Stereotactic Body Radiotherapy (SBRT) of Pancreatic Cancer—A Critical Review and Practical Consideration
Abstract
:1. Introduction
2. SBRT
2.1. Potentially Curative Effect of SBRT
2.2. Pain Relief
2.3. Oligometastases
3. Practical Considerations
3.1. Patient Selection
3.2. Neoadjuvant Systemic Therapy
3.3. Fiducial Placement
3.4. Planning CT Simulation
3.5. Contouring
3.6. Dose and Fractionation
3.7. Dose Application and Constraints
3.8. MR Linac-Based Approach
4. Discussion
4.1. Dose and Toxicity
4.2. Pain Relief
4.3. MR Linac-Based Radiotherapy
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef]
- Hammel, P.; Huguet, F.F.; Van Laethem, J.-L.; Goldstein, D.D.; Glimelius, B.; Artru, P.P.; Borbath, I.; Bouché, O.; Shannon, J.J.; André, T.; et al. Effect of Chemoradiotherapy vs Chemotherapy on Survival in Patients With Locally Advanced Pancreatic Cancer Controlled After 4 Months of Gemcitabine With or Without Erlotinib: The LAP07 randomized clinical trial. JAMA J. Am. Med. Assoc. 2016, 315, 1844–1853. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [Green Version]
- Rahib, L.; Smith, B.D.; Aizenberg, R.; Rosenzweig, A.B.; Fleshman, J.M.; Matrisian, L.M. Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014, 74, 2913–2921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakraborty, S.; Singh, S. Surgical resection improves survival in pancreatic cancer patients without vascular invasion—A population based study. Ann. Gastroenterol. 2013, 26, 346–352. [Google Scholar] [PubMed]
- Wolrab, D.; Jirásko, R.; Cífková, E.; Höring, M.; Mei, D.; Chocholoušková, M.; Peterka, O.; Idkowiak, J.; Hrnčiarová, T.; Kuchař, L.; et al. Lipidomic profiling of human serum enables detection of pancreatic cancer. Nat. Commun. 2022, 13, 124. [Google Scholar] [CrossRef] [PubMed]
- Heestand, G.M.; Murphy, J.D.; Lowy, A.M. Approach to Patients With Pancreatic Cancer Without Detectable Metastases. J. Clin. Oncol. 2015, 33, 1770–1778. [Google Scholar] [CrossRef] [PubMed]
- Toesca, D.A.; Koong, A.J.; Poultsides, G.A.; Visser, B.C.; Haraldsdottir, S.; Koong, A.C.; Chang, D.T. Management of Borderline Resectable Pancreatic Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2018, 100, 1155–1174. [Google Scholar] [CrossRef] [Green Version]
- Katz, M.H.; Pisters, P.W.; Evans, D.B.; Sun, C.C.; Lee, J.E.; Fleming, J.B.; Vauthey, N.J.; Abdalla, E.K.; Crane, C.H.; Wolff, R.A.; et al. Borderline Resectable Pancreatic Cancer: The Importance of This Emerging Stage of Disease. J. Am. Coll. Surg. 2008, 206, 833–846. [Google Scholar] [CrossRef] [Green Version]
- Winter, J.M.; Cameron, J.L.; Campbell, K.A.; Arnold, M.A.; Chang, D.C.; Coleman, J.; Hodgin, M.B.; Sauter, P.K.; Hruban, R.H.; Riall, T.S.; et al. 1423 Pancreaticoduodenectomies for Pancreatic Cancer: A Single-Institution Experience. J. Gastrointest. Surg. 2006, 10, 1199–1211. [Google Scholar] [CrossRef]
- Kaufmann, B.; Hartmann, D.; D’Haese, J.G.; Stupakov, P.; Radenkovic, D.; Gloor, B.; Friess, H. Neoadjuvant Treatment for Borderline Resectable Pancreatic Ductal Adenocarcinoma. Dig. Surg. 2019, 36, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Janssen, Q.P.; O’Reilly, E.M.; Van Eijck, C.H.J.; Koerkamp, B.G. Neoadjuvant Treatment in Patients With Resectable and Borderline Resectable Pancreatic Cancer. Front. Oncol. 2020, 10, 41. [Google Scholar] [CrossRef]
- Conroy, T.; Desseigne, F.; Ychou, M.; Bouché, O.; Guimbaud, R.; Bécouarn, Y.; Adenis, A.; Raoul, J.-L.; Gourgou-Bourgade, S.; De La Fouchardière, C.; et al. FOLFIRINOX versus Gemcitabine for Metastatic Pancreatic Cancer. N. Engl. J. Med. 2011, 364, 1817–1825. [Google Scholar] [CrossRef] [Green Version]
- Von Hoff, D.D.; Ervin, T.; Arena, F.P.; Chiorean, E.G.; Infante, J.; Moore, M.; Seay, T.; Tjulandin, S.A.; Ma, W.W.; Saleh, M.N.; et al. Increased Survival in Pancreatic Cancer with nab-Paclitaxel plus Gemcitabine. N. Engl. J. Med. 2013, 369, 1691–1703. [Google Scholar] [CrossRef] [Green Version]
- Seufferlein, T.; Hammel, P.; Delpero, J.R.; Macarulla, T.; Pfeiffer, P.; Prager, G.W.; Reni, M.; Falconi, M.; Philip, P.A.; Van Cutsem, E. Optimizing the management of locally advanced pancreatic cancer with a focus on induction chemotherapy: Expert opinion based on a review of current evidence. Cancer Treat. Rev. 2019, 77, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Chauffert, B.; Mornex, F.; Bonnetain, F.; Rougier, P.; Mariette, C.; Bouché, O.; Bosset, J.F.; Aparicio, T.; Mineur, L.; Azzedine, A.; et al. Phase III trial comparing intensive induction chemoradiotherapy (60 Gy, infusional 5-FU and intermittent cisplatin) followed by maintenance gemcitabine with gemcitabine alone for locally advanced unresectable pancreatic cancer. Definitive results of the 2000–01 FFCD/SFRO study. Ann. Oncol. 2008, 19, 1592–1599. [Google Scholar] [CrossRef] [PubMed]
- Loehrer, P.J.; Feng, Y.; Cardenes, H.; Wagner, L.; Brell, J.M.; Cella, D.; Flynn, P.; Ramanathan, R.K.; Crane, C.H.; Alberts, S.R.; et al. Gemcitabine Alone Versus Gemcitabine Plus Radiotherapy in Patients With Locally Advanced Pancreatic Cancer: An Eastern Cooperative Oncology Group Trial. J. Clin. Oncol. 2011, 29, 4105–4112. [Google Scholar] [CrossRef]
- Mukherjee, S.; Hurt, C.N.; Bridgewater, J.; Falk, S.; Cummins, S.; Wasan, H.; Crosby, T.; Jephcott, C.; Roy, R.; Radhakrishna, G.; et al. Gemcitabine-based or capecitabine-based chemoradiotherapy for locally advanced pancreatic cancer (SCALOP): A multicentre, randomised, phase 2 trial. Lancet Oncol. 2013, 14, 317–326. [Google Scholar] [CrossRef] [Green Version]
- Moningi, S.; Jaoude, J.A.; Kouzy, R.; Lin, D.; Nguyen, N.D.; Garcia, C.J.G.; Phan, J.L.; Avila, S.; Smani, D.; Cazacu, I.M.; et al. Impact of Fiducial Marker Placement Before Stereotactic Body Radiation Therapy on Clinical Outcomes in Patients With Pancreatic Cancer. Adv. Radiat. Oncol. 2020, 6, 100621. [Google Scholar] [CrossRef]
- Shepherd, J.; Srinivasan, K.; Mohammadi, M. Applications of linac-mounted kilovoltage Cone-beam Computed Tomography in modern radiation therapy: A review. Pol. J. Radiol. 2014, 79, 181–193. [Google Scholar] [CrossRef]
- Zeng, C.; Li, X.; Lu, W.; Reyngold, M.; Gewanter, R.M.; Cuaron, J.J.; Yorke, E.; Li, T. Accuracy and efficiency of respiratory gating comparable to deep inspiration breath hold for pancreatic cancer treatment. J. Appl. Clin. Med. Phys. 2021, 22, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Otto, K. Volumetric modulated arc therapy: IMRT in a single gantry arc. Med. Phys. 2008, 35, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Paliwal, B.R.; Yan, Y.; Yadav, P.; Bassetti, M.; Du, K.; Sáenz, D.; Harari, P. Dosimetric differences in flattened and flattening filter-free beam treatment plans. J. Med. Phys. 2016, 41, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Schmidhalter, D.; Fix, M.K.; Wyss, M.; Schaer, N.; Munro, P.; Scheib, S.; Kunz, P.; Manser, P. Evaluation of a new six degrees of freedom couch for radiation therapy. Med. Phys. 2013, 40, 111710. [Google Scholar] [CrossRef] [PubMed]
- Ghaly, M.; Gogineni, E.; Saif, M.W. The Evolving Field of Stereotactic Body Radiation Therapy in Pancreatic Cancer. Pancreas—Open J. 2019, 3, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Oar, A.; Lee, M.; Le, H.; Hruby, G.; Dalfsen, R.; Pryor, D.; Lee, D.; Chu, J.; Holloway, L.; Briggs, A.; et al. Australasian Gastrointestinal Trials Group (AGITG) and Trans-Tasman Radiation Oncology Group (TROG) Guidelines for Pancreatic Stereotactic Body Radiation Therapy (SBRT). Pract. Radiat. Oncol. 2020, 10, e136–e146. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Yoon, S.M.; Park, J.-H.; Seo, D.-W.; Lee, S.S.; Kim, M.-H.; Lee, S.K.; Park, D.H.; Song, T.J.; Ryoo, B.-Y.; et al. Stereotactic body radiation therapy for locally advanced pancreatic cancer. PLoS ONE 2019, 14, e0214970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahadevan, A.; Jain, S.; Goldstein, M.; Miksad, R.; Pleskow, D.; Sawhney, M.; Brennan, D.; Callery, M.; Vollmer, C. Stereotactic Body Radiotherapy and Gemcitabine for Locally Advanced Pancreatic Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2010, 78, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Polistina, F.; Costantin, G.; Casamassima, F.; Francescon, P.; Guglielmi, R.; Panizzoni, G.; Febbraro, A.; Ambrosino, G. Unresectable Locally Advanced Pancreatic Cancer: A Multimodal Treatment Using Neoadjuvant Chemoradiotherapy (Gemcitabine Plus Stereotactic Radiosurgery) and Subsequent Surgical Exploration. Ann. Surg. Oncol. 2010, 17, 2092–2101. [Google Scholar] [CrossRef] [PubMed]
- Gurka, M.K.; Collins, S.P.; Slack, R.; Tse, G.; Charabaty, A.; Ley, L.; Berzcel, L.; Lei, S.; Suy, S.; Haddad, N.; et al. Stereotactic body radiation therapy with concurrent full-dose gemcitabine for locally advanced pancreatic cancer: A pilot trial demonstrating safety. Radiat. Oncol. 2013, 8, 44. [Google Scholar] [CrossRef] [PubMed]
- Koong, A.C.; Le, Q.T.; Ho, A.; Fong, B.; Fisher, G.; Cho, C.; Ford, J.; Poen, J.; Gibbs, I.C.; Mehta, V.K.; et al. Phase I study of stereotactic radiosurgery in patients with locally advanced pancreatic cancer. Int. J. Radiat. Oncol. Biol. Phys. 2004, 58, 1017–1021. [Google Scholar] [CrossRef] [PubMed]
- Chang, D.T.; Schellenberg, D.; Shen, J.; Kim, J.; Goodman, K.A.; Fisher, G.A.; Ford, J.M.; Desser, T.; Quon, A.; Koong, A.C. Stereotactic radiotherapy for unresectable adenocarcinoma of the pancreas. Cancer 2009, 115, 665–672. [Google Scholar] [CrossRef] [PubMed]
- Herman, J.M.; Chang, D.T.; Goodman, K.A.; Dholakia, A.S.; Raman, S.P.; Hacker-Prietz, A.; Iacobuzio-Donahue, C.A.; Rn, M.E.G.; Pawlik, T.M.; Ba, J.S.P.; et al. Phase 2 multi-institutional trial evaluating gemcitabine and stereotactic body radiotherapy for patients with locally advanced unresectable pancreatic adenocarcinoma. Cancer 2015, 121, 1128–1137. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Hajj, C.; Reyngold, M.; Shi, W.; Zhang, Z.; Cuaron, J.J.; Crane, C.H.; O’Reilly, E.M.; Lowery, M.; Yu, K.H.; et al. Stereotactic body radiation vs. intensity-modulated radiation for unresectable pancreatic cancer. Acta Oncol. 2017, 56, 1746–1753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, J.F.; Rosati, L.M.; Groot, V.P.; Le, D.T.; Zheng, L.; Laheru, D.A.; Shin, E.J.; Jackson, J.; Moore, J.; Narang, A.K.; et al. Stereotactic body radiation therapy for palliative management of pancreatic adenocarcinoma in elderly and medically inoperable patients. Oncotarget 2018, 9, 16427–16436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Z.-T.; Zhou, H.; Li, A.-M.; Ji, X.-Q.; Jiang, C.-C.; Yuan, X.; Li, B.; Zhu, X.-X.; Huang, G.-C. Clinical outcomes and prognostic factors of stereotactic body radiation therapy combined with gemcitabine plus capecitabine for locally advanced unresectable pancreatic cancer. J. Cancer Res. Clin. Oncol. 2020, 146, 417–428. [Google Scholar] [CrossRef]
- Chhabra, A.; Kaiser, A.; Regine, W.F.; Chuong, M.D. The expanding role of stereotactic body radiation therapyfor pancreatic cancer: A review of the literature. Transl Cancer Res. 2015, 4, 659–670. [Google Scholar] [CrossRef]
- Chapman, B.C.; Gleisner, A.; Rigg, D.; Meguid, C.; Goodman, K.; Brauer, B.; Gajdos, C.; Schulick, R.D.; Edil, B.H.; McCarter, M.D. Perioperative outcomes and survival following neoadjuvant stereotactic body radiation therapy (SBRT) versus intensity-modulated radiation therapy (IMRT) in pancreatic adenocarcinoma. J. Surg. Oncol. 2018, 117, 1073–1083. [Google Scholar] [CrossRef]
- de Geus, S.W.L.; Eskander, M.F.; Kasumova, G.G.; Ng, S.C.; Kent, T.S.; Mancias, J.D.; Callery, M.P.; Mahadevan, A.; Tseng, J.F. Stereotactic body radiotherapy for unresected pancreatic cancer: A nationwide review. Cancer 2017, 123, 4158–4167. [Google Scholar] [CrossRef] [Green Version]
- Zhong, J.; Patel, K.; Switchenko, J.; Cassidy, R.; Hall, W.A.; Gillespie, T.; Patel, P.R.; Kooby, D.; Landry, J. Outcomes for patients with locally advanced pancreatic adenocarcinoma treated with stereotactic body radiation therapy versus conventionally fractionated radiation. Cancer 2017, 123, 3486–3493. [Google Scholar] [CrossRef]
- Tchelebi, L.T.; Lehrer, E.J.; Trifiletti, D.M.; Do, N.K.S.; Gusani, N.J.; Crane, C.H.; Zaorsky, N.G. Conventionally fractionated radiation therapy versus stereotactic body radiation therapy for locally advanced pancreatic cancer (CRiSP): An international systematic review and meta-analysis. Cancer 2020, 126, 2120–2131. [Google Scholar] [CrossRef]
- Moningi, S.; Marciscano, A.E.; Rosati, L.M.; Ng, S.K.; Forbang, R.T.; Jackson, J.; Chang, D.T.; Koong, A.C.; Herman, J.M. Stereotactic body radiation therapy in pancreatic cancer: The new frontier. Expert Rev. Anticancer Ther. 2014, 14, 1461–1475. [Google Scholar] [CrossRef] [PubMed]
- Mellon, E.A.; Hoffe, S.E.; Springett, G.M.; Frakes, J.M.; Strom, T.J.; Hodul, P.J.; Malafa, M.P.; Chuong, M.D.; Shridhar, R. Long-term outcomes of induction chemotherapy and neoadjuvant stereotactic body radiotherapy for borderline resectable and locally advanced pancreatic adenocarcinoma. Acta Oncol. 2015, 54, 979–985. [Google Scholar] [CrossRef] [PubMed]
- Hill, C.S.; Rosati, L.; Wang, H.; Tsai, H.-L.; He, J.; Hacker-Prietz, A.; Laheru, D.A.; Zheng, L.; Sehgal, S.; Bernard, V.; et al. Multiagent Chemotherapy and Stereotactic Body Radiation Therapy in Patients with Unresectable Pancreatic Adenocarcinoma: A Prospective Nonrandomized Controlled Trial. Pract. Radiat. Oncol. 2022, 16. [Google Scholar] [CrossRef]
- Chuong, M.D.; Springett, G.M.; Freilich, J.M.; Park, C.K.; Weber, J.M.; Mellon, E.A.; Hodul, P.J.; Malafa, M.P.; Meredith, K.L.; Hoffe, S.E.; et al. Stereotactic Body Radiation Therapy for Locally Advanced and Borderline Resectable Pancreatic Cancer Is Effective and Well Tolerated. Int. J. Radiat. Oncol. Biol. Phys. 2013, 86, 516–522. [Google Scholar] [CrossRef]
- Moningi, S.; Dholakia, A.S.; Raman, S.P.; Blackford, A.; Cameron, J.L.; Le, D.T.; De Jesus-Acosta, A.M.C.; Hacker-Prietz, A.; Rosati, L.M.; Assadi, R.K.; et al. The Role of Stereotactic Body Radiation Therapy for Pancreatic Cancer: A Single-Institution Experience. Ann. Surg. Oncol. 2015, 22, 2352–2358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajagopalan, M.S.; Heron, D.E.; Wegner, R.E.; Zeh, H.J.; Bahary, N.; Krasinskas, A.M.; Lembersky, B.; Brand, R.; Moser, A.J.; Quinn, A.E.; et al. Pathologic response with neoadjuvant chemotherapy and stereotactic body radiotherapy for borderline resectable and locally-advanced pancreatic cancer. Radiat. Oncol. 2013, 8, 254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, J.; Moningi, S.; Blair, A.; Zaki, A.; Laheru, D.A.; Cameron, J.L.; Pawlik, T.M.; Weiss, M.J.; Wolfgang, C.L.; Herman, J.M. Surgical outcomes of patients with pancreatic cancer treated with stereotactic body radiation therapy. J. Clin. Oncol. 2015, 33, 341. [Google Scholar] [CrossRef]
- Verbeke, C.S.; Gladhaug, I.P. Resection margin involvement and tumour origin in pancreatic head cancer. Br. J. Surg. 2012, 99, 1036–1049. [Google Scholar] [CrossRef]
- Cloyd, J.M.; Chen, H.-C.; Wang, X.; Tzeng, C.-W.D.; Kim, M.P.; Aloia, T.A.; Vauthey, J.-N.; Lee, J.E.; Katz, M.H. Chemotherapy Versus Chemoradiation as Preoperative Therapy for Resectable Pancreatic Ductal Adenocarcinoma: A Propensity Score Adjusted Analysis. Pancreas 2019, 48, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Mahadevan, A.; Miksad, R.; Goldstein, M.; Sullivan, R.; Bullock, A.; Buchbinder, E.; Pleskow, D.; Sawhney, M.; Kent, T.; Vollmer, C.; et al. Induction Gemcitabine and Stereotactic Body Radiotherapy for Locally Advanced Nonmetastatic Pancreas Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, e615–e622. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, X.; Liu, R.; Wang, X.; Sun, G.; Song, J.; Lu, J.; Zhang, H. Combination of Pre-Treatment DWI-Signal Intensity and S-1 Treatment: A Predictor of Survival in Patients with Locally Advanced Pancreatic Cancer Receiving Stereotactic Body Radiation Therapy and Sequential S-1. Transl. Oncol. 2018, 11, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Kim, L.; Nguyen, N.; Singhal, N.; Phan, V.-A.; Iankov, I.; Le, H. Application of stereotactic body radiotherapy in advanced pancreatic cancers in Australia. J. Med. Radiat. Sci. 2019, 66, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Yuan, Z.; Li, F.; Dong, Y.; Zhuang, H.; Wang, J.; Wang, P.; Chen, H. Analysis of clinical efficacy of CyberKnife® treatment for locally advanced pancreatic cancer. OncoTargets Ther. 2015, 8, 1427–1431. [Google Scholar] [CrossRef] [Green Version]
- Freelove, R.; Walling, A.D. Pancreatic cancer: Diagnosis and management. Am. Fam. Phys. 2006, 73, 485–492. [Google Scholar]
- Buwenge, M.; Macchia, G.; Arcelli, A.; Frakulli, R.; Fuccio, L.; Guerri, S.; Grassi, E.; Cammelli, S.; Cellini, F.; Morganti, A.G. Stereotactic radiotherapy of pancreatic cancer: A systematic review on pain relief. J. Pain Res. 2018, 11, 2169–2178. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimi, G.; Rasch, C.R.N.; Van Tienhoven, G. Pain relief after a short course of palliative radiotherapy in pancreatic cancer, the Academic Medical Center (AMC) experience. Acta Oncol. 2018, 57, 697–700. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.-C.; Jen, Y.-M.; Li, M.-H.; Chao, H.-L.; Tsai, J.-T. Comparing outcomes of stereotactic body radiotherapy with intensity-modulated radiotherapy for patients with locally advanced unresectable pancreatic cancer. Eur. J. Gastroenterol. Hepatol. 2015, 27, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Goodman, B.D.; Mannina, E.M.; Althouse, S.K.; Maluccio, M.A.; Cárdenes, H.R. Long-term safety and efficacy of stereotactic body radiation therapy for hepatic oligometastases. Pract. Radiat. Oncol. 2016, 6, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Kress, M.-A.S.; Collins, B.T.; Collins, S.; Dritschilo, A.; Gagnon, G.; Unger, K. Stereotactic Body Radiation Therapy for Liver Metastases from Colorectal Cancer: Analysis of Safety, Feasibility, and Early Outcomes. Front. Oncol. 2012, 2, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, K.; Van der Sluis, W.B.; Scheffer, H.J.; Meijerink, M.R.; Comans, E.F.I.; Slotman, B.J.; Meijer, S.; Van den Tol, M.P.; Haasbeek, C.J. A Stereotactic Ablative Radiotherapy to Treat Colorectal Liver Metastases: Ready for Prime-Time? J. Liver 2016, 2, 139. [Google Scholar] [CrossRef]
- Oladeru, O.T.; Vaios, E.J.; Eyler, C.; Noe, B.N.; Del-Castillo, C.F.; Weekes, C.D.; Ferrone, C.; Lillemoe, K.D.; Qadan, M.; Parikh, A.; et al. Outcomes following liver SBRT for metastatic pancreatic cancer. J. Clin. Oncol. 2019, 37, 418. [Google Scholar] [CrossRef]
- Herman, J.M.; Hoffman, J.P.; Thayer, S.P.; Wolff, R.A. Management of the Primary Tumor and Limited Metastases in Patients With Metastatic Pancreatic Cancer. J. Natl. Compr. Cancer Netw. 2015, 13, e29–e36. [Google Scholar] [CrossRef]
- Tempero, M.A.; Malafa, M.P.; Al-Hawary, M. Pancreatic Adenocarcinoma. In NCCN Guidelines; Version 1; 2022; Available online: http://www.nccn.org/professionals/physician_gls/pdf/pancreatic.pdf (accessed on 1 July 2022).
- Versteijne, E.; van Dam, J.L.; Suker, M.; Janssen, Q.P.; Groothuis, K.; Akkermans-Vogelaar, J.M.; Besselink, M.G.; Bonsing, B.A.; Buijsen, J.; Busch, O.R.; et al. Neoadjuvant Chemoradiotherapy Versus Upfront Surgery for Resectable and Borderline Resectable Pancreatic Cancer: Long-Term Results of the Dutch Randomized PREOPANC Trial. J. Clin. Oncol. 2022, 40, 1220–1230. [Google Scholar] [CrossRef]
- Katz, M.H.G.; Shi, Q.; Meyers, J.P.; Herman, J.M.; Choung, M.; Wolpin, B.M.; Ahmad, S.; Marsh, R.D.W.; Schwartz, L.H.; Behr, S.; et al. Alliance A021501: Preoperative mFOLFIRINOX or mFOLFIRINOX plus hypofractionated radiation therapy (RT) for borderline resectable (BR) adenocarcinoma of the pancreas. J. Clin. Oncol. 2021, 39, 377. [Google Scholar] [CrossRef]
- Jang, J.-Y.; Han, Y.; Lee, H.; Kim, S.-W.; Kwon, W.; Lee, K.-H.; Oh, D.-Y.; Chie, E.K.; Lee, J.M.; Heo, J.S.; et al. Oncological Benefits of Neoadjuvant Chemoradiation With Gemcitabine Versus Upfront Surgery in Patients With Borderline Resectable Pancreatic Cancer: A Prospective, Randomized, Open-label, Multicenter Phase 2/3 Trial. Ann. Surg. 2018, 268, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Motoi, F.; Kosuge, T.; Ueno, H.; Yamaue, H.; Satoi, S.; Sho, M.; Honda, G.; Matsumoto, I.; Wada, K.; Furuse, J.; et al. Randomized phase II/III trial of neoadjuvant chemotherapy with gemcitabine and S-1 versus upfront surgery for resectable pancreatic cancer (Prep-02/JSAP05). Jpn. J. Clin. Oncol. 2019, 49, 190–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollom, E.L.; Alagappan, M.; von Eyben, R.; Kunz, P.L.; Fisher, G.A.; Ford, J.A.; Poultsides, G.A.; Visser, B.C.; Norton, J.A.; Kamaya, A.; et al. Single- versus Multifraction Stereotactic Body Radiation Therapy for Pancreatic Adenocarcinoma: Outcomes and Toxicity. Int. J. Radiat. Oncol. Biol. Phys. 2014, 90, 918–925. [Google Scholar] [CrossRef] [PubMed]
- Boone, B.A.; Steve, J.; Krasinskas, A.M.; Zureikat, A.H.; Lembersky, B.C.; Gibson, M.K.; Stoller, R.G.; Zeh, H.J.; Bahary, N. Outcomes with FOLFIRINOX for borderline resectable and locally unresectable pancreatic cancer. J. Surg. Oncol. 2013, 108, 236–241. [Google Scholar] [CrossRef] [Green Version]
- Gurka, M.K.; Kim, C.; He, A.R.; Charabaty, A.; Haddad, N.; Turocy, J.; Johnson, L.; Jackson, P.; Weiner, L.M.; Marshall, J.L.; et al. Stereotactic Body Radiation Therapy (SBRT) Combined With Chemotherapy for Unresected Pancreatic Adenocarcinoma. Am. J. Clin. Oncol. 2017, 40, 152–157. [Google Scholar] [CrossRef]
- Goyal, K.; Einstein, D.; Ibarra, R.A.; Yao, M.; Kunos, C.; Ellis, R.; Brindle, J.; Singh, D.; Hardacre, J.; Zhang, Y.; et al. Stereotactic Body Radiation Therapy for Nonresectable Tumors of the Pancreas. J. Surg. Res. 2012, 174, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Sanders, M.K.; Moser, A.J.; Khalid, A.; Fasanella, K.E.; Zeh, H.J.; Burton, S.; McGrath, K. EUS-guided fiducial placement for stereotactic body radiotherapy in locally advanced and recurrent pancreatic cancer. Gastrointest. Endosc. 2010, 71, 1178–1184. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.-H.; Seo, D.-W.; Park, D.H.; Lee, S.K.; Kim, M.-H. Fiducial Placement for Stereotactic Body Radiation Therapy under Only Endoscopic Ultrasonography Guidance in Pancreatic and Hepatic Malignancy: Practical Feasibility and Safety. Gut Liver 2014, 8, 88–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pepin, E.; Olsen, L.; Badiyan, S.; Murad, F.; Mullady, D.; Wang-Gillam, A.; Linehan, D.; Parikh, P.; Olsen, J. Comparison of implanted fiducial markers and self-expandable metallic stents for pancreatic image guided radiation therapy localization. Pract. Radiat. Oncol. 2015, 5, e193–e199. [Google Scholar] [CrossRef] [PubMed]
- Huguet, F.; Yorke, E.D.; Davidson, M.; Zhang, Z.; Jackson, A.; Mageras, G.S.; Wu, A.J.; Goodman, K.A. Modeling Pancreatic Tumor Motion Using 4-Dimensional Computed Tomography and Surrogate Markers. Int. J. Radiat. Oncol. Biol. Phys. 2015, 91, 579–587. [Google Scholar] [CrossRef]
- Godfrey, D.J.; Patel, B.N.; Adamson, J.D.; Subashi, E.; Salama, J.K.; Palta, M. Triphasic contrast enhanced CT simulation with bolus tracking for pancreas SBRT target delineation. Pract. Radiat. Oncol. 2017, 7, e489–e497. [Google Scholar] [CrossRef]
- Heerkens, H.D.; van Vulpen, M.; van den Berg, C.A.; Tijssen, R.H.; Crijns, S.P.; Molenaar, I.Q.; van Santvoort, H.C.; Reerink, O.; Meijer, G.J. MRI-based tumor motion characterization and gating schemes for radiation therapy of pancreatic cancer. Radiother. Oncol. 2014, 111, 252–257. [Google Scholar] [CrossRef] [Green Version]
- Bussels, B.; Goethals, L.; Feron, M.; Bielen, D.; Dymarkowski, S.; Suetens, P.; Haustermans, K. Respiration-induced movement of the upper abdominal organs: A pitfall for the three-dimensional conformal radiation treatment of pancreatic cancer. Radiother. Oncol. 2003, 68, 69–74. [Google Scholar] [CrossRef]
- Feng, M.; Balter, J.M.; Normolle, D.; Adusumilli, S.; Cao, Y.; Chenevert, T.L.; Ben-Josef, E. Characterization of Pancreatic Tumor Motion Using Cine MRI: Surrogates for Tumor Position Should Be Used With Caution. Int. J. Radiat. Oncol. Biol. Phys. 2009, 74, 884–891. [Google Scholar] [CrossRef] [Green Version]
- Katz, M.H.G.; Ou, F.S.; Herman, J.M.; Ahmad, S.A.; Wolpin, B.; Marsh, R.; Behr, S.; Shi, Q.; Chuong, M.; Schwartz, L.H.; et al. Alliance for clinical trials in oncology (ALLIANCE) trial A021501: Preoperative extended chemotherapy vs. chemotherapy plus hypofractionated radiation therapy for borderline resectable adenocarcinoma of the head of the pancreas. BMC Cancer 2017, 17, 505. [Google Scholar] [CrossRef] [Green Version]
- Petrelli, F.; Comito, T.; Ghidini, A.; Torri, V.; Scorsetti, M.; Barni, S. Stereotactic Body Radiation Therapy for Locally Advanced Pancreatic Cancer: A Systematic Review and Pooled Analysis of 19 Trials. Int. J. Radiat. Oncol. Biol. Phys. 2017, 97, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Reyngold, M.; Parikh, P.; Crane, C.H. Ablative radiation therapy for locally advanced pancreatic cancer: Techniques and results. Radiat. Oncol. 2019, 14, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoyer, M.; Roed, H.; Sengelov, L.; Traberg, A.; Ohlhuis, L.; Pedersen, J.; Nellemann, H.; Berthelsen, A.K.; Eberholst, F.; Engelholm, S.A.; et al. Phase-II study on stereotactic radiotherapy of locally advanced pancreatic carcinoma. Radiother. Oncol. 2005, 76, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Parekh, A.; Rosati, L.M.; Chang, D.T.; Goodman, K.A.; Pawlik, T.; Koong, A.C.; Herman, J.M. Stereotactic body radiation for pancreatic cancer: Results of an international survey of practice patterns. J. Radiat. Oncol. 2017, 6, 273–278. [Google Scholar] [CrossRef]
- Su, T.-S.; Liang, P.; Lu, H.-Z.; Liang, J.-N.; Liu, J.-M.; Zhou, Y.; Gao, Y.-C.; Tang, M.-Y. Stereotactic body radiotherapy using CyberKnife for locally advanced unresectable and metastatic pancreatic cancer. World J. Gastroenterol. 2015, 21, 8156–8162. [Google Scholar] [CrossRef]
- Koay, E.J.; Hanania, A.N.; Hall, W.A.; Taniguchi, C.M.; Rebueno, N.; Myrehaug, S.; Aitken, K.L.; Dawson, L.A.; Crane, C.H.; Herman, J.M.; et al. Dose-Escalated Radiation Therapy for Pancreatic Cancer: A Simultaneous Integrated Boost Approach. Pract. Radiat. Oncol. 2020, 10, e495–e507. [Google Scholar] [CrossRef]
- Passoni, P.; Reni, M.; Cattaneo, G.M.; Slim, N.; Cereda, S.; Balzano, G.; Castoldi, R.; Longobardi, B.; Bettinardi, V.; Gianolli, L.; et al. Hypofractionated Image-Guided IMRT in Advanced Pancreatic Cancer With Simultaneous Integrated Boost to Infiltrated Vessels Concomitant With Capecitabine: A Phase I Study. Int. J. Radiat. Oncol. Biol. Phys. 2013, 87, 1000–1006. [Google Scholar] [CrossRef]
- Lee, M.T.; Kim, J.J.; Dinniwell, R.; Brierley, J.; Lockwood, G.; Wong, R.; Cummings, B.; Ringash, J.; Tse, R.V.; Knox, J.J.; et al. Phase I Study of Individualized Stereotactic Body Radiotherapy of Liver Metastases. J. Clin. Oncol. 2009, 27, 1585–1591. [Google Scholar] [CrossRef] [Green Version]
- Bohoudi, O.; Bruynzeel, A.M.E.; Senan, S.; Cuijpers, J.P.; Slotman, B.J.; Lagerwaard, F.J.; Palacios, M.A. Fast and robust online adaptive planning in stereotactic MR-guided adaptive radiation therapy (SMART) for pancreatic cancer. Radiother. Oncol. 2017, 125, 439–444. [Google Scholar] [CrossRef]
- Rudra, S.; Jiang, N.; Rosenberg, S.A.; Olsen, J.R.; Parikh, P.J.; Bassetti, M.F.; Lee, P. High Dose Adaptive MRI Guided Radiation Therapy Improves Overall Survival of Inoperable Pancreatic Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2017, 99, E184. [Google Scholar] [CrossRef] [Green Version]
- Arcelli, A.; Buwenge, M.; Macchia, G.; Bertini, F.; Guido, A.; Deodato, F.; Cilla, S.; Scotti, V.; Rosetto, M.E.; Djan, I.; et al. Stereotactic body radiotherapy vs conventionally fractionated chemoradiation in locally advanced pancreatic cancer: A multicenter case-control study (PAULA-1). Cancer Med. 2020, 9, 7879–7887. [Google Scholar] [CrossRef] [PubMed]
- Hill, C.S.; Rosati, L.M.; Hu, C.; Fu, W.; Sehgal, S.; Hacker-Prietz, A.; Wolfgang, C.L.; Weiss, M.J.; Burkhart, R.A.; Hruban, R.H.; et al. Neoadjuvant Stereotactic Body Radiotherapy After Upfront Chemotherapy Improves Pathologic Outcomes Compared With Chemotherapy Alone for Patients With Borderline Resectable or Locally Advanced Pancreatic Adenocarcinoma Without Increasing Perioperative Toxicity. Ann. Surg. Oncol. 2022, 29, 2456–2468. [Google Scholar] [CrossRef] [PubMed]
- Buwenge, M.; Arcelli, A.; Cellini, F.; Deodato, F.; Macchia, G.; Cilla, S.; Galietta, E.; Strigari, L.; Malizia, C.; Cammelli, S.; et al. Pain Relief after Stereotactic Radiotherapy of Pancreatic Adenocarcinoma: An Updated Systematic Review. Curr. Oncol. 2022, 29, 2616–2629. [Google Scholar] [CrossRef] [PubMed]
- Ermongkonchai, T.; Khor, R.; Muralidharan, V.; Tebbutt, N.; Lim, K.; Kutaiba, N.; Ng, S.P. Stereotactic radiotherapy and the potential role of magnetic resonance-guided adaptive techniques for pancreatic cancer. World J. Gastroenterol. 2022, 28, 745–754. [Google Scholar] [CrossRef]
- Weykamp, F.; Herder-Wagner, C.; Regnery, S.; Hoegen, P.; Renkamp, C.K.; Liermann, J.; Rippke, C.; Koerber, S.A.; König, L.; Buchele, C.; et al. Stereotactic body radiotherapy of lymph node metastases under MR-guidance: First clinical results and patient-reported outcomes. Strahlenther. Onkol. 2022, 198, 56–65. [Google Scholar] [CrossRef]
- Hoegen, P.; Zhang, K.S.; Tonndorf-Martini, E.; Weykamp, F.; Regnery, S.; Naumann, P.; Lang, K.; Ristau, J.; Körber, S.A.; Dreher, C.; et al. MR-guided adaptive versus ITV-based stereotactic body radiotherapy for hepatic metastases (MAESTRO): A randomized controlled phase II trial. Radiat. Oncol. 2022, 17, 59. [Google Scholar] [CrossRef]
- Heerkens, H.D.; Van Vulpen, M.; Erickson, B.; Reerink, O.; Intven, M.P.; Berg, C.A.V.D.; Molenaar, I.Q.; Vleggaar, F.P.; Meijer, G.J. MRI guided stereotactic radiotherapy for locally advanced pancreatic cancer. Br. J. Radiol. 2018, 91, 20170563. [Google Scholar] [CrossRef]
- Rudra, S.; Jiang, N.; Rosenberg, S.A.; Olsen, J.R.; Roach, M.; Wan, L.; Portelance, L.; Mellon, E.A.; Bruynzeel, A.; Lagerwaard, F.; et al. Using adaptive magnetic resonance image-guided radiation therapy for treatment of inoperable pancreatic cancer. Cancer Med. 2019, 8, 2123–2132. [Google Scholar] [CrossRef]
- Luterstein, E.; Cao, M.; Lamb, J.; Raldow, A.C.; Low, D.A.; Steinberg, M.L.; Lee, P. Stereotactic MRI-guided Adaptive Radiation Therapy (SMART) for Locally Advanced Pancreatic Cancer: A Promising Approach. Cureus 2018, 10, e2324. [Google Scholar] [CrossRef] [Green Version]
- Michalet, M.; Bordeau, K.; Cantaloube, M.; Valdenaire, S.; Debuire, P.; Simeon, S.; Portales, F.; Draghici, R.; Ychou, M.; Assenat, E.; et al. Stereotactic MR-Guided Radiotherapy for Pancreatic Tumors: Dosimetric Benefit of Adaptation and First Clinical Results in a Prospective Registry Study. Front. Oncol. 2022, 12, 842402. [Google Scholar] [CrossRef]
Study, Year | Median Age (Range) | SBRT Dose (Gy) | Fractions | Induction Chemotherapy | Stage | Patients | Median Follow-up (Range) | Conversion Rate | Local Control (%) | Median OS (Months) | 1-Year OS (%) | Median PFS (Months) | 1-Year PFS (%) | Toxicity |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Jung et al., 2019 [27] | 64 (38–84) | 28 (24–36) | 4 | FOLFIRINOX/GE based | LAPC | 95 | 15 (2–49) | 7.4% | N/A | 16.7 | 67.4 | 10.2 | 42.9 | 3.2% acute G3+ 3.2% late G3+ |
Herman et al., 2015 [33] | 67 (35–87) | 33 | 5 | GE | LAPC | 49 | 13.9 (3.9–45.2) | 8.0% | 78 1-year | 13.9 | 59.2 | 7.8 | 32.7 | 2% acute G2+ 12% late G2+ |
Park et al., 2017 [34] | 68.3 (45–90) | 30–33 | 5 | FOLFIRINOX/GE based/FOLFOX | LAPC | 44 | 12.9 (1.7–107.6) | 7% | N/A | 15.7 | 56.2 | N/A | N/A | 0% G3+ |
Ryan et al., 2018 [35] | 74 (68–79) | 28 (25–33) | 5 | FOLFIRINOX/GE/GE based | LAPC | 29 | 15 (4–18) | N/A | 78 1-year | 13 | 51.7 | 6 | 17.2 | 10% acute G3+ 4% late G3+ |
Shen et al., 2019 [36] | 62 (38–84) | 40 (30–50) | 5 | GE+capecitabine | LAPC | 56 | 17 (3–43) | N/A | N/A | 19 | 82.1 | 12 | 48.2 | 3.6% acute G3 5.4% late G3 3.6% late G4 |
Mellon et al., 2015 [43] | 66.5 (45–85) | median 30–40 | 5 | FOLFIRINOX/GTX/GE based | LAPC | 49 | 14 (4–46) | N/A | N/A | 15 | 46.9 | 13.2 | 34.7 | 7% acute & late G3+ |
BRPC | 110 | 51.0% | 19.2 | 63.6 | 11.9 | 43.6 | ||||||||
Hill et al., 2022 [44] | N/A | N/A | 5 | FOLFIRINOX/GE + nab-paclitaxel | LAPC | 48 | 60 (14-65) | 38.6% | 23.9 months (median local PFS) | 20.2 | 58 | N/A | N/A | 2.1% late G2+ |
Chuong et al., 2013 [45] | 64 (38–87) | 35 (25–50) | 5 | GTX | LAPC | 16 | 11 (2.2–21) | N/A | 81 1-year | 15 | 68.1 | 9.8 | 41 | 0% acute G3+ 5.3% late G3+ |
BRPC | 57 | 7.8 (3.4–25.9) | 56.1% | 16.4 | 72.2 | 9.7 | 42.8 | |||||||
Moningi et al., 2015 [46] | 67.2 (35–87) | 25–33 | 5 | FOLFIRINOX/GE/GE based | LAPC | 74 | 14.5 | 21.6% | 61% 1-year | 18.4 | N/A | 9.8 | N/A | 3.4% acute G3+ 5.7% late G2+ |
BRPC | 14 | 10.3 | 14.4 | |||||||||||
Mahadevan et al., 2011 [51] | 67 (44–88) | 24–36 | 3 | GE | LAPC | 39 | 21 (6–36) | N/A | 85 crude | 20 | 68.1 | 15 | 55.3 | 9% late G3+ |
Zhang et al., 2018 [52] | 64 (44–80) | 30–36 | 5 or 6 | N/A | LAPC | 41 | 12.4 (2.8–24) | N/A | N/A | 11.8 | 46.3 | N/A | N/A | N/A |
Kim et al., 2019 [53] | 74 (56–92) | 29 (25–42) | 3 or 5 | FOLFIRINOX | LAPC | 27 | 9 (3–32.7) | N/A | 61 1-year | 11.6 | 40.7 | N/A | N/A | 22% G3 22% G2 0% G4 |
Song et al., 2015 [54] | 62 (28–86) | 45 (35–50) | 3–8 | N/A | LAPC | 59 | 10.9 (3.2–48.7) | N/A | 90.8% 1-year | 12.5 | 53.9 | 13.9 | N/A | 1.7% late G3 0% late G4 |
Study, Year | Stage | Therapy | Patients | R0 (%) | Median OS (Months) | HR |
---|---|---|---|---|---|---|
Versteine et al., 2021 [65] | BRPC | Surgery → gemcitabine | 54 | 8.5 | 13.2 | HR 0.67 p = 0.045 |
CRT (gemcitabine) → Surgery → gemcitabine | 59 | 40.7 | 17.3 | |||
Katz et al., 2021 [66] | BRPC | FOLFIRINOX → Surgery → FOLFOX | 70 | 42 | 30 | NR |
FOLFIRINOX → SBRT → Surgery → FOLFOX | 56 | 25 | 17.1 | |||
Jang et al., 2018 [67] | BRPC | Surgery | 23 | 26 | 12 | HR 1.495 p = 0.028 |
CRT → Surgery | 27 | 52 | 21 | |||
Motoi et al., 2019 [68] | Resectable + BRPC | Surgery → S1 | 180 | 72 | 26.7 | HR 0.75 p = 0.015 |
gemcitabine + S1 → Surgery → S1 | 182 | 77 | 36.7 |
ClinicalTrials.gov Identifier | Study Title | Study Phase | Patients | Estimated Study Completion Date | Primary Outcome Measures | Secondary Outcome Measures | Study Arms |
---|---|---|---|---|---|---|---|
NCT03563248 | A Randomized Phase 2 Study of Losartan and Nivolumab in Combination With FOLFIRINOX and SBRT in Localized Pancreatic Cancer | 2 | 160 | 31 December 2025 | Proportion of participants with R0 resection | Progression-free survival Overall survival Pathologic complete response Number of participants with treatment related serious adverse events | Experimental: FOLFIRINOX + Losartan:SBRT + Losartan:Surgery FOLFIRINOX + Losartan:SBRT + Nivolumab + Losartan:Surgery FOLFIRINOX × 8:SBRT + Nivolumab:Surgery Comparator: FOLFIRINOX: SBRT: Surgery |
NCT02128100 | The Effect of FOLFIRINOX and Stereotactic Body Radiation Therapy for Locally Advanced, Non-Resectable Pancreatic Cancer | 2 | 28 | May 2025 | Number of Participants with Adverse Event(s) as a Measure of Safety and Tolerability | Overall Response Rate for Participants | Experimental: FOLFIRINOX with SBRT |
NCT04089150 | MASTERPLAN: A Randomised Phase II Study of MFOLFIRINOX And Stereotactic Radiotherapy (SBRT) for Pancreatic Cancer With High Risk and Locally Advanced Disease | 2 | 120 | 30 August 2023 | Locoregional control (Locoregional Response Rate LRR) | Safety (NCI CTCAE v5.0), Surgical morbidity/mortality, Radiological response rates, Progression Free Survival, Pathological response rates, Surgical resection rates, R0 resection rates, Quality of Life, Deterioration-Free Survival, Overall survival | Experimental: Option 1: mFOLFIRINOX (6 cycles) Option 2: gemcitabine + nab-paclitaxel (3 cycles) Stereotactic Radiotherapy (SBRT) Comparator: Option 1: mFOLFIRINOX (6 cycles) Option 2: gemcitabine + nab-paclitaxel (3 cycles) |
NCT03777462 | Comparisons of Different Neoadjuvant Chemotherapy Regimens With or Without Stereotactic Body Radiation Therapy for Borderline Resectable Pancreatic Cancer: Study Protocol of a Prospective, Randomized Phase II Trial | 2 | 150 | 31 December 2022 | Overall time (Time Frame: From date of randomization until the date of death from any cause, whichever came first) | Disease free time (Time Frame: From date of randomization until the date of first documented progression or metastasis) | Experimental: Neoadjuvant gemcitabine plus nab-paclitaxel with SBRT Neoadjuvant S-1 plus nab-paclitaxel with SBRT Comparator: Neoadjuvant gemcitabine plus nab-paclitaxel |
NCT04698915 | GRECO-2: A Randomized, Phase 2b Study of GC4711 in Combination With Stereotactic Body Radiation Therapy (SBRT) in the Treatment of Unresectable or Borderline Resectable Nonmetastatic Pancreatic Cancer | 2 | 160 | October 2027 | Median Overall Survival after SBRT completion | Median Progression Free Survival after SBRT Completion per RESIST 1.1 | Experimental: Drug GC4711 + SBRT Comparator: Placebo + SBRT |
NCT05114213 | MR-Guided Adaptive Stereotactic Body Radiotherapy (SBRT) of Primary Tumor for Pain Control in Metastatic Pancreatic Ductal Adenocarcinoma (mPDAC)—a Randomized, Controlled Clinical Study | 92 | May 2024 | Mean cumulative pain index | Number of biliary complications, Malnutrition, Treatment toxicity, Death from any cause | Experimental: Strandard of care chemotherapy + SBRT Comparator: Strandard of care chemotherapy | |
NCT03492671 | A Phase II Trial of Pre-operative Chemotherapy (With Gemcitabine and Nab- Paclitaxel) and Stereotactic Body Radiotherapy Followed by Surgery and Chemotherapy in Patients With Resectable Pancreatic Adenocarcinoma | 2 | 30 | 30 September 2024 | Curative Intent Resection (R0) rate | Disease Free Survival Rate Overall Survival Rate | Experimental: Chemotherapy (Gemcitabine + nab-paclitaxel) and SBRT |
NCT05116917 | Nivolumab, Ipilimumab and Radiation in Combination With Influenza Vaccine in Patients With Pancreatic Cancer (INFLUENCE) | 30 | 1 December 2024 | Objective response rate (ORR) | Duration of response (DoR), Disease control rate (DCR), Progression free survival (PFS), Overall survival (OS), EORTC QLQ-C30, Treatment-related adverse events as assessed by CTCAE v5.0 | Experimental: Nivolumab + Ipilimumab + Influenza vaccine + SBRT | |
NCT04331041 | Phase II Study of Stereotactic Body Radiotherapy and Focal Adhesion Kinase Inhibitor in Advanced Pancreas Adenocarcinoma | 2 | 42 | 31 July 2025 | Progression-free survival (PFS) | Safety and toxicity profile of the regimen as measured by incidence of acute and late adverse events, Overall survival, Distant metastasis progression-free survival, Objective response rate | Experimental: MR-guided SBRT + Defactinib Comparator: MR-guided SBRT |
NCT03991962 | Phase II Study to Evaluate Modified Folfirinox and Stereotactic Body Radiation Therapy in Non-metastatic Unresectable Pancreatic Adenocarcinoma | 2 | 28 | 1 February 2023 | Progression Free Survival | Radiographic Response, Rates of Recurrence, Rates of grade 3 or greater gastrointestinal toxicity, Overall Survival | Experimental: mFOLFIRINOX followed by SBRT |
NCT03073785 | A Randomized Phase II Study of the Efficacy and Safety of Hypofractionated Stereotactic Radiotherapy and 5FU or Capecitabine With and Without Zometa in Patients With Locally Advanced Pancreatic Adenocarcinoma | 2 | 44 | December 2022 | Local control at 4, 8 and 12 months | Maximum tolerated dose of zoledronic acid, Local failure-free survival, Overall survival, Surgical complete resection, Pathologic response for patients who undergo resection, The change of tumor size after SBRT, The change of max and average SUV after SBRT, Tumor and organ motion | Experimental: Zoledronic acid, chemotherapy, radiation therapy Comparator: Chemotherapy, radiation therapy |
NCT04090463 | A Phase II Study of Primary Chemotherapy, Stereotactic Body Radiation Therapy, and Intraoperative Radiation Therapy in Borderline Resectable Pancreatic Adenocarcinoma | 2 | 100 | 30 December 2027 | Disease-specific survival | Progression-free survival, Number of participants with treatment-related adverse events as assessed by CTCAE v4.0, Rate of margin-free surgery, Rate of surgical complications, Resection rate | Experimental: IORT group |
NCT04789486 | Nano-SMART: An Adaptive Phase I-II Trial of AGuIX Gadolinium-based Nanoparticles With Stereotactic Magnetic Resonance-guided Adaptive Radiation Therapy for Centrally Located Lung Tumors and Locally Advanced Unresectable Pancreatic Ductal Adenocarcinoma | 1–2 | 100 | 10 September 2024 | Maximum tolerated dose (MTD) Phase 1, Compare Local Control at 12 months of Maximum tolerated dose MTD—Phase 2 | Progression-free survival (PFS), Overall Response Rate (ORR) at Maximum tolerated dose (MTD), Serious Adverse Events at 90 Days and 12 months, Tumor Changes, Compare disease-specific survival, Compare R0 resection rate, Compare overall survival, Quality of Life (QoL) | Experimental: AGUIX + SMART Phase 1 Experimental: AGUIX + SMART Phase 2 Experimental: SMART Phase 2 |
NCT04986930 | Randomized Phase 2 Study of mFOLFIRINOX With or Without Stereotactic Body Radiotherapy in Patients With Locally Advanced Pancreatic Adenocarcinoma | 2 | 92 | 14 August 2024 | 1-year progression-free survival rate | Overall survival, Progression-free survival, Overall response rates, Adverse events, Surgical resection rate | Experimental: SBRT+mFOLFIRINOX Comparator: mFOLFIRINOX |
NCT04570943 | Phase II Study to Assess the Interest of a Sequential Treatment With Gemcitabine/Nab-paclitaxel (GEMBRAX) and Then FOLFIRINOX Followed by Stereotactic Magnetic Resonance-guided Adaptive Radiotherapy in Patients With Locally Advanced Pancreatic Cancer | 2 | 103 | October 2026 | Rate of non-progression at 4 months, Acute gastrointestinal non-toxicity rate | Assessment of adverse events due to CHT and RT, Progression-free Survival (PFS), Overall Survival (OS), Resection rate, Healthy margin resection rate (R0), Prognostic impact of CA 19-9 changes on survival, Quality of life, Correlation of PTV coverage and dose received by the GTV with PFS and OS, Correlation of the dose received by organs at risk with the appearance of GI toxicities | Experimental: Gabrinox followed by stereotactic radiotherapy |
NCT04390399 | Open-label, Randomized, Comparative Phase 2 Study of Combination Immunotherapy Plus Standard-of-care Chemotherapy Versus Standard-of-care Chemotherapy for the Treatment of Locally Advanced or Metastatic Pancreatic Cancer | 2 | 328 | 30 September 2024 | Progression Free Survival (PFS) | Objective response rate (ORR), Complete response (CR) rate, and Disease Control Rate (DCR), Overall Survival (OS), Quality of Life (QoL) | Experimental: SBRT + cyclophosphamide + gemcitabine + nab-paclitaxel + aldoxorubicin HCl + N-803 SBRT + cyclophosphamide + gemcitabine + nab-paclitaxel+ aldoxorubicin HCl + N-803 + PD-L1 t-haNK Comparator: SBRT + gemcitabine + nab-paclitaxel Experimental: SBRT + cyclophosphamide + gemcitabine + nab-paclitaxel+ aldoxorubicin HCl + N-803 + PD-L1 t-haNK SBRT + cyclophosphamide + gemcitabine + nab-paclitaxel + aldoxorubicin + N-803 + PD-L1 t-haNK Comparator: Irinotecan liposome + 5-FU/leucovorin |
NCT04247165 | LAPTOP: Phase 1/2 Study in Locally Advanced Pancreatic Cancer to Assess Safety and Potential Efficacy of Dual Checkpoint Inhibition in Combination With Gemcitabine and Nab-paclitaxel Followed by Immune-chemoradiation. | 1–2 | 20 | February 2024 | Incidence of treatment-related AEs, SAEs, AEs leading to discontinuation, death, and laboratory abnormalities | Median PFS, OS, Objective Response Rate (ORR), Rate of downstaging to surgical resection | Experimental: Gemcitabine + Nab-paclitaxel + Nivolumab + Ipilimumab + SBRT |
NCT03767582 | A Phase I/II Trial of Combination Immunotherapy With Nivolumab and a CCR2/CCR5 Dual Antagonist (BMS-813160) With or Without GVAX Following Chemotherapy and Radiotherapy for Locally Advanced Pancreatic Ductal Adenocarcinomas (PDACs). | 1–2 | 30 | March 2023 | Number of Participants experiencing study drug-related toxicities, Percentage of participants treated with immunotherapy who achieve an immune response | Overall survival (OS), Metastasis free survival (MFS), Local progression free survival (LPFS), Surgical Resectability Rate, Pathological Response Rate, Change in Quality of life score | Experimental: Phase I GVAX/Nivolumab/CCR2/CCR5 dual antagonist Phase II Arm A: Nivolumab/CCR2/CCR5 dual antagonist Arm B: Nivolumab/GVAX/CCR2/CCR5 dual antagonist |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burkoň, P.; Trna, J.; Slávik, M.; Němeček, R.; Kazda, T.; Pospíšil, P.; Dastych, M.; Eid, M.; Novotný, I.; Procházka, T.; et al. Stereotactic Body Radiotherapy (SBRT) of Pancreatic Cancer—A Critical Review and Practical Consideration. Biomedicines 2022, 10, 2480. https://doi.org/10.3390/biomedicines10102480
Burkoň P, Trna J, Slávik M, Němeček R, Kazda T, Pospíšil P, Dastych M, Eid M, Novotný I, Procházka T, et al. Stereotactic Body Radiotherapy (SBRT) of Pancreatic Cancer—A Critical Review and Practical Consideration. Biomedicines. 2022; 10(10):2480. https://doi.org/10.3390/biomedicines10102480
Chicago/Turabian StyleBurkoň, Petr, Jan Trna, Marek Slávik, Radim Němeček, Tomáš Kazda, Petr Pospíšil, Milan Dastych, Michal Eid, Ivo Novotný, Tomáš Procházka, and et al. 2022. "Stereotactic Body Radiotherapy (SBRT) of Pancreatic Cancer—A Critical Review and Practical Consideration" Biomedicines 10, no. 10: 2480. https://doi.org/10.3390/biomedicines10102480