Oligoprogression of Solid Tumors on Immune Checkpoint Inhibitors: The Impact of Local Ablative Radiation Therapy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ramos-Casals, M.; Brahmer, J.R.; Callahan, M.K.; Flores-Chávez, A.; Keegan, N.; Khamashta, M.A.; Lambotte, O.; Mariette, X.; Prat, A.; Suárez-Almazor, M.E. Immune-related adverse events of checkpoint inhibitors. Nat. Rev. Dis. Prim. 2020, 6, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, R.W.; Barbie, D.A.; Flaherty, K.T. Mechanisms of resistance to immune checkpoint inhibitors. Br. J. Cancer 2018, 118, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Borcoman, E.; Nandikolla, A.; Long, G.; Goel, S.; Le Tourneau, C. Patterns of Response and Progression to Immunotherapy. Am. Soc. Clin. Oncol. Educ. Book 2018, 38, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Restifo, N.P.; Smyth, M.J.; Snyder, A. Acquired resistance to immunotherapy and future challenges. Nat. Cancer 2016, 16, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.B.; Sullivan, R.J.; Menzies, A. Immune checkpoint inhibitors in challenging populations. Cancer 2017, 123, 1904–1911. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.; Hoang, C.D.; Kesarwala, A.; Schrump, D.S.; Guha, U.; Rajan, A. Role of Local Ablative Therapy in Patients with Oligometastatic and Oligoprogressive Non–Small Cell Lung Cancer. J. Thorac. Oncol. 2017, 12, 179–193. [Google Scholar] [CrossRef] [Green Version]
- Sindhu, K.K.; Leiter, A.; Moshier, E.; Lin, J.-Y.; Carroll, E.; Brooks, D.; Ben Shimol, J.; Eisenberg, E.; Gallagher, E.J.; Stock, R.G.; et al. Durable disease control with local treatment for oligoprogression of metastatic solid tumors treated with immune checkpoint blockade. Cancer Treat. Res. Commun. 2020, 25, 100216. [Google Scholar] [CrossRef]
- Weickhardt, A.J.; Scheier, B.; Burke, J.M.; Gan, G.; Lu, X.; Bunn, P.A.; Aisner, D.L.; Gaspar, L.E.; Kavanagh, B.D.; Doebele, R.C.; et al. Local Ablative Therapy of Oligoprogressive Disease Prolongs Disease Control by Tyrosine Kinase Inhibitors in Oncogene-Addicted Non–Small-Cell Lung Cancer. J. Thorac. Oncol. 2012, 7, 1807–1814. [Google Scholar] [CrossRef] [Green Version]
- Basler, L.; Kroeze, S.G.C.; Guckenberger, M. SBRT for oligoprogressive oncogene addicted NSCLC. Lung Cancer 2017, 106, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Campo, M.; Al-Halabi, H.; Khandekar, M.; Shaw, A.T.; Sequist, L.V.; Willers, H. Integration of Stereotactic Body Radiation Therapy With Tyrosine Kinase Inhibitors in Stage IV Oncogene-Driven Lung Cancer. Oncologist 2016, 21, 964–973. [Google Scholar] [CrossRef]
- Laurie, S.A.; Banerji, S.; Blais, N.; Brule, S.; Cheema, P.K.; Cheung, P.; Daaboul, N.; Hao, D.; Hirsh, V.; Juergens, R.; et al. Canadian Consensus: Oligoprogressive, Pseudoprogressive, and Oligometastatic Non-Small-Cell Lung Cancer. Curr. Oncol. 2019, 26, 81–93. [Google Scholar] [CrossRef] [Green Version]
- Qiu, B.; Liang, Y.; Li, Q.; Liu, G.; Wang, F.; Chen, Z.; Liu, M.; Zhao, M.; Liu, H. Local Therapy for Oligoprogressive Disease in Patients With Advanced Stage Non–small-cell Lung Cancer Harboring Epidermal Growth Factor Receptor Mutation. Clin. Lung Cancer 2017, 18, e369–e373. [Google Scholar] [CrossRef]
- Tsai, C.; Yang, J.; Guttmann, D.; Shaverdian, N.; Shepherd, A.; Eng, J.; Gelblum, D.; Xu, A.; Namakydoust, A.; Iqbal, A.; et al. Consolidative Use of Radiotherapy to Block (CURB) Oligoprogression—Interim Analysis of the First Randomized Study of Stereotactic Body Radiotherapy in Patients With Oligoprogressive Metastatic Cancers of the Lung and Breast. Int. J. Radiat. Oncol. 2021, 111, 1325–1326. [Google Scholar] [CrossRef]
- Zamagni, A.; Bonetti, M.; Buwenge, M.; Macchia, G.; Deodato, F.; Cilla, S.; Galietta, E.; Strigari, L.; Cellini, F.; Tagliaferri, L.; et al. Stereotactic radiotherapy of nodal oligometastases from prostate cancer: A prisma-compliant systematic review. Clin. Exp. Metastasis 2022. online ahead of print. [Google Scholar] [CrossRef]
- Bledsoe, T.; Rutter, C.; Lester-Coll, N.; Bi, X.; Decker, R. Radiation to Oligoprogessive Sites of Disease Can Prolong the Duration of Response to Immune Checkpoint Inhibitors in Patients With Metastatic Non-Small Cell Lung Cancer. Int. J. Radiat. Oncol. 2016, 96, E479. [Google Scholar] [CrossRef]
- Kuczynski, E.A.; Sargent, D.; Grothey, A.; Kerbel, R.S. Drug rechallenge and treatment beyond progression—Implications for drug resistance. Nat. Rev. Clin. Oncol. 2013, 10, 571–587. [Google Scholar] [CrossRef] [Green Version]
- Frank, N.Y.; Schatton, T.; Frank, M.H. The therapeutic promise of the cancer stem cell concept. J. Clin. Investig. 2010, 120, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Juliano, R.; Ling, V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. et Biophys. Acta (BBA) Biomembr. 1976, 455, 152–162. [Google Scholar] [CrossRef]
- Ling, V.; Thompson, L.H. Reduced permeability in CHO cells as a mechanism of resistance to colchicine. J. Cell. Physiol. 1974, 83, 103–116. [Google Scholar] [CrossRef] [PubMed]
- Haber, D.A.; Schimke, R.T. Unstable amplification of an altered dihydrofolate reductase gene associated with double-minute chromosomes. Cell 1981, 26, 355–362. [Google Scholar] [CrossRef]
- Vogelstein, B.; Papadopoulos, N.; Velculescu, V.E.; Zhou, S.; Diaz, L.A., Jr.; Kinzler, K.W. Cancer Genome Landscapes. Science 2013, 339, 1546–1558. [Google Scholar] [CrossRef] [PubMed]
- Kan, Z.; Jaiswal, B.S.; Stinson, J.; Janakiraman, V.; Bhatt, D.; Stern, H.M.; Yue, P.; Haverty, P.M.; Bourgon, R.; Zheng, J.; et al. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 2010, 466, 869–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hellman, S.; Weichselbaum, R.R. Oligometastases. J. Clin. Oncol. 1995, 13, 8–10. [Google Scholar] [CrossRef] [PubMed]
- Palma, D.A.; Olson, R.; Harrow, S.; Gaede, S.; Louie, A.V.; Haasbeek, C.; Mulroy, L.; Lock, M.; Rodrigues, P.G.B.; Yaremko, B.P.; et al. Stereotactic ablative radiotherapy versus standard of care palliative treatment in patients with oligometastatic cancers (SABR-COMET): A randomised, phase 2, open-label trial. Lancet 2019, 393, 2051–2058. [Google Scholar] [CrossRef]
- Fares, C.M.; Van Allen, E.M.; Drake, C.G.; Allison, J.P.; Hu-Lieskovan, S. Mechanisms of Resistance to Immune Checkpoint Blockade: Why Does Checkpoint Inhibitor Immunotherapy Not Work for All Patients? Am. Soc. Clin. Oncol. Educ. Book 2019, 39, 147–164. [Google Scholar] [CrossRef]
- Klemen, N.; Wang, M.; Feingold, P.L.; Cooper, K.; Pavri, S.N.; Han, D.; Detterbeck, F.C.; Boffa, D.J.; Khan, S.A.; Olino, K.; et al. Patterns of failure after immunotherapy with checkpoint inhibitors predict durable progression-free survival after local therapy for metastatic melanoma. J. Immunother. Cancer 2019, 7, 196. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Li, H.; Fan, Y. Progression Patterns, Treatment, and Prognosis Beyond Resistance of Responders to Immunotherapy in Advanced Non-Small Cell Lung Cancer. Front. Oncol. 2021, 11, 642883. [Google Scholar] [CrossRef]
- Kim, K.; Kim, T.H.; Seong, J. Efficacy of Local Therapy for Oligometastatic Hepatocellular Carcinoma: A Propensity Score Matched Analysis. J. Hepatocell. Carcinoma 2021, 8, 35–44. [Google Scholar] [CrossRef]
- Franzese, C.; Francolini, G.; Nicosia, L.; Alongi, F.; Livi, L.; Scorsetti, M. Stereotactic Body Radiation Therapy in the Management of Oligometastatic and Oligoprogressive Bladder Cancer and Other Urothelial Malignancies. Clin. Oncol. 2021, 33, 50–56. [Google Scholar] [CrossRef]
- Paz-Ares, L.; Vicente, D.; Tafreshi, A.; Robinson, A.; Parra, H.S.; Mazières, J.; Hermes, B.; Cicin, I.; Medgyasszay, B.; Rodríguez-Cid, J.; et al. A Randomized, Placebo-Controlled Trial of Pembrolizumab Plus Chemotherapy in Patients With Metastatic Squamous NSCLC: Protocol-Specified Final Analysis of KEYNOTE-407. J. Thorac. Oncol. 2020, 15, 1657–1669. [Google Scholar] [CrossRef]
- Cortellini, A.; Cannita, K.; Tiseo, M.; Cortinovis, D.L.; Aerts, J.G.; Baldessari, C.; Giusti, R.; Ferrara, M.G.; D’Argento, E.; Grossi, F.; et al. Post-progression outcomes of NSCLC patients with PD-L1 expression ≥ 50% receiving first-line single-agent pembrolizumab in a large multicentre real-world study. Eur. J. Cancer 2021, 148, 24–35. [Google Scholar] [CrossRef] [PubMed]
Patients Experiencing Oligoprogression (n = 30) | ||
---|---|---|
CR/PR | SD | |
Number of patients | 20 | 10 |
Sex, No. (%) | ||
Male | 14 (70%) | 5 (50%) |
Female | 6 (30%) | 5 (50%) |
Age at diagnosis in years, mean (STD) | 63.1 (8.6) | 59.2 (13.1) |
Age at ICI initiation in years, mean (STD) | 65.2 (6.8) | 63.7 (12.8) |
Race, No. (%) | ||
White | 7 (35%) | 4 (40%) |
Hispanic | 5 (25%) | 2 (20%) |
Black | 5 (25%) | 1 (10%) |
Asian | 3 (15%) | 3 (30%) |
ICI, No. (%) | ||
Nivolumab | 14 (70%) | 6 (60%) |
Pembrolizumab | 5 (25%) | 3 (27%) |
Atezolizumab | 1 (5%) | 1 (5%) |
Ipilimumab | 1 (5%) | 0 (0%) |
Other | 0 (0%) | 0 (0%) |
Histology, No. (%) | ||
Hepatocellular carcinoma | 13 (65%) | 3 (27%) |
Urothelial carcinoma | 3 (15%) | 4 (27%) |
Adenocarcinoma | 3 (15%) | 0 (0%) |
Colorectal Cancer | 1 (5%) | 0 (18%) |
Melanoma | 0 (0%) | 1 (10%) |
Non-small cell lung cancer | 0 (0%) | 1 (10%) |
Renal cell carcinoma | 0 (0%) | 1 (10%) |
Histology | Number of Oligoprogressive Lesions | Site(s) of Oligoprogression | Did Oligoprogression Occur in New Disease Sites or Sites That Existed Prior to ICI Initiation? | Radiation Dose | Number of Fractions | Did Patient Progress after Local Treatment? |
---|---|---|---|---|---|---|
HCC | 1 | Liver | New | 4000 | 5 | No |
HCC | 1 | Porta hepatis LN | Old | 4500 | 5 | Yes |
HCC | 1 | Porta hepatis LN | New | 4500 | 5 | Yes |
HCC | 2 | Left crus, Left adrenal gland | Old | 5000 | 5 | Yes |
HCC | 1 | Liver | Old | 5000 | 5 | No |
HCC | 2 | Aortocaval LNs × 2 | Old | 6000 | 15 | Yes |
RCC | 1 | Right kidney | Old | 4800 | 3 | Yes |
Urothelial Carcinoma | 1 | Left inguinal LN | New | 3000 | 5 | Yes |
Adenocarcinoma | 1 | Para-aortic LNs | New | 5500 | 25 | Yes |
Urothelial Carcinoma | 1 | Celiac LN | New | 5000 | 10 | Yes |
Urothelial Carcinoma | 1 | Anterior abdominal wall | New | 4500 | 5 | Yes |
Urothelial Carcinoma | 2 | Bladder and kidney | Old | 6000 | 30 | Yes |
HCC | 2 | Liver | New | 4000 | 5 | Yes |
NSCLC | 1 | L3 | New | 1800 | 1 | Yes |
HCC | 1 | Extrahepatic mass | Old | 5000 | 20 | Yes |
HCC | 1 | Liver | New | 5000 | 5 | No |
HCC | 1 | Portocaval LN | Old | 4500 | 5 | No |
HCC | 1 | Liver | Old | 4500 | 5 | Yes |
Adenocarcinoma | 1 | Right adrenal gland | Old | 4800 | 4 | No |
Colorectal Cancer | 1 | Left Lung | New | 4800 | 3 | No |
HCC | 1 | L3 | New | 2400 | 3 | No |
Adenocarcinoma | 1 | Liver | New | 5000 | 5 | No |
HCC | 1 | Liver | New | 5000 | 5 | No |
Urothelial Carcinoma | 2 | Left inguinal LN, Left obturator LN | New | 2500 | 5 | Yes |
Urothelial Carcinoma | 2 | Left inguinal LN, Left obturator LN | New | 2500 | 5 | Yes |
HCC | 1 | Liver | Old | 4500 | 15 | No |
Urothelial Carcinoma | 1 | Left nephrectomy bed | Old | 5000 | 5 | Yes |
HCC | 1 | Right lung | New | 5000 | 5 | No |
HCC | 1 | Liver | Old | 4500 | 5 | No |
Melanoma | 1 | Right intraparotid LN | Old | 3000 | 5 | No |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sindhu, K.K.; Nehlsen, A.D.; Lehrer, E.J.; Rowley, J.P.; Stock, R.G.; Galsky, M.D.; Buckstein, M. Oligoprogression of Solid Tumors on Immune Checkpoint Inhibitors: The Impact of Local Ablative Radiation Therapy. Biomedicines 2022, 10, 2481. https://doi.org/10.3390/biomedicines10102481
Sindhu KK, Nehlsen AD, Lehrer EJ, Rowley JP, Stock RG, Galsky MD, Buckstein M. Oligoprogression of Solid Tumors on Immune Checkpoint Inhibitors: The Impact of Local Ablative Radiation Therapy. Biomedicines. 2022; 10(10):2481. https://doi.org/10.3390/biomedicines10102481
Chicago/Turabian StyleSindhu, Kunal K., Anthony D. Nehlsen, Eric J. Lehrer, Jared P. Rowley, Richard G. Stock, Matthew D. Galsky, and Michael Buckstein. 2022. "Oligoprogression of Solid Tumors on Immune Checkpoint Inhibitors: The Impact of Local Ablative Radiation Therapy" Biomedicines 10, no. 10: 2481. https://doi.org/10.3390/biomedicines10102481
APA StyleSindhu, K. K., Nehlsen, A. D., Lehrer, E. J., Rowley, J. P., Stock, R. G., Galsky, M. D., & Buckstein, M. (2022). Oligoprogression of Solid Tumors on Immune Checkpoint Inhibitors: The Impact of Local Ablative Radiation Therapy. Biomedicines, 10(10), 2481. https://doi.org/10.3390/biomedicines10102481