A Modified LBP Operator-Based Optimized Fuzzy Art Map Medical Image Retrieval System for Disease Diagnosis and Prediction
Abstract
:1. Introduction
1.1. Motivation
- ⮚
- The framework adopts a novel LBP operator, namely, AvN-LBP.
- ⮚
- The proposed descriptor addresses the issues due to noisy images and includes the information available in the neighborhood pixels.
- ⮚
- An optimized FAM network is modeled as a Classifier.
- ⮚
- The Deferential Evolution Algorithm (DE) is used for evolving the FAM network, namely, DEFAM.
- ⮚
- A MIR System, namely, DEFAMNet, to retrieve the required images from medical databases, is developed, trained, and tested using benchmark databases.
- ⮚
- A modified Mutation operator is implemented during the evolution of the FAM Network.
1.2. Related Work
2. Materials and Methods
2.1. Introduction to LBP Methodology
2.2. Proposed Approach
- Thresholding at tends to make local neighborhood vectors almost zero-mean. Hence, the descriptor proposed is not affected by grayscale changes and is resistant to lighting effects.
- Since the threshold is estimated from the neighborhood pixels, the pattern is more discriminative compared to LBP. Figure 4 shows the discriminative strength of the proposed descriptor.
- Weak edges are better preserved by AvN-LBP. Analyzing Figure 5, it can be noticed that the LBP patterns are not reflecting the actual distribution of pixels compared to the proposed descriptor.
- Less influenced by the presence of noise. Figure 6 provides a comparison between the signal-to-noise ratio (SNR) and the classification accuracy for the proposed AvN-LBP and conventional LBP. The results provide the evidence for the robustness of the proposed descriptor for different Gaussian noise levels added to images.
2.3. Fuzzy ARTMAP Architectures
2.3.1. Fuzzy ARTMAP (FAM)
Algorithm 1: Training FAM network |
|
2.3.2. Non-Proliferation Fuzzy ARTMAP (NPFAM)
2.3.3. Differential Evolution of FAM Networks (DEFAM)
Initialization
Mutation
Algorithm 2: Steps for Mutation |
|
Crossover
Selection
Algorithm 3: Evolution of FAM Network |
|
3. Results
3.1. Database
3.2. Evaluation of Proposed DEFAMnet Medical Image Retrieval System
3.3. Performance on the I-ELCAP Database
3.4. Retrieval Analysis on the OASIS–MRI Database
3.5. Result Analysis on the ILD Database
3.6. MIR System Adopting NPFAM and DEFAMNet Classifiers
3.7. Retrieval Accuracy Obtained on Different Body Parts
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Clarke, R.L. National Alliance for Health Information Technology. Healthc. Financ. Manag. 2002, 56, 16–17. [Google Scholar]
- Ojala, T.; Pietikainen, M.; Maenpaa, T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [Google Scholar] [CrossRef]
- Qiao, S.; Yu, Q.; Zhao, Z.; Song, L.; Tao, H.; Zhang, T.; Zhao, C. Edge extraction method for medical images based on improved local binary pattern combined with edge-aware filtering. Biomed. Signal Process. Control. 2022, 74, 103490. [Google Scholar] [CrossRef]
- Pereira, P.M.; Fonseca-Pinto, R.; Paiva, R.P.; Assuncao, P.A.; Tavora, L.M.; Thomaz, L.A.; Faria, S.M. Dermoscopic skin lesion image segmentation based on Local Binary Pattern Clustering: Comparative study. Biomed. Signal Process. Control. 2020, 59, 101924. [Google Scholar] [CrossRef]
- Vimina, E.; Divya, M.O. Maximal multi-channel local binary pattern with colour information for CBIR. Multimed. Tools Appl. 2020, 79, 25357–25377. [Google Scholar] [CrossRef]
- Alpaslan, N.; Hanbay, K. Multi-resolution intrinsic texture geometry-based local binary pattern for texture classification. IEEE Access 2020, 8, 54415–54430. [Google Scholar] [CrossRef]
- Francis, A.; Pandian, I.A. Early detection of Alzheimer’s disease using local binary pattern and convolutional neural network. Multimed. Tools Appl. 2021, 80, 29585–29600. [Google Scholar] [CrossRef]
- Ko, B.C.; Kim, S.H.; Nam, J.Y. X-ray image classification using random forests with local wavelet-based CS-local binary patterns. J. Digit. Imaging 2011, 24, 1141–1151. [Google Scholar] [CrossRef]
- Hosny, K.M.; Magdy, T.; Lashin, N.A. Improved color texture recognition using multi-channel orthogonal moments and local binary pattern. Multimed. Tools Appl. 2021, 80, 13179–13194. [Google Scholar] [CrossRef]
- Murugappan, V.; Beenian, R.S. Texture based medical image classification by using multi-scale Gabor rotation-invariant local binary pattern (MGRLBP). Clust. Comput. 2019, 22, 10979–10992. [Google Scholar] [CrossRef]
- Verma, M.; Raman, B. Center symmetric local binary co-occurrence pattern for texture, face and bio-medical image retrieval. J. Vis. Commun. Image Represent. 2015, 32, 224–236. [Google Scholar] [CrossRef]
- Kola, D.G.R.; Samayamantula, S.K. A novel approach for facial expression recognition using local binary pattern with adaptive window. Multimed. Tools Appl. 2021, 80, 2243–2262. [Google Scholar] [CrossRef]
- Chairet, R.; Ben Salem, Y.; Aoun, M. Potential of multi-scale completed local binary pattern for object based classification of very high spatial resolution imagery. J. Indian Soc. Remote Sens. 2021, 49, 1245–1255. [Google Scholar] [CrossRef]
- Zhao, Q. Research on the application of local binary patterns based on color distance in image classification. Multimed. Tools Appl. 2021, 80, 27279–27298. [Google Scholar] [CrossRef]
- Shu, X.; Song, Z.; Shi, J.; Huang, S.; Wu, X.J. Multiple channels local binary pattern for color texture representation and classification. Signal Process. Image Commun. 2021, 98, 116392. [Google Scholar] [CrossRef]
- Lekehali, S.; Moussaoui, A. Quantum Local Binary Pattern for Medical Edge Detection. J. Inf. Technol. Res. 2019, 12, 36–52. [Google Scholar] [CrossRef]
- Abbasi, S.; Tajeripour, F. Detection of brain tumor in 3D MRI images using local binary patterns and histogram orientation gradient. Neurocomputing 2017, 219, 526–535. [Google Scholar] [CrossRef]
- Kobat, M.A.; Tuncer, T. Coronary Angiography Print: An Automated Accurate Hidden Biometric Method Based on Filtered Local Binary Pattern Using Coronary Angiography Images. J. Pers. Med. 2021, 11, 1000. [Google Scholar] [CrossRef]
- Nanni, L.; Brahnam, S.; Lumini, A. Combining different local binary pattern variants to boost performance. Expert Syst. Appl. 2011, 38, 6209–6216. [Google Scholar] [CrossRef]
- Li, Y.; Tang, H.; Xie, W.; Luo, W. Multidimensional local binary pattern for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–13. [Google Scholar] [CrossRef]
- Najafi Khanbebin, S.; Mehrdad, V. Local improvement approach and linear discriminant analysis-based local binary pattern for face recognition. Neural Comput. Appl. 2021, 33, 7691–7707. [Google Scholar] [CrossRef]
- Kotadiya, H.; Patel, D. Review of medical image classification techniques. In Third International Congress on Information and Communication Technology; Springer: Singapore, 2019; pp. 361–369. [Google Scholar]
- Sathiyamoorthi, V.; Ilavarasi, A.K.; Murugeswari, K.; Ahmed, S.T.; Devi, B.A.; Kalipindi, M. A deep convolutional neural network based computer aided diagnosis system for the prediction of Alzheimer’s disease in MRI images. Measurement 2021, 171, 108838. [Google Scholar] [CrossRef]
- Yadav, S.S.; Jadhav, S.M. Deep convolutional neural network based medical image classification for disease diagnosis. J. Big Data 2019, 6, 113. [Google Scholar] [CrossRef]
- Sarvamangala, D.R.; Kulkarni, R.V. Convolutional neural networks in medical image understanding: A survey. Evol. Intell. 2021, 15, 1–22. [Google Scholar] [CrossRef]
- Yang, R.; Yu, Y. Artificial convolutional neural network in object detection and semantic segmentation for medical imaging analysis. Front. Oncol. 2021, 11, 638182. [Google Scholar] [CrossRef]
- Ali, A.R.; Li, J.; Yang, G.; O’Shea, S.J. A machine learning approach to automatic detection of irregularity in skin lesion border using dermoscopic images. PeerJ Comput. Sci. 2020, 6, e268. [Google Scholar] [CrossRef]
- Yasar, H.; Ceylan, M. A new deep learning pipeline to detect COVID-19 on chest X-ray images using local binary pattern, dual tree complex wavelet transform and convolutional neural networks. Appl. Intell. 2021, 51, 2740–2763. [Google Scholar] [CrossRef]
- Iqbal, S.; Qureshi, A.N. A heteromorphous deep CNN framework for Medical Image Segmentation using Local Binary Pattern. IEEE Access 2022, 10, 63466–63480. [Google Scholar] [CrossRef]
- Biasotti, S.; Cerri, A.; Aono, M.; Hamza, A.B.; Garro, V.; Giachetti, A.; Giorgi, D.; Godil, A.; Li, C.; Sanada, C.; et al. Retrieval and classification methods for textured 3D models: A comparative study. Vis. Comput. 2016, 32, 217–241. [Google Scholar] [CrossRef]
- Verma, R.; Kumar, N.; Patil, A.; Kurian, N.C.; Rane, S.; Graham, S.; Vu, Q.D.; Zwager, M.; Raza, S.E.; Rajpoot, N.; et al. MoNuSAC2020: A Multi-Organ Nuclei Segmentation and Classification Challenge. IEEE Trans. Med. Imaging 2021, 40, 3413–3423. [Google Scholar] [CrossRef]
- Rodolà, E.; Cosmo, L.; Litany, O.; Bronstein, M.M.; Bronstein, A.M.; Audebert, N.; Hamza, A.B.; Boulch, A.; Castellani, U.; Do, M.N.; et al. SHREC’17: Deformable Shape Retrieval with Missing Parts. In Proceedings of the Eurographics Workshop on 3D Object Retrieval, Lyon, France, 23–24 April 2017. [Google Scholar]
- Ejegwa, P.A.; Agbetayo, J.M. Similarity-Distance Decision-Making Technique and its Applications via Intuitionistic Fuzzy Pairs. J. Comput. Cogn. Eng. 2022. [Google Scholar] [CrossRef]
- R22 Masood, F.; Masood, J.; Zahir, H.; Driss, K.; Mehmood, N.; Farooq, H. Novel Approach to Evaluate Classification Algorithms and Feature Selection Filter Algorithms Using Medical Data. J. Comput. Cogn. Eng. 2022. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, L.; Long, Y.; Kuang, G.; Fieguth, P. Extended local binary patterns for texture classification. Image Vis. Comput. 2012, 30, 86–99. [Google Scholar] [CrossRef]
- Marček, D.; Rojček, M. The category proliferation problem in ART neural networks. Acta Polytech. Hung. 2017, 14, 49–63. [Google Scholar]
- Anitha, K.; Chilambuchelvan, A. NPFAM: Non-proliferation fuzzy ARTMAP for image classification in content-based image retrieval. KSII Trans. Internet Inf. Syst. 2015, 9, 2683–2702. [Google Scholar]
- Anitha, K.; Naresh, K.; Devi, D.R. A framework to reduce category proliferation in fuzzy ARTMAP classifiers adopted for image retrieval using differential evolution algorithm. Multimed. Tools Appl. 2020, 79, 4217–4238. [Google Scholar] [CrossRef]
- Deng, W.; Shang, S.; Cai, X.; Zhao, H.; Song, Y.; Xu, J. An improved differential evolution algorithm and its application in optimization problem. Soft Comput. 2021, 25, 5277–5298. [Google Scholar] [CrossRef]
- Deng, W.; Xu, J.; Gao, X.Z.; Zhao, H. An enhanced MSIQDE algorithm with novel multiple strategies for global optimization problems. IEEE Trans. Syst. Man Cybern. Syst. 2020, 52, 1578–1587. [Google Scholar] [CrossRef]
- Chaudhary, S.; Murala, S. Deep network for human action recognition using Weber motion. Neurocomputing 2019, 367, 207–216. [Google Scholar] [CrossRef]
- Galshetwar, G.M.; Patil, P.W.; Gonde, A.B.; Waghmare, L.M.; Maheshwari, R.P. Local directional gradient-based feature learning for image retrieval. In Proceedings of the 2018 IEEE 13th International Conference on Industrial and Information Systems (ICIIS), Rupnagar, India, 1–2 December 2018; pp. 113–118. [Google Scholar]
- Reeves, A.P.; Xie, Y.; Liu, S. Large-scale image region documentation for fully automated image biomarker algorithm development and evaluation. J. Med. Imaging 2017, 4, 024505. [Google Scholar] [CrossRef]
- Marcus, D.S.; Fotenos, A.F.; Csernansky, J.G.; Morris, J.C.; Buckner, R.L. Open access series of imaging studies: Longitudinal MRI data in nondemented and demented older adults. J. Cogn. Neurosci. 2010, 22, 2677–2684. [Google Scholar] [CrossRef]
- Depeursinge, A.; Vargas, A.; Platon, A.; Geissbuhler, A.; Poletti, P.A.; Müller, H. Building a reference multimedia database for interstitial lung diseases. Comput. Med. Imaging Graph. 2012, 36, 227–238. [Google Scholar] [CrossRef]
- Tan, X.; Triggs, B. Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 2010, 19, 1635–1650. [Google Scholar]
- Verma, M.; Raman, B. Local neighborhood difference pattern: A new feature descriptor for natural and texture image retrieval. Multimed. Tools Appl. 2018, 77, 11843–11866. [Google Scholar] [CrossRef]
- Murala, S.; Maheshwari, R.P.; Balasubramanian, R. Local tetra patterns: A new feature descriptor for content-based image retrieval. IEEE Trans. Image Process. 2012, 21, 2874–2886. [Google Scholar] [CrossRef]
- Murala, S.; Wu, Q.J. Local mesh patterns versus local binary patterns: Biomedical image indexing and retrieval. IEEE J. Biomed. Health Inform. 2013, 18, 929–938. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 60, 84–90. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Takala, V.; Ahonen, T.; Pietikäinen, M. Block-based methods for image retrieval using local binary patterns. In Proceedings of the Scandinavian Conference on Image Analysis, Joensuu, Finland, 19–22 June 2005; Springer: Berlin/Heidelberg, Germany, 2005; pp. 882–891. [Google Scholar]
- Kavitha, C.; Anita, X.; Selvan, S. Improving the efficiency of speculative execution strategy in hadoop using amazon elasticache for redis. J. Eng. Sci. Technol. 2021, 16, 4864–4878. [Google Scholar]
- Kavitha, C.; Anita, X. Task failure resilience technique for improving the performance of MapReduce in Hadoop. ETRI J. 2020, 42, 748–760. [Google Scholar]
- Kavitha, C.; Mani, V.; Srividhya, S.R.; Khalaf, O.I.; Tavera Romero, C.A. Early-Stage Alzheimer’s Disease Prediction Using Machine Learning Models. Front. Public Health 2022, 10, 853294. [Google Scholar] [CrossRef]
MODULE | |||||||||
---|---|---|---|---|---|---|---|---|---|
AvN-LBP | FAM | DE | |||||||
PARAMETER | p | R | Θ | Ρ | β | β | CR | ||
VALUE | 8 | 3 | 450 | 1.0 | 0.8 | 0.2 | 0.001 | 1.0 | 0.7 |
OPERATOR/ ALGORITHM | CLASS | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Avg | |
LBP [46] | 56.6 | 72.7 | 64.7 | 89.5 | 67.8 | 91.6 | 80.4 | 99.7 | 78.4 | 90.7 | 79.1 |
LTP [47] | 49.6 | 52.6 | 58.5 | 80.8 | 48.2 | 77.2 | 55.3 | 92.5 | 61.5 | 74.8 | 65.4 |
GLBP [46] | 67.8 | 84.2 | 77.8 | 92.3 | 79.2 | 89.3 | 77.1 | 99.1 | 84.1 | 97.4 | 84.7 |
LMeP [49] | 77.3 | 75.1 | 68.1 | 92.6 | 73.5 | 93.4 | 86.8 | 100 | 80.1 | 87.2 | 83.2 |
AvN-LBP * | 85.6 | 89.9 | 86.7 | 95.6 | 91.1 | 98.5 | 91.4 | 99.4 | 97.1 | 97.1 | 93.4 |
GLCM [47] | 76.8 | 55.1 | 55.1 | 54.9 | 49.9 | 74.2 | 68.5 | 94.7 | 32.3 | 72.4 | 63.3 |
GLMeP [49] | 82.5 | 82.2 | 85.6 | 95.5 | 74.6 | 97.5 | 90.1 | 100 | 82.7 | 94.2 | 88.4 |
ResNet [50] | 100 | 96.8 | 100 | 100 | 100 | 100 | 85.7 | 96.8 | 96.8 | 100 | 97.3 |
AlexNet [51] | 82.9 | 99.1 | 95.2 | 78.9 | 96.6 | 92.6 | 99.1 | 73.2 | 93.8 | 62.5 | 84.1 |
VGG-16 [52] | 63.8 | 100 | 79.4 | 85.7 | 90.9 | 59.1 | 100 | 83.9 | 100 | 95.2 | 82.1 |
RetrieveNet [53] | 100 | 100 | 100 | 98.1 | 100 | 98.1 | 100 | 100 | 100 | 94.2 | 99.1 |
DEFAMNet * | 100 | 100 | 100 | 99.4 | 100 | 100 | 100 | 100 | 100 | 98.6 | 99.8 |
OPERATOR/ ALGORITHM | CLASS | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Avg | |
LBP [46] | 32.4 | 40.5 | 38.6 | 67.0 | 36.2 | 54.2 | 48.5 | 81.2 | 47.8 | 72.7 | 51.9 |
LTP [47] | 23.1 | 25.8 | 23.8 | 52.1 | 20.6 | 38.5 | 22.8 | 40.9 | 26.4 | 40.6 | 31.4 |
GLBP [46] | 34.5 | 42.5 | 41.5 | 66.0 | 37.7 | 51.1 | 40.2 | 72.1 | 47.4 | 76.7 | 51.0 |
LMeP [49] | 37.4 | 35.4 | 28.9 | 73.0 | 37.9 | 52.9 | 53.3 | 95.6 | 43.0 | 69.6 | 53.7 |
AvN-LBP * | 49.8 | 51.2 | 47.9 | 72.5 | 41.1 | 52.9 | 52.7 | 76.1 | 45.6 | 84.6 | 57.5 |
GLCM [47] | 33.2 | 28.2 | 16.5 | 26.4 | 19.7 | 34.2 | 27.6 | 52.9 | 15.4 | 42.1 | 29.6 |
GLMeP [49] | 38.7 | 38.3 | 37.3 | 71.4 | 36.5 | 62.2 | 56.3 | 89.6 | 44.8 | 70.4 | 54.6 |
ResNet [50] | 100 | 100 | 96.7 | 86.7 | 100 | 100 | 100 | 100 | 100 | 90.2 | 97.3 |
AlexNet [51] | 96.7 | 76.7 | 66.7 | 100 | 93.3 | 83.3 | 33.3 | 90.2 | 100 | 100 | 84.2 |
VGG-16 [52] | 100 | 96.7 | 90.1 | 100 | 33.3 | 96.7 | 60.5 | 86.7 | 100 | 66.7 | 82.4 |
RetrieveNet [53] | 100 | 100 | 100 | 100 | 100 | 100 | 96.1 | 96.8 | 100 | 98.5 | 99.1 |
DEFAMNet * | 100 | 97.0 | 99.5 | 99.0 | 100 | 100 | 100 | 99.0 | 100 | 98.0 | 99.3 |
OPERATOR/ ALGORITHM | CLASS | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | Avg | |
LBPSEG [45] | 43.21 | 38.03 | 28.32 | 46.44 | 39.01 |
LTP [47] | 56.33 | 36.70 | 34.97 | 50.02 | 45.17 |
CSLBP [45] | 44.72 | 40.15 | 31.17 | 48.27 | 41.06 |
GLDP [47] | 48.72 | 40.09 | 38.41 | 41.52 | 42.23 |
AvN-LBP * | 58.91 | 61.38 | 51.3 | 66.43 | 59.51 |
LDP [47] | 46.29 | 36.37 | 36.82 | 45.56 | 41.8 |
LMEBP [54] | 46.17 | 40.17 | 36.83 | 49.17 | 43.08 |
ResNet [50] | 78.01 | 57.74 | 73.91 | 86.52 | 75.62 |
AlexNet [51] | 88.01 | 54.51 | 62.51 | 73.82 | 68.52 |
VGG-16 [52] | 75.74 | 57.14 | 52.41 | 70.74 | 66.15 |
RetrieveNet [53] | 90.01 | 71.25 | 82.15 | 95.92 | 84.3 |
DEFAMNet * | 96.16 | 84.64 | 91.23 | 100 | 93.01 |
OPERATOR/ ALGORITHM | CLASS | |||||
---|---|---|---|---|---|---|
Emphysema | Fibrosis | Groundglass | Healthy | Micronodules | Avg | |
LBP [46] | 26.79 | 47.85 | 35.66 | 28.71 | 28.79 | 33.53 |
LTP [47] | 36.79 | 49.82 | 45.66 | 38.71 | 37.72 | 41.73 |
LTCop [50] | 31.32 | 50.82 | 44.15 | 28.71 | 63.88 | 43.77 |
LTrP [54] | 42.07 | 51.87 | 49.27 | 41.79 | 57.65 | 48.52 |
AvN-LBP * | 56.42 | 65.64 | 57.64 | 48.24 | 65.86 | 58.76 |
ResNet [50] | 90.98 | 91.49 | 88.96 | 83.78 | 72.49 | 82.86 |
AlexNet [51] | 62.52 | 92.68 | 88.23 | 55.78 | 83.78 | 75.47 |
VGG-16 [52] | 50.75 | 79.45 | 56.95 | 73.68 | 94.72 | 75.89 |
RetrieveNet [53] | 99.89 | 98.92 | 91.75 | 80.56 | 96.36 | 92.40 |
DEFAMNet * | 100 | 97.92 | 94.56 | 92.90 | 99.12 | 96.90 |
DESCRIPTOR | CLASSIFIER | |
---|---|---|
NPFAM | DEFAMNet | |
LBP | 87.64 | 90.00 |
CS-LBP | 89.41 | 91.76 |
NI-LBP | 86.47 | 88.82 |
LTP | 88.82 | 90.58 |
AVN-LBP | 91.88 | 93.71 |
CLASS | RETRIEVAL ACCURACY | ||
---|---|---|---|
AvN-LBP | AvN-LBP + NPFAM | AvN-LBP + DEFAM | |
CHEST | 54.6 | 89.1 | 91.2 |
HEAD | 66.8 | 86.4 | 90.3 |
FOOT | 60.2 | 85.2 | 89.2 |
NECK | 71.4 | 87.6 | 91.7 |
PALM | 69.2 | 88.7 | 94.4 |
SPINE | 56.1 | 86.2 | 90.3 |
Eature Descriptor | Feature Extraction Time | Retrieval Time in Seconds | ||
---|---|---|---|---|
Without Classifier | With NPFAM Classifier | With DEFAMNet Classifier | ||
ZMs | 16.85 | 1.37 | 0.42 | 0.41 |
ULBP | 3.89 | 5.48 | 1.14 | 1.02 |
LBP | 4.56 | 20.41 | 0.52 | 0.51 |
AvN-LBP | 8.46 | 22.32 | 0.49 | 0.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
K., A.; S., R.; C., K.; Lai, W.-C.; Srividhya, S.R.; K., N. A Modified LBP Operator-Based Optimized Fuzzy Art Map Medical Image Retrieval System for Disease Diagnosis and Prediction. Biomedicines 2022, 10, 2438. https://doi.org/10.3390/biomedicines10102438
K. A, S. R, C. K, Lai W-C, Srividhya SR, K. N. A Modified LBP Operator-Based Optimized Fuzzy Art Map Medical Image Retrieval System for Disease Diagnosis and Prediction. Biomedicines. 2022; 10(10):2438. https://doi.org/10.3390/biomedicines10102438
Chicago/Turabian StyleK., Anitha, Radhika S., Kavitha C., Wen-Cheng Lai, S. R. Srividhya, and Naresh K. 2022. "A Modified LBP Operator-Based Optimized Fuzzy Art Map Medical Image Retrieval System for Disease Diagnosis and Prediction" Biomedicines 10, no. 10: 2438. https://doi.org/10.3390/biomedicines10102438
APA StyleK., A., S., R., C., K., Lai, W.-C., Srividhya, S. R., & K., N. (2022). A Modified LBP Operator-Based Optimized Fuzzy Art Map Medical Image Retrieval System for Disease Diagnosis and Prediction. Biomedicines, 10(10), 2438. https://doi.org/10.3390/biomedicines10102438