Pre-Treatment Hemoglobin Concentration and Absolute Monocyte Count as Independent Prognostic Factors for Survival in Localized or Locally Advanced Prostate Cancer Patients Undergoing Radiotherapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Follow-up
2.3. Statistical Analysis
3. Results
3.1. Treatment and Patient Outcomes
3.2. Predicting Overall Survival Based on Clinical Variables and Blood parameters
3.3. Predicting Freedom from Distant Metastases Based on Clinical Factors and Blood Parameters
3.4. Hemoglobin and Monocyte Association with Prognostic Factors
4. Discussion
4.1. Hemoglobin Concentration
4.2. Absolute Monocyte Count
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hamdy, F.C.; Donovan, J.L.; Lane, J.; Mason, M.; Metcalfe, C.; Holding, P.; Davis, M.; Peters, T.J.; Turner, E.L.; Martin, R.M.; et al. 10-Year Outcomes after Monitoring, Surgery, or Radiotherapy for Localized Prostate Cancer. N. Engl. J. Med. 2016, 375, 1415–1424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Comprehensive Cancer Network. Prostate Cancer (Version 4.2022). 2022. Available online: https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf (accessed on 7 September 2022).
- World Health Organization. Life Tables by Country. Available online: https://apps.who.int/gho/data/view.main.60000?lang=en (accessed on 7 September 2022).
- Memorial Sloan Kettering Cancer Center. Male Life Expectancy Survey. Available online: https://webcore.mskcc.org/survey/surveyform.aspx?preview=true&excelsurveylistid=4 (accessed on 7 September 2022).
- Albertsen, P.C.; Moore, D.F.; Shih, W.; Lin, Y.; Li, H.; Lu-Yao, G.L. Impact of comorbidity on survival among men with localized prostate cancer. J. Clin. Oncol. 2011, 29, 1335–1341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kastner, C.; Armitage, J.; Kimble, A.; Rawal, J.; Carter, P.G.; Venn, S. The Charlson comorbidity score: A superior comorbidity assessment tool for the prostate cancer multidisciplinary meeting. Prostate Cancer Prostatic Dis. 2006, 9, 270–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daskivich, T.J.; Thomas, I.-C.; Luu, M.; Shelton, J.B.; Makarov, D.; Skolarus, T.A.; Leppert, J.T. External Validation of the Prostate Cancer Specific Comorbidity Index: A Claims Based Tool for the Prediction of Life Expectancy in Men with Prostate Cancer. J. Urol. 2019, 202, 518–524. [Google Scholar] [CrossRef] [PubMed]
- Caro, J.J.; Salas, M.; Ward, A.; Goss, G. Anemia As an Independent Prognostic Factor for Survival in Patients with Cancer A Systematic, Quantitative Review. Cancer 2001, 91, 2214–2221. [Google Scholar] [CrossRef]
- Knight, K.; Wade, S.; Balducci, L. Prevalence and outcomes of anemia in cancer: A systematic review of the literature. Am. J. Med. 2004, 116, 11–26. [Google Scholar] [CrossRef] [PubMed]
- Mori, K.; Janisch, F.; Mostafaei, H.; Lysenko, I.; Karakiewicz, P.I.; Enikeev, D.V.; Briganti, A.; Kimura, S.; Egawa, S.; Shariat, S.F. Prognostic Value of Hemoglobin in Metastatic Hormone-sensitive Prostate Cancer: A Systematic Review and Meta-analysis. Clin. Genitourin. Cancer 2020, 18, e402–e409. [Google Scholar] [CrossRef]
- Ebbinge, M.; Berglund, A.; Varenhorst, E.; Hedlund, P.O.; Sandblom, G.; the Scandinavian Prostate Cancer Group (SPCG)-5 Study Group. Clinical and prognostic significance of changes in haemoglobin concentration during 1 year of androgen-deprivation therapy for hormone-naïve bone-metastatic prostate cancer. BJU Int. 2018, 122, 583–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beer, T.M.; Tangen, C.M.; Bland, L.B.; Hussain, M.; Ms, B.H.G.; DeLoughery, T.G.; Crawford, E.D. The prognostic value of hemoglobin change after initiating androgen-deprivation therapy for newly diagnosed metastatic prostate cancer. Cancer 2006, 107, 489–496. [Google Scholar] [CrossRef]
- Pai, H.H.; Ludgate, C.; Pickles, T.; Paltiel, C.; Agranovich, A.; Berthelet, E.; Duncan, G.; Kim-Sing, C.; Kwan, W.; Lim, J.; et al. Hemoglobin levels do not predict biochemical outcome for localized prostate cancer treated with neoadjuvant androgen-suppression therapy and external-beam radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2006, 65, 990–998. [Google Scholar] [CrossRef]
- Parker, C.; Warde, P.; Norman, A.; Panzarella, T.; Catton, C.; Horwich, A.; Huddart, R.; Dearnaley, D. The role of hemoglobin concentration in clinically localized prostate cancer treated with radical radiotherapy ± neoadjuvant androgen deprivation. Int. J. Radiat. Oncol. Biol. Phys. 2004, 58, 53–58. [Google Scholar] [CrossRef]
- Zakai, N.A.; Katz, R.; Hirsch, C.; Shlipak, M.G.; Chaves, P.H.M.; Newman, A.B.; Cushman, M. A Prospective Study of Anemia Status, Hemoglobin Concentration, and Mortality in an Elderly Cohort: The Cardiovascular Health Study. Arch. Intern. Med. 2005, 165, 2214–2220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilbertson, D.T.; Ebben, J.P.; Foley, R.N.; Weinhandl, E.D.; Bradbury, B.D.; Collins, A.J. Hemoglobin Level Variability: Associations with Mortality. Clin. J. Am. Soc. Nephrol. 2008, 3, 133–138. [Google Scholar] [CrossRef] [Green Version]
- Zsiros, E.; Odunsi, K. Tumor-associated macrophages: Co-conspirators and orchestrators of immune suppression in endometrial adenocarcinoma. Gynecol. Oncol. 2014, 135, 173–175. [Google Scholar] [CrossRef]
- Hayashi, T.; Fujita, K.; Nojima, S.; Hayashi, Y.; Nakano, K.; Ishizuya, Y.; Wang, C.; Yamamoto, Y.; Kinouchi, T.; Matsuzaki, K.; et al. Peripheral blood monocyte count reflecting tumor-infiltrating macrophages is a predictive factor of adverse pathology in radical prostatectomy specimens. Prostate 2017, 77, 1383–1388. [Google Scholar] [CrossRef]
- Dong, B.-J.; Xue, W.; Wang, Y.-Q.; Zhu, Y.-J.; Pan, J.-H.; Xu, F.; Shao, X.-G.; Sha, J.-J.; Liu, Q.; Huang, Y.-R. Peripheral monocyte count: An independent diagnostic and prognostic biomarker for prostate cancer—A large Chinese cohort study. Asian J. Androl. 2017, 19, 579. [Google Scholar] [CrossRef] [PubMed]
- Brierley, J.; Gospodarowicz, M.D.; Wittekind, C.T. TNM Classification of Malignant Tumors International Union against Cancer, 8th ed.; Wiley: Oxford, UK, 2017; pp. 57–62. [Google Scholar]
- Epstein, J.I.; Egevad, L.; Amin, M.B.; Delahunt, B.; Srigley, J.R.; Humphrey, P.A. The 2014 international society of urological pathology (ISUP) consensus conference on gleason grading of prostatic carcinoma definition of grading patterns and proposal for a new grading system. Am. J. Surg. Pathol. 2016, 40, 244–252. [Google Scholar] [CrossRef]
- TIBCO Software. Statistica 13.3 Software by StatSoft 2022. Available online: https://www.statistica.com/en/ (accessed on 29 September 2022).
- Resnick, M.J.; Koyama, T.; Fan, K.-H.; Albertsen, P.C.; Goodman, M.; Hamilton, A.S.; Hoffman, R.M.; Potosky, A.L.; Stanford, J.L.; Stroup, A.M.; et al. Long-Term Functional Outcomes after Treatment for Localized Prostate Cancer. N. Engl. J. Med. 2013, 368, 436–445. [Google Scholar] [CrossRef] [Green Version]
- Lane, J.A.; Donovan, J.L.; Young, G.J.; Davis, M.; Walsh, E.I.; Avery, K.N.; Blazeby, J.M.; Mason, M.D.; Martin, R.M.; Peters, T.J.; et al. Functional and quality of life outcomes of localised prostate cancer treatments (Prostate Testing for Cancer and Treatment [ProtecT] study). BJU Int. 2022, 130, 370–380. [Google Scholar] [CrossRef]
- D’Amico, A.V.; Saegaert, T.; Chen, M.-H.; Renshaw, A.A.; George, D.; Oh, W.; Kantoff, P.W. Initial decline in hemoglobin during neoadjuvant hormonal therapy predicts for early prostate specific antigen failure following radiation and hormonal therapy for patients with intermediate and high-risk prostate cancer. Cancer 2002, 95, 275–280. [Google Scholar] [CrossRef]
- Røe, K.; Mikalsen, L.T.; van der Kogel, A.J.; Bussink, J.; Lyng, H.; Ree, A.H.; Marignol, L.; Olsen, D.R. Vascular responses to radiotherapy and androgen-deprivation therapy in experimental prostate cancer. Radiat. Oncol. 2012, 7, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiciński, M.; Liczner, G.; Cadelski, K.; Kołnierzak, T.; Nowaczewska, M.; Malinowski, B. Anemia of Chronic Diseases: Wider Diagnostics—Better Treatment? Nutrients 2020, 12, 1784. [Google Scholar] [CrossRef] [PubMed]
- Alečković, M.; McAllister, S.S.; Polyak, K. Metastasis as a systemic disease: Molecular insights and clinical implications. Biochim. Biophys. Acta Rev. Cancer 2019, 1872, 89. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, T.; Fujita, K.; Tanigawa, G.; Kawashima, A.; Nagahara, A.; Ujike, T.; Uemura, M.; Takao, T.; Yamaguchi, S.; Nonomura, N. Serum monocyte fraction of white blood cells is increased in patients with high Gleason score prostate cancer. Oncotarget 2016, 8, 35255–35261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilcox, R.A.; Ristow, K.; Habermann, T.M.; Inwards, D.J.; Micallef, I.N.M.; Johnston, P.B.; Colgan, J.P.; Nowakowski, G.S.; Ansell, S.M.; Witzig, T.E.; et al. The absolute monocyte count is associated with overall survival in patients newly diagnosed with follicular lymphoma. Leuk. Lymphoma 2012, 53, 575–580. [Google Scholar] [CrossRef]
- Shigeta, K.; Kosaka, T.; Kitano, S.; Yasumizu, Y.; Miyazaki, Y.; Mizuno, R.; Shinojima, T.; Kikuchi, E.; Miyajima, A.; Tanoguchi, H.; et al. High Absolute Monocyte Count Predicts Poor Clinical Outcome in Patients with Castration-Resistant Prostate Cancer Treated with Docetaxel Chemotherapy. Ann. Surg. Oncol. 2016, 23, 4115–4122. [Google Scholar] [CrossRef]
Parameter | Study Group N = 1016 |
---|---|
Age (median) [years] | 68.8 (IQR 63.2–73.5) |
ECOG | |
0 | 79.3% |
1 | 20.5% |
2 | 0.2% |
NCCN Risk Group | |
Favorable intermediate | 6.3% |
Unfavorable intermediate | 23.9% |
High | 45.7% |
Very high | 24.1% |
ISUP Grade Group | |
1 | 38.8% |
2 | 29.5% |
3 | 12.5% |
4 | 8.9% |
5 | 8.2% |
Missing data | 2.2% |
Clinical T stage | |
T1c | 35.8% |
T2a | 11.7% |
T2b | 18.7% |
T2c | 17.2% |
T3a | 9.8% |
T3b | 5.5% |
T4 | 1.2% |
Pre-radiation PSA (median) [ng/mL] | 0.6 (IQR 0.11–3.42) |
PSA density (median) [ng/mL2] | 0.64 (IQR 0.33–1.14) |
mPSA (median) [ng/mL] | 24.39 (IQR 13.28–41.99) |
mPSA | |
<10 ng/mL | 16% |
≥10 ng/mL, <20 ng/mL | 21.7% |
≥20 ng/mL | 61.1% |
Missing data | 1.2% |
TURP | 5.8% |
Neo-ADT | 93.8% |
Duration of Neo-ADT (median) [months] | 4.6 (IQR 3.2–7) |
Adjuvant ADT | 86.8% |
Total duration of ADT (median) [months] | 28.6 (IQR 14.9–41.9) |
Radiation modality | |
EBRT | 81.1% |
EBRT + single BT-boost | 12.3% |
EBRT + double BT-boost | 6.6% |
Lymph node irradiation | 76% |
NLR (median) | 1.92 (IQR 1.42–2.62) |
PLR (median) | 114.8 (IQR 90.1–145) |
LMR (median) | 3.32 (IQR 2.57–4.28) |
WBC (median) [103/μL] | 6.43 (IQR 5.3–7.7) |
LYMPH (median) [103/μL] | 1.86 IQR 1.5–2.35) |
NEUT (median) [103/μL] | 3.61 (IQR 2.87–4.56) |
AMC (median) [103/μL] | 0.56 IQR 0.45–0.71) |
EO (median) [103/μL] | 0.15 (IQR 0.09–0.22) |
BASO (median) [103/μL] | 0.03 (IQR 0.02–0.04) |
RBC (median) [106/μL] | 4.48 (IQR 4.2–4.77) |
HGB (median) [g/dL] | 13.8 (IQR 13–14.6) |
HCT (median) | 40.6% (IQR 38.7–42.9) |
RDW (median) | 13.4% (IQR 12.8–14) |
PLT (median) [103/μL] | 211 (IQR 179–249.5) |
PDW (median) [fL] | 12.3 (IQR 11.2–13.6) |
Variable | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
Hazard Ratio (95% CI) | p-Value | Hazard Ratio (95% CI) | p-Value | |
HGB [g/dL] | 0.853 (0.789–0.922) | <0.001 | 0.899 (0.83–0.975) | 0.009 |
AMC [103/μL] | 2.216 (1.497–3.282) | <0.001 | 1.918 (1.243–2.959) | 0.003 |
Age [years] | 1.067 (1.052–1.082) | <0.001 | 1.065 (1.05–1.081) | <0.001 |
ISUP Grade Group | ||||
2 vs. 1 | 1.296 (1.042–1.611) | 0.019 | 1.215 (0.970–1.523) | 0.089 |
3 vs. 1 | 1.287 (0.963–1.72) | 0.088 | 1.140 (0.846–1.538) | 0.389 |
4 vs. 1 | 1.58 (1.156–2.159) | 0.004 | 1.235 (0.891–1.713) | 0.205 |
5 vs. 1 | 1.957 (1.438–2.662) | <0.001 | 1.717 (1.234–2.389) | 0.001 |
Clinical T stage | ||||
T2a vs. T1c | 0.886 (0.651–1.204) | 0.438 | 0.922 (0.667–1.273) | 0.621 |
T2b vs. T1c | 1.049 (0.812–1.353) | 0.716 | 0.991 (0.761–1.291) | 0.947 |
T2c vs. T1c | 1.527 (1.195–1.953) | <0.001 | 1.361 (1.047–1.769) | 0.022 |
T3a vs. T1c | 1.191 (0.867–1.636) | 0.281 | 1.163 (0.834–1.621) | 0.373 |
T3b vs. T1c | 1.431 (0.977–2.097) | 0.066 | 1.446 (0.965–2.165) | 0.074 |
T4 vs. T1c | 2.165 (1.065–4.402) | 0.033 | 1.157 (0.532–2.518) | 0.712 |
ECOG (1-2) | 1.542 (1.257–1.892) | <0.001 | 1.194 (0.961–1.483) | 0.091 |
RT modality (EBRT) | 1.701 (1.336–2.164) | <0.001 | 1.212 (0.925–1.589) | 0.163 |
mPSA [ng/mL2] | 1.003 (1.001–1.005) | <0.001 | 1.002 (1–1.004) | 0.021 |
NLR | 1.113 (1.044–1.186) | 0.001 | ||
PLR | 1 (0.998–1.002) | 0.819 | ||
LMR | 0.952 (0.898–1.01) | 0.101 | ||
WBC [103/μL] | 1.084 (1.037–1.134) | <0.001 | ||
LYMPH [103/μL] | 1.024 (0.916–1.145) | 0.680 | ||
NEUT [103/μL] | 1.121 (1.057–1.189) | <0.001 | ||
EO [103/μL] | 1.842 (1.128–3.006) | 0.014 | ||
BASO [103/μL] | 1.166 (0.052–25.997) | 0.923 | ||
RBC [106/μL] | 0.684 (0.552–0.849) | <0.001 | ||
HCT | 0.957 (0.93–0.984) | 0.002 | ||
RDW | 1.144 (1.054–1.242) | 0.001 | ||
PLT [103/μL] | 0.999 (0.997–1.001) | 0.323 | ||
PDW [fL] | 1.013 (0.965–1.063 | 0.613 |
Variable | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
Hazard Ratio (95% CI) | p-Value | Hazard Ratio (95% CI) | p-Value | |
HGB [g/dL] | 0.852 (0.745–0.974) | 0.019 | 0.897 (0.78–1.031) | 0.125 |
AMC [103/μL] | 2.119 (1.073–4.187) | 0.031 | 1.409 (0.643–3.091) | 0.392 |
Age [years] | 1.017 (0.995–1.04) | 0.131 | 1.015 (0.992–1.039) | 0.205 |
ISUP Grade Group | ||||
2 vs. 1 | 1.590 (1.073–2.355) | 0.021 | 1.417 (0.945–2.124) | 0.092 |
3 vs. 1 | 1.746 (1.036–2.942) | 0.036 | 1.45 (0.853–2.464) | 0.169 |
4 vs. 1 | 2.426 (1.441–4.084) | <0.001 | 1.81 (1.043–3.139) | 0.035 |
5 vs. 1 | 3.648 (2.324–5.726) | <0.001 | 2.643 (1.607–4.346) | <0.001 |
Clinical T stage | ||||
T2a vs. T1c | 0.577 (0.301–1.106) | 0.098 | 0.523 (0.256–1.072) | 0.077 |
T2b vs. T1c | 1.252 (0.798–1.962) | 0.328 | 1.02 (0.626–1.659) | 0.938 |
T2c vs. T1c | 2.112 (1.148–3.145) | <0.001 | 1.651 (1.07–2.549) | 0.024 |
T3a vs. T1c | 1.361 (0.804–2.306) | 0.252 | 1.02 (0.579–1.797) | 0.946 |
T3b vs. T1c | 1.657 (0.918–2.99) | 0.094 | 1.318 (0.708–2.453) | 0.383 |
T4 vs. T1c | 2.769 (1.106–6.936) | 0.029 | 1.186 (0.432–3.255) | 0.741 |
ECOG (1-2) | 1.555 (1.084–2.232) | 0.017 | 1.138 (0.762–1.701) | 0.527 |
RT modality (EBRT) | 2.381 (1.566–3.619) | <0.001 | 1.649 (1.016–2.675) | 0.043 |
mPSA [ng/mL2] | 1.006 (1.004–1.008) | <0.001 | 1.003 (1–1.006) | 0.055 |
NLR | 1.035 (0.914–1.172) | 0.586 | ||
PLR | 0.999 (0.995–1.002) | 0.387 | ||
LMR | 0.923 (0.834–1.021) | 0.120 | ||
WBC [103/μL] | 1.065 (0.984–1.154) | 0.121 | ||
LYMPH [103/μL] | 1.075 (0.886–1.305) | 0.463 | ||
NEUT [103/μL] | 1.091 (0.982–1.212) | 0.105 | ||
EO [103/μL] | 0.413 (0.116–1.475) | 0.173 | ||
BASO [103/μL] | 1.123 (0.005–255.1) | 0.967 | ||
RBC [106/μL] | 0.782 (0.541–1.129) | 0.189 | ||
HCT | 0.962 (0.917–1.010) | 0.116 | ||
RDW | 0.988 (0.838–1.164) | 0.884 | ||
PLT [103/μL] | 0.998 (0.995–1.001) | 0.230 | ||
PDW [fL] | 1.031 (0.954–1.115) | 0.437 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magrowski, Ł.; Masri, O.; Ciepał, J.; Depowska, G.; Nowicka, Z.; Stando, R.; Chimiak, K.; Bylica, G.; Czapla, B.; Masri, M.; et al. Pre-Treatment Hemoglobin Concentration and Absolute Monocyte Count as Independent Prognostic Factors for Survival in Localized or Locally Advanced Prostate Cancer Patients Undergoing Radiotherapy. Biomedicines 2022, 10, 2514. https://doi.org/10.3390/biomedicines10102514
Magrowski Ł, Masri O, Ciepał J, Depowska G, Nowicka Z, Stando R, Chimiak K, Bylica G, Czapla B, Masri M, et al. Pre-Treatment Hemoglobin Concentration and Absolute Monocyte Count as Independent Prognostic Factors for Survival in Localized or Locally Advanced Prostate Cancer Patients Undergoing Radiotherapy. Biomedicines. 2022; 10(10):2514. https://doi.org/10.3390/biomedicines10102514
Chicago/Turabian StyleMagrowski, Łukasz, Oliwia Masri, Jakub Ciepał, Gabriela Depowska, Zuzanna Nowicka, Rafał Stando, Krystyna Chimiak, Gabriela Bylica, Barbara Czapla, Małgorzata Masri, and et al. 2022. "Pre-Treatment Hemoglobin Concentration and Absolute Monocyte Count as Independent Prognostic Factors for Survival in Localized or Locally Advanced Prostate Cancer Patients Undergoing Radiotherapy" Biomedicines 10, no. 10: 2514. https://doi.org/10.3390/biomedicines10102514
APA StyleMagrowski, Ł., Masri, O., Ciepał, J., Depowska, G., Nowicka, Z., Stando, R., Chimiak, K., Bylica, G., Czapla, B., Masri, M., Cichur, F., Jabłońska, I., Gmerek, M., Wojcieszek, P., Krzysztofiak, T., Sadowski, J., Suwiński, R., Rajwa, P., Moll, M., ... Miszczyk, M. (2022). Pre-Treatment Hemoglobin Concentration and Absolute Monocyte Count as Independent Prognostic Factors for Survival in Localized or Locally Advanced Prostate Cancer Patients Undergoing Radiotherapy. Biomedicines, 10(10), 2514. https://doi.org/10.3390/biomedicines10102514