Long-Term Persistence of Mitochondrial DNA Instability among HCV-Cured People Who Inject Drugs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Study Population
2.2. MtDNA Genotoxicity Assays
2.3. Statistical Analysis
2.4. Ethics Approvals
3. Results
3.1. Study Population
3.2. Long-Term Dynamics of the mtDNA Parameters
3.3. Determinants of Altered mtDNA Parameters
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kamal, A.; Elsheaita, A.; Abdelnabi, M. Association between Direct-Acting Antiviral Agents in Hepatitis C Virus Treatment and Hepatocellular Carcinoma Occurrence and Recurrence: The Endless Debate. World J. Clin. Cases 2022, 10, 1764–1774. [Google Scholar] [CrossRef] [PubMed]
- Hayes, K.N.; Burkard, T.; Weiler, S.; Tadrous, M.; Burden, A.M. Global Adverse Events Reported for Direct-Acting Antiviral Therapies for the Treatment of Hepatitis C: An Analysis of the World Health Organization VigiBase. Eur. J. Gastroenterol. Hepatol. 2021, 33, e1017–e1021. [Google Scholar] [CrossRef] [PubMed]
- Yahya, G.; Hashem Mohamed, N.; Pijuan, J.; Seleem, N.M.; Mosbah, R.; Hess, S.; Abdelmoaty, A.A.; Almeer, R.; Abdel-Daim, M.M.; Shulaywih Alshaman, H.; et al. Profiling the Physiological Pitfalls of Anti-Hepatitis C Direct-Acting Agents in Budding Yeast. Microb. Biotechnol. 2021, 14, 2199–2213. [Google Scholar] [CrossRef] [PubMed]
- Ehteshami, M.; Zhou, L.; Amiralaei, S.; Shelton, J.R.; Cho, J.H.; Zhang, H.; Li, H.; Lu, X.; Ozturk, T.; Stanton, R.; et al. Nucleotide Substrate Specificity of Anti-Hepatitis C Virus Nucleoside Analogs for Human Mitochondrial RNA Polymerase. Antimicrob. Agents Chemother. 2017, 61, e00492-17. [Google Scholar] [CrossRef] [Green Version]
- Jin, Z.; Kinkade, A.; Behera, I.; Chaudhuri, S.; Tucker, K.; Dyatkina, N.; Rajwanshi, V.K.; Wang, G.; Jekle, A.; Smith, D.B.; et al. Structure-Activity Relationship Analysis of Mitochondrial Toxicity Caused by Antiviral Ribonucleoside Analogs. Antiviral. Res. 2017, 143, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Librelotto, C.S.; DE SOUZA, A.P.; Álvares-Da-silva, M.R.; Simon, D.; Dihl, R.R. Evaluation of the Genetic Toxicity of Sofosbuvir and Simeprevir with and without Ribavirin in a Human-Derived Liver Cell Line. An. Acad. Bras. Cienc. 2021, 93. [Google Scholar] [CrossRef] [PubMed]
- Pedrana, A.; Munari, S.; Stoové, M.; Doyle, J.; Hellard, M. The Phases of Hepatitis C Elimination: Achieving WHO Elimination Targets. Lancet Gastroenterol. Hepatol. 2021, 6, 6–8. [Google Scholar] [CrossRef]
- Durand, M.; Nagot, N.; Nhu, Q.B.T.; Vallo, R.; Thuy, L.L.T.; Duong, H.T.; Thanh, B.N.; Rapoud, D.; Quillet, C.; Tran, H.T.; et al. Mitochondrial Genotoxicity of Hepatitis c Treatment among People Who Inject Drugs. J. Clin. Med. 2021, 10, 4824. [Google Scholar] [CrossRef] [PubMed]
- Schank, M.; Zhao, J.; Moorman, J.P.; Yao, Z.Q. The Impact of HIV-and ART-Induced Mitochondrial Dysfunction in Cellular Senescence and Aging. Cells 2021, 10, 174. [Google Scholar] [CrossRef]
- Rapoud, D.; Quillet, C.; Pham Minh, K.; Vu Hai, V.; Nguyen Thanh, B.; Nham Thi Tuyet, T.; Tran Thi, H.; Molès, J.P.; Vallo, R.; Michel, L.; et al. Towards HCV Elimination among People Who Inject Drugs in Hai Phong, Vietnam: Study Protocol for an Effectiveness-Implementation Trial Evaluating an Integrated Model of HCV Care (DRIVE-C: DRug Use & Infections in ViEtnam-Hepatitis C). BMJ Open 2020, 10, e039234. [Google Scholar] [CrossRef]
- Jang, J.Y.; Blum, A.; Liu, J.; Finkel, T. The Role of Mitochondria in Aging. J. Clin. Invest. 2018, 128, 3662–3670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fontana, G.A.; Gahlon, H.L. Mechanisms of Replication and Repair in Mitochondrial DNA Deletion Formation. Nucleic Acids Res. 2020, 48, 11244–11258. [Google Scholar] [CrossRef] [PubMed]
- Bañó, M.; Morén, C.; Barroso, S.; Juárez, D.L.; Guitart-Mampel, M.; González-Casacuberta, I.; Canto-Santos, J.; Lozano, E.; León, A.; Pedrol, E.; et al. Mitochondrial Toxicogenomics for Antiretroviral Management: HIV Post-Exposure Prophylaxis in Uninfected Patients. Front. Genet 2020, 11, 497. [Google Scholar] [CrossRef]
- Divi, R.L.; Einem, T.L.; Fletcher, S.L.L.; Shockley, M.E.; Kuo, M.M.; St Claire, M.C.; Cook, A.; Nagashima, K.; Harbaugh, S.W.; Harbaugh, J.W.; et al. Progressive Mitochondrial Compromise in Brains and Livers of Primates Exposed in Utero to Nucleoside Reverse Transcriptase Inhibitors (NRTIs). Toxicol. Sci. 2010, 118, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shim Park, E.; Gibbons, A.T.; Shide, E.D.; Divi, R.L.; Woodward, R.A.; Poirier, M.C. Mitochondrial Compromise in 3-Year Old Patas Monkeys Exposed in Utero to Human-Equivalent Antiretroviral Therapies. Environ. Mol. Mutagen 2016, 57, 526–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aldrovandi, G.M.; Chu, C.; Shearer, W.T.; Li, D.; Walter, J.; Thompson, B.; McIntosh, K.; Foca, M.; Meyer, W.A.; Ha, B.F.; et al. Antiretroviral Exposure and Lymphocyte MtDNA Content Among Uninfected Infants of HIV-1-Infected Women. Pediatrics 2009, 124, e1189–e1197. [Google Scholar] [CrossRef] [Green Version]
- Picard, M.; Vincent, A.E.; Turnbull, D.M. Expanding Our Understanding of MtDNA Deletions. Cell Metab. 2016, 24, 3–4. [Google Scholar] [CrossRef] [Green Version]
- Lawless, C.; Greaves, L.; Reeve, A.K.; Turnbull, D.M.; Vincent, A.E. The Rise and Rise of Mitochondrial DNA Mutations. Open Biol. 2020, 10, 200061. [Google Scholar] [CrossRef]
- Zekri, A.R.N.; Salama, H.; Medhat, E.; Hamdy, S.; Hassan, Z.K.; Bakr, Y.M.; Youssef, A.S.E.-D.; Saleh, D.; Saeed, R.; Omran, D. Potential Diagnostic and Prognostic Value of Lymphocytic Mitochondrial DNA Deletion in Relation to Folic Acid Status in HCV-Related Hepatocellular Carcinoma. Asian Pac. J. Cancer Prev. 2017, 18, 2451–2457. [Google Scholar] [CrossRef]
HCV-Cured PWID N= 295 | HCV-Seronegative PWID N= 260 | p-Values | |
---|---|---|---|
DEMOGRAPHIC DATA | |||
Sex, Male or transgender, n (%) | 288 (97.6) | 246 (94.6) | 0.06 * |
Age, years, mean (SD) | 42.0 (7.4) | 41.7 (10.1) | 0.74 # |
VIRAL INFECTIONS, n (%) | |||
HIV coinfection | 137 (46.4) | 6 (2.3) | <0.001 * |
HBV coinfection | 18 (6.1) | N.A. | - |
TREATMENTS DAA, n (%) | |||
SOF400/DCV60 | 149 (50.5) | N.A. | |
SOF400/DCV90 | 119 (40.3) | N.A. | |
SOF400/DCV/RBV | 27 (9.1) | N.A. | - |
ARV | |||
Receiving ARV treatment | 137 (46.4) | 3 (1.2) | < 0.001 * |
SUBSTANCE USE—Heroin, n (%) | |||
Number of years of injection | |||
Less than 5 years | 13 (4.4) | 58 (22.3) | |
5 to 10 years | 57 (19.3) | 80 (30.8) | |
10 to 15 years | 78 (26.4) | 63 (24.2) | |
Over 15 years | 147 (49.8) | 59 (22.7) | <0.001 * |
Frequency of injection per month | |||
Less than once a day | 88 (29.8) | 90 (34.6) | |
Daily | 207 (70.2) | 170 (65.4) | 0.23 * |
Methamphetamine | |||
Urinary test positive at baseline | 79 (26.8) | 93 (35.8) | 0.02 * |
Declaration of consumption | 190 (64.4) | 189 (72.7) | 0.04 * |
Frequency of consumption per month | |||
<4 times per month | 142 (48.1) | 121 (46.5) | |
≥4 times per month | 48 (16.3) | 68 (26.1) | 0.008 * |
Tobacco smoking | 286 (96.9) | N.A. | - |
Hazardous drinking £ | 75 (25.4) | 84 (32.3) | 0.07 * |
Mitochondrial Outcomes | HCV-Treated PWID (n = 295) | Control PWID (n = 260) | ||
---|---|---|---|---|
Baseline | End of Treatment | 9-Month Follow-Up | ||
MCN (c/cell) | 481.2 (448.6; 524.6) | 568.7 (494.5; 647.7) | 184.0 (168.6; 198.9) | 439.1 (405.9; 466.8) |
MDD | 0.26 (0.23; 0.29) | 0.35 (0.32; 0.39) | 0.49 (0.45; 0.52) | 0.31 (0.24; 0.34) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durand, M.; Nagot, N.; Nhu, Q.B.T.; Vizeneux, A.; Thuy, L.L.T.; Duong, H.T.; Thanh, B.N.; Rapoud, D.; Vallo, R.; Quillet, C.; et al. Long-Term Persistence of Mitochondrial DNA Instability among HCV-Cured People Who Inject Drugs. Biomedicines 2022, 10, 2541. https://doi.org/10.3390/biomedicines10102541
Durand M, Nagot N, Nhu QBT, Vizeneux A, Thuy LLT, Duong HT, Thanh BN, Rapoud D, Vallo R, Quillet C, et al. Long-Term Persistence of Mitochondrial DNA Instability among HCV-Cured People Who Inject Drugs. Biomedicines. 2022; 10(10):2541. https://doi.org/10.3390/biomedicines10102541
Chicago/Turabian StyleDurand, Mélusine, Nicolas Nagot, Quynh Bach Thi Nhu, Amélie Vizeneux, Linh Le Thi Thuy, Huong Thi Duong, Binh Nguyen Thanh, Delphine Rapoud, Roselyne Vallo, Catherine Quillet, and et al. 2022. "Long-Term Persistence of Mitochondrial DNA Instability among HCV-Cured People Who Inject Drugs" Biomedicines 10, no. 10: 2541. https://doi.org/10.3390/biomedicines10102541
APA StyleDurand, M., Nagot, N., Nhu, Q. B. T., Vizeneux, A., Thuy, L. L. T., Duong, H. T., Thanh, B. N., Rapoud, D., Vallo, R., Quillet, C., Tran, H. T., Michel, L., Tuyet, T. N. T., Hai, O. K. T., Hai, V. V., Feelemyer, J., Vande Perre, P., Des Jarlais, D., Minh, K. P., ... Molès, J.-P. (2022). Long-Term Persistence of Mitochondrial DNA Instability among HCV-Cured People Who Inject Drugs. Biomedicines, 10(10), 2541. https://doi.org/10.3390/biomedicines10102541