.org/10.3390/biomedicines10102560
Széles Á, Kovács PT, Csizmarik A, Váradi M, Riesz P, Fazekas T, Váncsa S, Hegyi P, Oláh C, Tschirdewahn S, et al. High Pretreatment Serum PD-L1 Levels Are Associated with Muscle Invasion and Shorter Survival in Upper Tract Urothelial Carcinoma. Biomedicines. 2022; 10(10):2560. https://doi.org/10.3390/biomedicines10102560
Chicago/Turabian StyleSzéles, Ádám, Petra Terézia Kovács, Anita Csizmarik, Melinda Váradi, Péter Riesz, Tamás Fazekas, Szilárd Váncsa, Péter Hegyi, Csilla Oláh, Stephan Tschirdewahn, and et al. 2022. "High Pretreatment Serum PD-L1 Levels Are Associated with Muscle Invasion and Shorter Survival in Upper Tract Urothelial Carcinoma" Biomedicines 10, no. 10: 2560. https://doi.org/10.3390/biomedicines10102560
APA StyleSzéles, Á., Kovács, P. T., Csizmarik, A., Váradi, M., Riesz, P., Fazekas, T., Váncsa, S., Hegyi, P., Oláh, C., Tschirdewahn, S., Darr, C., Krafft, U., Grünwald, V., Hadaschik, B., Horváth, O., Nyirády, P., & Szarvas, T. (2022). High Pretreatment Serum PD-L1 Levels Are Associated with Muscle Invasion and Shorter Survival in Upper Tract Urothelial Carcinoma. Biomedicines, 10(10), 2560. https://doi.org/10.3390/biomedicines10102560